
reformulator: Automated Refactoring of the N+1 Problem in
Database-Backed Applications

Alexi Turcotte
Northeastern University

Boston, MA, USA
turcotte.al@northeastern.edu

Mark W. Aldrich
Tufts University

Medford, MA, USA
mark.aldrich@tufts.edu

Frank Tip
Northeastern University

Boston, MA, USA
f.tip@northeastern.edu

ABSTRACT
An Object-Relational Mapping (ORM) provides an object-oriented
interface to a database and facilitates the development of database-
backed applications. In an ORM, programmers do not need to write
queries in a separate query language such as SQL, they instead
write ordinary method calls that are mapped by the ORM to data-
base queries. This added layer of abstraction hides the significant
performance cost of database operations, and misuse of ORMs can
lead to far more queries being generated than necessary. Of par-
ticular concern is the infamous “N+1 problem”, where an initial
query yields N results that are used to issue N subsequent queries.
This anti-pattern is prevalent in applications that use ORMs, as it
is natural to iterate over collections in object-oriented languages.
However, iterating over data that originates from a database and
calling an ORM method in each iteration may result in suboptimal
performance. In such cases, it is often possible to reduce the number
of round-trips to the database by issuing a single, larger query that
fetches all desired results at once.

We propose an approach for automatically refactoring applica-
tions that use ORMs to eliminate instances of the “N+1 problem”,
which relies on static analysis to detect data flow between ORMAPI
calls. We implement this approach in a tool called reformulator,
targeting the Sequelize ORM in JavaScript, and evaluate it on 8
JavaScript projects. We found 44 N+1 query pairs in these projects,
and reformulator refactored all of them successfully, resulting
in improved performance (up to 7.67x) while preserving program
behavior. Further experiments demonstrate that the relative per-
formance improvements grew as the database size was increased
(up to 38.58x), and show that front-end page load times were also
improved.

CCS CONCEPTS
• Software and its engineering→General programming lan-
guages; • Social and professional topics → History of program-
ming languages.

KEYWORDS
databases, ORMs, program analysis, refactoring, JavaScript

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ASE ’22, October 10–14, 2022, Rochester, MI, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9475-8/22/10.
https://doi.org/10.1145/3551349.3556911

ACM Reference Format:
Alexi Turcotte, Mark W. Aldrich, and Frank Tip. 2022. reformulator: Auto-
mated Refactoring of the N+1 Problem in Database-Backed Applications. In
37th IEEE/ACM International Conference on Automated Software Engineering
(ASE ’22), October 10–14, 2022, Rochester, MI, USA. ACM, New York, NY, USA,
12 pages. https://doi.org/10.1145/3551349.3556911

1 INTRODUCTION
An ORM (Object-Relational Mapping) provides an object-oriented
facade for a database enabling programmers to access it using ordi-
nary method calls. The ORM maps such method calls to database
queries and converts query results to objects in the host language
so that programmers do not need to use a separate database query
language like SQL to interact with the database. However, the added
layer of abstraction introduced by ORMs may obscure the cost of
database operations, and careless ORM usage may generate more
database queries than are necessary, causing poor performance.

Of particular concern is the infamous “N+1 problem” [9, 12, 38],
which arises when an initial database query yields N results that
are then used to issue N subsequent database queries. This can lead
to significant performance problems because database queries are
typically high-latency operations. The “N+1 problem” anti-pattern
frequently occurs in applications that use ORMs, where it often
arises in the following scenario:

• An initial call to the ORM’s Application Programming In-
terface (API) generates a database query that results in a
collection C of objects.

• Then, a loop iterates through C and, for each element c ∈ C ,
calls an ORM API method with c as an argument, resulting
in the generation of another new database query.

We found that, in many of these cases, the “N+1 problem” can
be remediated by inserting a single ORM API call that has the
effect of retrieving the information from the database that was
previously fetched by the N subsequent queries. This refactoring,
by significantly reducing the number of round-trips to the database,
can drastically improve performance.

We present an approach for automatically detecting instances
of the “N+1 problem” and generating code transformations that
reduce the number of database queries. To detect instances of the
“N+1 problem”, a static data-flow analysis detects data flow from the
result of one ORMAPI call to an argument of another ORMAPI call,
where the latter call occurs within a loop. To repair these instances,
we define a set of declarative rewrite rules that specify how code
should be transformed to reduce the number of generated queries.
These transformations result in code that: (i) issues a constant
number of queries, (ii) is behaviorally equivalent, and, importantly,
(iii) performs better and scales as database size increases.

https://orcid.org/0000-0002-0381-0477
https://orcid.org/0000-0001-5269-7063
https://orcid.org/0000-0002-1862-3498
https://doi.org/10.1145/3551349.3556911
https://doi.org/10.1145/3551349.3556911

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

We implement this technique in a tool called reformulator,
targeting the Sequelize ORM for the JavaScript programming lan-
guage, and evaluate it on 8 JavaScript projects that use Sequelize. In
these projects, reformulator found 44 instances of the “N+1 prob-
lem”. Due to the highly dynamic nature of the JavaScript program-
ming language, sound static analysis for JavaScript remains elu-
sive [20, 21, 27], and as a result, it is possible for our implementation
to propose refactorings that do not preserve behavior. Therefore,
following other recent work on refactoring for JavaScript [6, 15],
reformulator presents refactorings as suggestions that should be
carefully vetted by a programmer, e.g., by running tests.

In practice, reformulator successfully refactored all 44 in-
stances of the “N+1 problem”, and in all cases performance was
improved (up to 7.67x, even with small amounts of data being pro-
cessed). Additional experiments revealed speedups of up to 38.58x
and substantial improvements in scalability by demonstrating that
the relative performance improvements grew as the database size
was increased. We also confirmed that these performance gains
translate to an improved user experience, by demonstrating reduc-
tions in page load times by up to 90% with large database sizes.

In summary, the contributions of this paper are:
• An approach in which instances of the “N+1 problem” are
detected by tracking data flow between ORM API calls, and
where a set of declarative rewrite rules specifies how code
can be refactored to eliminate them;

• An implementation of this approach in a tool called refor-
mulator, targeting the popular Sequelize ORM in JavaScript;

• An evaluation of reformulator on 8 projects containing
44 instances of the “N+1 problem”, demonstrating that the
suggested refactorings improve performance and scalability,
while preserving program behavior in all cases,

An artifact complete with the source code and the ability to
re-run the experiments discussed in this paper is available [33].

The remainder of this paper is organized as follows. § 2 estab-
lishes relevant background via motivating example; § 3 details the
approach to finding and refactoring “N+1 problem” anti-patterns;
§ 4 describes the implementation of this approach in a tool called
reformulator; § 5 presents an evaluation of reformulator; § 6
identifies some threats to the validity of our approach; § 7 sketches
the landscape of related work; and finally, § 8 concludes.

2 BACKGROUND AND MOTIVATION
To illustrate how “N+1 problem” issues arise in practice, consider
youtubeclone [23], a popular open source video-sharing applica-
tion emulating YouTube with over 125 stars and nearly 600 forks.

Like many database-backed web applications, the three compo-
nents of youtubeclone are a front-end client-side interface, a back-
end server, and a database. As users navigate through the front-end,
HTTP requests are made to the server which sends HTTP responses
once the requests have been processed. In some cases, the server
will query the database if data is needed to prepare the response.

youtubeclone is written in JavaScript, and uses Sequelize [3],
a popular ORM that enables JavaScript applications to interact
with relational databases. The database backing youtubeclone has
tables for videos, users, subscriptions, and views, and Figure 1 shows
the Sequelize code modeling the video and user tables (simplified

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

In practice, reformulator successfully refactored all 44 in-
stances of the “N+1 problem”, and in all cases performance was
improved (up to 7.67x, even with small amounts of data being pro-
cessed). Additional experiments revealed speedups of up to 38.58x
and substantial improvements in scalability by demonstrating that
the relative performance improvements grew as the database size
was increased. We also confirmed that these performance gains
translate to an improved user experience, by demonstrating reduc-
tions in page load times by up to 90% with large database sizes.

In summary, the contributions of this paper are:

• An approach in which instances of the “N+1 problem” are
detected by tracking data flow between ORM API calls, and
where a set of declarative rewrite rules specifies how code
can be refactored to eliminate them;

• An implementation of this approach in a tool called refor-
mulator, targeting the popular Sequelize ORM in JavaScript;

• An evaluation of reformulator on 8 projects containing
44 instances of the “N+1 problem”, demonstrating that the
suggested refactorings improve performance and scalability,
while preserving program behavior in all cases,

An artifact complete with the source code and the ability to
re-run the experiments discussed in this paper is available [33].

The remainder of this paper is organized as follows. § 2 estab-
lishes relevant background via motivating example; § 3 details the
approach to finding and refactoring “N+1 problem” anti-patterns;
§ 4 describes the implementation of this approach in a tool called
reformulator; § 5 presents an evaluation of reformulator; § 6
identifies some threats to the validity of our approach; § 7 sketches
the landscape of related work; and finally, § 8 concludes.

2 BACKGROUND AND MOTIVATION
To illustrate how “N+1 problem” issues arise in practice, consider
youtubeclone [23], a popular open source video-sharing applica-
tion emulating YouTube with over 125 stars and nearly 600 forks.

Like many database-backed web applications, the three compo-
nents of youtubeclone are a front-end client-side interface, a back-
end server, and a database. As users navigate through the front-end,
HTTP requests are made to the server which sends HTTP responses
once the requests have been processed. In some cases, the server
will query the database if data is needed to prepare the response.

youtubeclone is written in JavaScript, and uses Sequelize [3],
a popular ORM that enables JavaScript applications to interact
with relational databases. The database backing youtubeclone has
tables for videos, users, subscriptions, and views, and Figure 1 shows
the Sequelize code modeling the video and user tables (simplified
for brevity). The model corresponding to the video table is defined
on lines 1-12, with the primary key “vid” defined on lines 2-7, and
the model corresponding to the user table is defined on lines 13-24,
with the primary key “uid” defined on lines 14-19. The association
between the two models is made using a foreign key, i.e., a table
column that contains the primary key of another table. Line 26
specifies “uploader” as a foreign key into the video table. This
foreign key allows joins to be executed on the video and user tables,
which fetches the user information associated with a video.

1 const Video = sequelize . define ("Video" , {
2 vid : {
3 type: DataTypes.UUID,
4 allowNull : false ,
5 primaryKey: true ,
6 defaultValue : Sequelize .UUIDV4,
7 },
8 title : {
9 type: DataTypes.STRING,
10 allowNull : false ,
11 },
12 }) ;
13 const User = sequelize . define ("User" , {
14 uid : {
15 type: DataTypes.UUID,
16 allowNull : false ,
17 primaryKey: true ,
18 defaultValue : Sequelize .UUIDV4,
19 },
20 username: {
21 type: DataTypes.STRING,
22 allowNull : false ,
23 },
24 }) ;
25 // Establish association between Video and User
26 Video.belongsTo(User, { foreignKey : "uploader" }) ;

Figure 1: Example database definition in Sequelize.

E.g., a list of videos with “ASE 2022” in the title and information
related to the uploader is obtained by the following Sequelize API
call:

Video. findAll ({ include : {model:User },
where: {[Op.substring]: { title : "ASE 2022" }}})

which would be translated into the following SQL query:

SELECT * FROM VIDEO LEFT JOIN USER ON USER.uid = VIDEO.uploader

WHERE VIDEO.title LIKE "%ASE 2022%"

Video.findAll performs a SELECT from Video (since no attributes
were specified, this is translated to SELECT *), include indicates
that the generated query should include the associated User table by
performing a LEFT JOIN, and where specifies that the query should
only return videos with “ASE 2022” in the title.

SQL (and, by extension, Sequelize) also allows queries to spec-
ify a grouping clause, and aggregations over groups. If a query
includes GROUP BY ColumnName, the results will be grouped ac-
cording to unique values of ColumnName. Aggregate functions (such
as COUNT) can be included in grouped queries, and the function is
performed over the group. For example, the query SELECT title,
COUNT(title) FROM VIDEOS GROUP BY titlewill yield all unique
video titles as well as how many videos had that title.

To illustrate how ORMs may be misused, consider Figure 2(a),
which shows some key fragments of a function recommendChannels

from the back-end of youtubeclone. The function takes a param-
eter req representing a user request, and eventually produces an
HTTP response that includes other channels that the current user
(identified by req.id) might be interested in. This function first exe-
cutes a call to User.findAll on lines 30–34 to determine a set of up to
10 channels for which the id is not the same as the current user (i.e.,
the current user does not own the channel). This call is mapped by
the ORM to a SQL query of the form SELECT · · · FROM User LIMIT 10.

2

Figure 1: Example database definition in Sequelize.

for brevity). The model corresponding to the video table is defined
on lines 1-12, with the primary key “vid” defined on lines 2-7, and
the model corresponding to the user table is defined on lines 13-24,
with the primary key “uid” defined on lines 14-19. The association
between the two models is made using a foreign key, i.e., a table
column that contains the primary key of another table. Line 26
specifies “uploader” as a foreign key into the video table. This
foreign key allows joins to be executed on the video and user tables,
which fetches the user information associated with a video.

E.g., a list of videos with “ASE 2022” in the title and information
related to the uploader is obtained by the following Sequelize API
call:

Video.findAll({include: {model:User},

where: {[Op.substring]: {title: "ASE 2022"}}})

which would be translated into the following SQL query:

SELECT * FROM VIDEO LEFT JOIN USER ON USER.uid = VIDEO.uploader

WHERE VIDEO.title LIKE "%ASE 2022%"

Video.findAll performs a SELECT from Video (since no attributes
were specified, this is translated to SELECT *), include indicates
that the generated query should include the associated User table by
performing a LEFT JOIN, and where specifies that the query should
only return videos with “ASE 2022” in the title.

SQL (and, by extension, Sequelize) also allows queries to spec-
ify a grouping clause, and aggregations over groups. If a query
includes GROUP BY ColumnName, the results will be grouped ac-
cording to unique values of ColumnName. Aggregate functions (such
as COUNT) can be included in grouped queries, and the function is
performed over the group. For example, the query SELECT title,
COUNT(title) FROM VIDEOS GROUP BY titlewill yield all unique
video titles as well as how many videos had that title.

To illustrate how ORMs may be misused, consider Figure 2(a),
which shows some key fragments of a function recommendChannels

ASE ’22, October 10–14, 2022, Rochester, MI, USA

ASE ’22, October 10–14, 2022, Rochester, MI, USA

29 async function recommendChannels(req, res) {
30 const channels = await User. findAll ({
31 limit : 10,
32 attributes : [" id" , "username", "avatar" , "channelDescription"],
33 where: { id : { [Op.not]: req . user . id } }
34 }) ;
35 channels . forEach(async (channel, index) => {
36 const isSubscribed = await Subscription . findOne({
37 where: {
38 subscriber : req . user . id ,
39 subscribeTo : channel. id ,
40 },
41 }) ;
42 channel.setDataValue(" isSubscribed " , ‼ isSubscribed) ;
43 // send HTTP response after processing the last channel
44 }) ;
45 }

46 async function recommendChannels(req, res) {
47 const channels = await User. findAll ({
48 limit : 10,
49 attributes : [" id" , "username", "avatar" , "channelDescription"],
50 where: { id : { [Op.not]: req . user . id } }
51 }) ;
52 const subscriptions = await Subscription . findAll ({
53 where: {
54 subscriber : req . user . id ,
55 subscribeTo : channels .map(chan => chan.id)
56 }
57 }) ;
58 channels . forEach(async (channel, index) => {
59 const isSubscribed = subscriptions . find (data => data. subscribeTo === channel. id) ;
60 channel.setDataValue(" isSubscribed " , ‼ isSubscribed) ;
61 // send HTTP response after processing the last channel
62 })
63 }

Figure 2: (a) Functionality for recommending channels in Youtube Clone, exhibiting the “select N+1 problem”. (b) Refactored
version of the code, which generates fewer SQL queries.

Later, execution enters a loop (lines 35–44) that executes a call
Subscription.findOne(· · ·) to determine, for each of these channels,
if the current user is already subscribed to it. Each of these calls
is mapped by the ORM to an SQL query that looks as follows:
SELECT · · · FROM Subscription WHERE (Subscription.subscriber = · · · AND

Subscription.subcribeTo = · · ·) LIMIT 1. In other words, an initial
query creates N results (here, N = 10) and subsequently, a query is
issued for each of these N results, requiring a total of N + 1 database
round-trips. The ORM community has recognized that, in such
situations (referred to as the “N+1 problem”), it is often possible to
modify the code to issue a lower, constant number of queries.

Figure 2(b) shows how the code of Figure 2(a) can be refactored to
accomplish this. Here, an additional query is added on lines 52–57 to
obtain an array subscriptions containing the channels from channels

that the current user is subscribed to; on line 55, the channels.map(...)

retrieves all of the ids for each channel so that the ORM can fetch
the subscription status for all of the channels at once. In addition,
in the loop over all channels (lines 58–62), the subscription status
for a given channel is now looked up by calling the standard find

method on arrays instead of querying the database. As a result, only
2 SQL queries are needed instead of the original N+1 queries.

recommendChannels contains two additional instances of the “N+1
problem” and both could be refactored similarly. The refactored
code outperforms the original by a factor of nearly 3x.

Note the await on line 30: calls to Sequelize are asynchronous
operations implemented using promises [1]. A promise is an object
that represents the value computed by an asynchronous computa-
tion, and an await expression indicates to JavaScript that it should
suspend execution of the current function until the asynchronous
computation being await-ed is completed. If the computation re-
sulted in a valuev , we say that the promise p associated with it was
resolved withv , and await p will returnv (i.e., the value is unpacked
from the promise). If the computation resulted in an error, that error
will be thrown and can be caught in a try-catch. Tying this back to
the example, await User.findAll(...) will asynchronously execute
the query, and execution will resume once the data is returned.

3 APPROACH
Our technique for suggesting refactorings that have the effect of
eliminating the “N+1 problem” has two components:

(1) a data flow analysis to locate pairs of ORMAPI calls involved
in an “N+1 problem”, discussed in § 3.1, and

(2) a set of declarative rewrite rules describing how pairs of
N+1-related ORM API calls are transformed to eliminate the
problematic pattern, discussed in § 3.2.

3.1 Data-Flow Analysis
The main question the data-flow analysis is looking to answer is:
does data-flow exist between two ORM API calls? Put differently, for
every ORM API call C , the analysis should determine the existence
of data-flow between the result of a previous ORM API call and any
of C’s arguments. This is achieved with a taint analysis [17, 19, 32],
where ORM API calls are defined as sources of taint, and ORM
API call arguments are defined as sinks. Concretely, we rely on
a standard taint analysis framework available in CodeQL [24] to
detect taint flows from sources to sinks.

For example, consider the code snippet in Fig 2(a). Here, the call
to findAll returns a promise that will be resolved with the data from
the database, and that value will flow into channels. Thus, there
exists data-flow between findAll and channels through the promise
created by findAll. The forEach-loop on lines 35-44 iterates over
these values, and thus there is data-flow from elements of channels

into the channel callback parameter (line 35). Finally, there is data-
flow from channel into the argument of Subscription.findOne through
the field access channel.id (line 39).

In order to generate code transformations, the approach needs
the property names that are the target of data-flow (e.g., the analysis
will report that data-flow exists between subscribeTo : channel.id

and channels). Thus, the analysis notes exactly which property/value
pairs p : v in an ORM API call objectO had values v that that were
the target of data-flow from the resultm of a previous ORM API
call; in the following section, this process is encapsulated in the
function дetAllPropertiesW ithDataFlow(O,m).

3

Figure 2: (a) Functionality for recommending channels in Youtube Clone, exhibiting the “select N+1 problem”. (b) Refactored
version of the code, which generates fewer SQL queries.

from the back-end of youtubeclone. The function takes a param-
eter req representing a user request, and eventually produces an
HTTP response that includes other channels that the current user
(identified by req.id) might be interested in. This function first exe-
cutes a call to User.findAll on lines 30–34 to determine a set of up to
10 channels for which the id is not the same as the current user (i.e.,
the current user does not own the channel). This call is mapped by
the ORM to a SQL query of the form SELECT · · · FROM User LIMIT 10.

Later, execution enters a loop (lines 35–44) that executes a call
Subscription.findOne(· · ·) to determine, for each of these channels,
if the current user is already subscribed to it. Each of these calls
is mapped by the ORM to an SQL query that looks as follows:
SELECT · · · FROM Subscription WHERE (Subscription.subscriber = · · · AND

Subscription.subcribeTo = · · ·) LIMIT 1. In other words, an initial
query creates N results (here, N = 10) and subsequently, a query is
issued for each of these N results, requiring a total of N + 1 database
round-trips. The ORM community has recognized that, in such
situations (referred to as the “N+1 problem”), it is often possible to
modify the code to issue a lower, constant number of queries.

Figure 2(b) shows how the code of Figure 2(a) can be refactored to
accomplish this. Here, an additional query is added on lines 52–57 to
obtain an array subscriptions containing the channels from channels

that the current user is subscribed to; on line 55, the channels.map(...)

retrieves all of the ids for each channel so that the ORM can fetch
the subscription status for all of the channels at once. In addition,
in the loop over all channels (lines 58–62), the subscription status
for a given channel is now looked up by calling the standard find

method on arrays instead of querying the database. As a result, only
2 SQL queries are needed instead of the original N+1 queries.

recommendChannels contains two additional instances of the “N+1
problem” and both could be refactored similarly. The refactored
code outperforms the original by a factor of nearly 3x.

Note the await on line 30: calls to Sequelize are asynchronous
operations implemented using promises [1]. A promise is an object
that represents the value computed by an asynchronous computa-
tion, and an await expression indicates to JavaScript that it should
suspend execution of the current function until the asynchronous
computation being await-ed is completed. If the computation re-
sulted in a valuev , we say that the promise p associated with it was

resolved withv , and await p will returnv (i.e., the value is unpacked
from the promise). If the computation resulted in an error, that error
will be thrown and can be caught in a try-catch. Tying this back to
the example, await User.findAll(...) will asynchronously execute
the query, and execution will resume once the data is returned.

3 APPROACH
Our technique for suggesting refactorings that have the effect of
eliminating the “N+1 problem” has two components:

(1) a data flow analysis to locate pairs of ORMAPI calls involved
in an “N+1 problem”, discussed in § 3.1, and

(2) a set of declarative rewrite rules describing how pairs of
N+1-related ORM API calls are transformed to eliminate the
problematic pattern, discussed in § 3.2.

3.1 Data-Flow Analysis
The main question the data-flow analysis is looking to answer is:
does data-flow exist between two ORM API calls? Put differently, for
every ORM API call C , the analysis should determine the existence
of data-flow between the result of a previous ORM API call and any
of C’s arguments. This is achieved with a taint analysis [17, 19, 32],
where ORM API calls are defined as sources of taint, and ORM
API call arguments are defined as sinks. Concretely, we rely on
a standard taint analysis framework available in CodeQL [24] to
detect taint flows from sources to sinks.

For example, consider the code snippet in Fig 2(a). Here, the call
to findAll returns a promise that will be resolved with the data from
the database, and that value will flow into channels. Thus, there
exists data-flow between findAll and channels through the promise
created by findAll. The forEach-loop on lines 35-44 iterates over
these values, and thus there is data-flow from elements of channels

into the channel callback parameter (line 35). Finally, there is data-
flow from channel into the argument of Subscription.findOne through
the field access channel.id (line 39).

In order to generate code transformations, the approach needs
the property names that are the target of data-flow (e.g., the analysis
will report that data-flow exists between subscribeTo : channel.id

and channels). Thus, the analysis notes exactly which property/value

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

pairs p : v in an ORM API call objectO had values v that that were
the target of data-flow from the resultm of a previous ORM API
call; in the following section, this process is encapsulated in the
function дetAllPropertiesW ithDataFlow(O,m).

3.2 Refactoring
Code transformations are presented as a set of declarative rewrite
rules that can be found in Figure 3. The anatomy of the rules is:

conditions
(code before)⇝ (code after)

findAll-findOne. This rule depicts the transformation for a
flow from findAll through a loop into findOne. An example ap-
plying this rule to the code in Figure 2 follows this description.

(1) First, the list of properties (props) of the argument to the
findOne call (O2) that are the targets of data-flow from the
result of a call to findAll (m1s) is obtained through the
helper function getAllPropertiesWithDataFlow.

(2) The goal of this transformation is to insert a new ORM API
call to findAll replacing the old call to findOne, and so the
argument to that new call must be constructed. The idea is
adapt the argument to the old call (O2); since the new call
will be placed before the loop, any properties in O2 that were
targets of data-flow must be updated to map directly over
the result of the previous API call (m1s).
To achieve this, a new object O′2 is adapted from O2 by up-
dating all of the values of the properties in O2 referred to by
props to be maps over m1s, through the updatePropReferences
helper function. For all properties p : v in props , the prop-
erty f of the model M1 referred to by v, either directly in
v itself (e.g., if v is of the form x.f) or indirectly (e.g., if
v = x.f earlier in the code) is obtained, and v is replaced
with m1s.map(m1 => m1.f) in O′2

(3) As the goal of this refactoring is to replace many calls to
findOne with a single call to findAll, the result m2s of that
new call will need to be iterated over to pick out the same
data that was returned by the original call to findOne. m2s
contains all of the data that would have been fetched in the
loop, and the idea here is to map whatever comparisons
were being made in the original call to findOne to some
new boolean expression (BE) that can be used to pick out
the datum of interest from the array of results (m2s). This is
achieved through the createArrayLookup helper function: for
each property/value pair p : v in props , a boolean expression
m1.p === v is added to BE (here, m1 is the parameter name
of a callback that will be inserted by the transformation). In
constructing BE in this manner, the same comparisons that
were being made in the old findOne are performed in BE.

(4) To enact the transformation, a fresh variable m2s is declared
and set to the return value of a new call to M2.findAll(O′2),
and is placed immediately before the loop; the old call to
M2.findOne(O2) is replaced with a lookup over the m2s array,
and the entry matching BE is picked out.

findAll-findOne (Walk-through). To help illustrate the rewrite
rule, consider the transformation in Figure 2.

(1) First, there exists data-flow between channels and the ar-
gument to Subscription.findOne in the subscribeTo: channel.id

property; mapping to the findAll-findOne rewrite rule,
this property will be the sole element of props.

(2) The new ORM API call object (lines 52-57) is obtained from
the existing call object (lines 36-41), where the value of the
property with data flow (subscribeTo: channel.id) is updated
to map over channels (channels.map(chan => chan.id); this is O′2.

(3) A new boolean expression BE is built from the properties that
had data from channels flow into them, in this case the sole
property with data flow subscribeTo: channel.id populates BE
with the boolean expression data.subscribeTo === channel.id.

(4) Putting it all together: the new call to Subscription.findAll

is placed before the loop (lines 52-57), and the old call to
Subscription.findOne is replaced with a find over the array of
subscriptions returned by Subscription.findAll (line 59).

findAll-count. This rule depicts the transformation for data-
flow into a call to count. The list of properties with data flow from
m1s is obtained with getAllPropertiesWithDataFlow as in findAll-
findOne. The new ORM API call object O′2 is created in much the
same way as well, except that in this case grouping and aggregation
is added to O′2: each property name referred to in props is added
to a grouping clause in O′2, and also to a count aggregation over
those same properties (and that count is saved on the “count” field
of the result). I.e., the results of the new call to findAll will be
grouped by the properties with data flow, and total counts will be
computed for each group. The rest of the rewrite rule is the same
as findAll-findOne, except that the new access in the loop also
specifies that the count field should be accessed.

For an example of this transformation, consider the snippets
in Figure 4. There is data flow from the video id property to the
view videoId property (line 77), and so the transformed code in-
cludes a grouping clause on videoId (line 97), and count over
videoId as well (line 98). To break it down further, the Sequelize
line [Sequelize.fn("COUNT", Sequelize.col("View.videoId")), "count"] is
specifying that a count over View.videoId should be issued, and saved
under the count property of the result. That property is referenced
in the loop in the transformed code, on line 101.

findAll-findByPk. Calls to findByPk take a single argument
that is implicitly compared against the primary key of the model
being queried. That implicit comparison needs to be made explicit
in the new findAll query, and so the primary key pk of model M2
is obtained from the model definition. Then, the new call object O ′

2
can be constructed with a where clause that compares the primary
key pkwith a map over the sources m1s extracting the relevant field
f (i.e., the field from the data-flow into the call to findByPk). The
primary key pk is also needed to construct the boolean expression
in the find that replaces the old call to findOne.

findAll-findAll. Finally, this rule is nearly identical to the
findAll-findOne rule, the only difference is that instead of per-
forming a find over the m2s array, a filter is performed instead.

Note. The idea that data-flow between ORM API calls is prob-
lematic is language-agnostic, and while the rewrite rules use Se-
quelize API names in them, that is more for readability; the rules
represent broader issues in ORMs like finding and then finding

ASE ’22, October 10–14, 2022, Rochester, MI, USAASE ’22, October 10–14, 2022, Rochester, MI, USA

props = дetAllPropertiesW ithDataFlow(O2, m1s)
O′2 = updatePropRe f erences(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s f resh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O′2)

loop { ⇝ loop {
var m2 = await M2.findOne(O2) var m2 = m2s.find(m2 => BE)

} }

(findAll-findOne)

props = дetAllPropertiesW ithDataFlow(O2, m1s)
O′2 = addAддreдationAndCount(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s f resh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O′2)

loop { ⇝ loop {
var m2 = await M2.count(O2) var m2 = m2s.find(m2 => BE).count

} }

(findAll-count)

∃ dataFlow(m1s,x) pk primary key of M2
O′2 = {where : {pk : m1s.map(m1 => m1.f)}} m2s f resh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O′2)

loop { ⇝ loop {
var m2 = await M2.findByPk(x.f) var m2 = m2s.find(m2 => x.f == m2.pk)

} }

(findAll-findByPk)

props = дetAllPropertiesW ithDataFlow(O2, m1s)
O′2 = updatePropRe f erences(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s f resh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O′2)

loop { ⇝ loop {
var m2 = await M2.findAll(O2) var m2 = m2s.filter(m2 => BE)

} }

(findAll-findAll)

(a) Rewrite rules. ORM API calls are underlined—these calls generate queries. The calls to find in the refactored code are essentially maps
over the arrays m2s that return the element matching the boolean expression specified in the callback.

getAllPropertiesWithDataFlow(O,m) returns all of the proper-
ties in an object O that are targets of data-flow from some valuem.
This will yield a set of property name, value pairs p : v for which
there exists data-flow betweenm and the value v.

updatePropReferences(props,O,ms,M) creates an object where
all of the properties in an objectO specified by the list of properties
props are updated to refer to a map over the arrayms . I.e., for all
property/value pairs p : v in props , the matching property in O ′
will be p : ms.map(m => m.f), where f is the property of the model
M referred to by v, either directly in v itself (e.g., if v is of the form
x.f) or indirectly in some alias (e.g., if v = x.f earlier in the code).

addAggregationAndCount(props,O,ms,M) creates a new object
wherein all of the properties in the object O specified by the list of
properties props are updated to refer to a map over the arrayms ,
like updatePropReferences. Additionally: (1) a clause is added group-
ing by all property names p in props , and (2) a count aggregation
clause is added to total the number of entries in each group.

createArrayLookup(props) builds a boolean expression BE to se-
lect from the array of results the value that was previously obtained
by the query. A property p : v has the ORM compare the value
of v against property p, and so a boolean expression m1.p == v is
created and added with a boolean & to BE.

(b) Additional details on helper functions.

Figure 3: Declarative rewrite rule definitions and helper function descriptions. These are discussed in detail in § 3.

4 IMPLEMENTATION
The approach described in § 3 is implemented in a tool called re-
formulator. The static data flow analysis is implemented as a taint
analysis in CodeQL [24], wherein a taint configuration [25] specifies
values returned by ORMAPI calls as sources, and arguments passed
to ORM API calls as sinks. The rewrite rules were implemented
using BabelJS [8], a popular JavaScript parser and code generator.
Taint flows identified by the analysis are input to the refactoring
tool. Sound and scalable static analysis of JavaScript is beyond the

current state-of-the-art, and so the code transformations generated
by reformulator are presented to the programmer as suggestions
that should be vetted carefully, e.g., by running tests. The code
is available in the accompanying artifact [33], which is a Docker
image equipped with the ability to re-run the entire evaluation,
which is discussed next.

5

Figure 3: Declarative rewrite rule definitions and helper function descriptions. These are discussed in detail in § 3.

again (findAll-findOne, findAll-findAll, findAll-findByPk),
or finding and then counting (findAll-count). This is essential
functionality to any effective ORM.

4 IMPLEMENTATION
The approach described in § 3 is implemented in a tool called re-
formulator. The static data flow analysis is implemented as a taint
analysis in CodeQL [24], wherein a taint configuration [25] specifies
values returned by ORMAPI calls as sources, and arguments passed

to ORM API calls as sinks. The rewrite rules were implemented
using BabelJS [8], a popular JavaScript parser and code generator.
Taint flows identified by the analysis are input to the refactoring
tool. Sound and scalable static analysis of JavaScript is beyond the
current state-of-the-art, and so the code transformations generated
by reformulator are presented to the programmer as suggestions
that should be vetted carefully, e.g., by running tests. The code
is available in the accompanying artifact [33], which is a Docker

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip
ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

64 exports . searchVideo = asyncHandler(async (req, res , next) => {
65 const videos = await Video. findAll ({
66 include : {
67 model: User,
68 attributes : [" id" , "avatar" , "username"]
69 },
70 where: {
71 title : {
72 [Op.substring]: req .query.searchterm
73 }}}) ;
74 videos . forEach(async (video , index) => {
75 const views = await View.count({
76 where: {
77 videoId : video . id
78 }
79 }) ;
80 // ...
81 }) ;
82 }) ;

83 exports . searchVideo = asyncHandler(async (req, res , next) => {
84 const videos = await Video. findAll ({
85 include : {
86 model: User,
87 attributes : [" id" , "avatar" , "username"]
88 },
89 where: {
90 title : {
91 [Op.substring]: req .query.searchterm
92 }}}) ;
93 const viewCounts = await View. findAll ({
94 where: {
95 videoId : videos .map(data => data. id)
96 },
97 group: ["View.videoId"],
98 attributes : ["videoId" , [Sequelize . fn("COUNT", Sequelize.col("View.videoId")) ,

"count"]]
99 }) ;
100 videos . forEach(async (video , index) => {
101 const views = viewCounts.find(x => x . videoId === video . id) . count;
102 // ...
103 }) ;
104 }) ;

Figure 4: (a) Functionality for search for a video in youtube-clone, where the views for each video are counted in the loop.
(b) Refactored version of the code, which generates fewer SQL queries. Note the grouping clause on line 97, and the count
attribute on line 98 which sums up the number of elements in each group.

5 EVALUATION
This evaluation of reformulator aims to answer the following
research questions:
(RQ1) How many refactoring opportunities does reformulator

detect?
(RQ2) How often are unwanted behavioral changes introduced by

the refactorings suggested by reformulator?
(RQ3) How do the refactorings affect performance?
(RQ4) How much do the refactorings affect page load times?
(RQ5) What is the running time of reformulator?

Experimental Setup. We randomly selected 100k JavaScript Git-
Hub repositories that listed Sequelize as an explicit dependency. We
then ran the npm-filter [7] tool on these repositories to determine
howmany of them could be automatically installed and built; 37,074
projects satisfied these criteria. We then ran the CodeQL taint
analysis on these projects and found 427 projects with N+1 anti-
pattern query pairs. From those, we randomly selected projects until
we found 8 that we could set up and run with databases populated
with meaningful data. Project statistics are listed in Table 1.

Experiment Infrastructure. Experiments were conducted on a
2016 MacBook Pro with 16GB RAM and 2.6 GHz Quad-Core Intel
Core i7 processor running MacOS Catalina v10.15.7. The Chrome
browser v100.0.4896.127 was used in incognito mode so as to mini-
mize interference from caching and browser extensions.

RQ1: How many refactoring opportunities does
reformulator detect?
To answer this research question, we examined the number of
projects in which reformulator identified anti-patterns. Overall,
427 contained at least one instance of an N+1 anti-pattern from
those that built. We examined the distribution of N+1 anti-patterns

across the projects; the median number of anti-patterns is 2, and a
total of 1,872 anti-pattern instances were detected by the tool. While
this is not a huge percentage of the projects (1.1%), the analysis
is quite conservative in order to maximize the likelihood of the
transformation succeeding.

Takeaway. reformulator identified refactoring opportunities
in hundreds of GitHub repositories.

RQ2: How often are unwanted behavioral
changes introduced by the refactorings
suggested by reformulator?
To answer this research question, we identifiedwhichHTTP request
handlers in each of the projects contained a refactoring opportu-
nity detected by reformulator. Every refactoring suggestion was
applied to the code. We focused on these handlers as they are the
manner in which a front-end would interact with the server; if the
handler produces the same response, we deem the behavior to be
preserved. There were 44 refactoring opportunities spread across 27
handlers as outlined by columns # N+1 and # Handlers in Table 1.
The findAll-findAll rewrite rule was applied 10 times, findAll-
findByPk 9 times, findAll-findOne 5 times, and findAll-count
20 times. Note that for this experiment, the databases were popu-
lated with test data according to the instructions provided by the
repositories.

To conduct the experiment, the UI for each page issuing the
HTTP requests and the actual content of the HTTP response was
closely examined and compared before and after refactoring. No
discrepancies were found, and no refactoring introduced a crash.

Takeaway. reformulator did not introduce any unwanted be-
havioral changes in the applications we studied.

6

Figure 4: (a) Functionality for search for a video in youtube-clone, where the views for each video are counted in the loop. (b)
Refactored version of the code, which generates fewer SQL queries. Note the grouping clause on line ??, and the count attribute
on line ?? which sums up the number of elements in each group.

image equipped with the ability to re-run the entire evaluation,
which is discussed next.

5 EVALUATION
This evaluation of reformulator aims to answer the following
research questions:
(RQ1) How many refactoring opportunities does reformulator

detect?
(RQ2) How often are unwanted behavioral changes introduced by

the refactorings suggested by reformulator?
(RQ3) How do the refactorings affect performance?
(RQ4) How much do the refactorings affect page load times?
(RQ5) What is the running time of reformulator?

Experimental Setup. We randomly selected 100k JavaScript Git-
Hub repositories that listed Sequelize as an explicit dependency. We
then ran the npm-filter [7] tool on these repositories to determine
howmany of them could be automatically installed and built; 37,074
projects satisfied these criteria. We then ran the CodeQL taint
analysis on these projects and found 427 projects with N+1 anti-
pattern query pairs. From those, we randomly selected projects until
we found 8 that we could set up and run with databases populated
with meaningful data. Project statistics are listed in Table 1.

Experiment Infrastructure. Experiments were conducted on a
2016 MacBook Pro with 16GB RAM and 2.6 GHz Quad-Core Intel
Core i7 processor running MacOS Catalina v10.15.7. The Chrome
browser v100.0.4896.127 was used in incognito mode so as to mini-
mize interference from caching and browser extensions.

RQ1: How many refactoring opportunities does
reformulator detect?
To answer this research question, we examined the number of
projects in which reformulator identified anti-patterns. Overall,

427 contained at least one instance of an N+1 anti-pattern from
those that built. We examined the distribution of N+1 anti-patterns
across the projects; the median number of anti-patterns is 2, and a
total of 1,872 anti-pattern instances were detected by the tool. While
this is not a huge percentage of the projects (1.1%), the analysis
is quite conservative in order to maximize the likelihood of the
transformation succeeding.

Takeaway. reformulator identified refactoring opportunities
in hundreds of GitHub repositories.

RQ2: How often are unwanted behavioral
changes introduced by the refactorings
suggested by reformulator?
To answer this research question, we identifiedwhichHTTP request
handlers in each of the projects contained a refactoring opportu-
nity detected by reformulator. Every refactoring suggestion was
applied to the code. We focused on these handlers as they are the
manner in which a front-end would interact with the server; if the
handler produces the same response, we deem the behavior to be
preserved. There were 44 refactoring opportunities spread across 27
handlers as outlined by columns # N+1 and # Handlers in Table 1.
The findAll-findAll rewrite rule was applied 10 times, findAll-
findByPk 9 times, findAll-findOne 5 times, and findAll-count
20 times. Note that for this experiment, the databases were popu-
lated with test data according to the instructions provided by the
repositories.

To conduct the experiment, the UI for each page issuing the
HTTP requests and the actual content of the HTTP response was
closely examined and compared before and after refactoring. No
discrepancies were found, and no refactoring introduced a crash.

Takeaway. reformulator did not introduce any unwanted be-
havioral changes in the applications we studied.

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Table 1: Information about subject applications. The first row reads: the first application is called youtubeclone, and commit hash
47002fc was used for the evaluation; youtubeclone has 10,551 lines of code spread across 117 files. reformulator detected 12 N+1 pattern
query pairs in this application across 7 HTTP request handlers. This is a video-sharing application.

Project Name Commit Hash LOC # Files # N+1 # Handlers Short Description
youtubeclone [23] 47002fc 10,551 117 12 7 Video sharing.
eventbright [34] e417020 12,085 122 15 7 Event search and attendance.
property-manage [26] 33f92a9 13,959 154 2 2 Property management application.
Math_Fluency_App [29] 5c1658e 12,473 114 6 3 Math testing by teachers to students.
employee-tracker [13] ba4a195 10,336 112 3 2 Human resources server API.
Graceshopper-Elektra [14] c327530 12,342 141 1 1 Shopping application.
wall [4] ae6c815 11,152 134 2 2 Image hosting and tagging application.
NetSteam [31] 5b1cd86 12,485 136 4 4 Video game trailer viewing application.

Sum 44 27

RQ3: How do the refactorings affect
performance?
To answer this research question, we inserted profiling code in
the aforementioned HTTP request handlers to collect the time it
took the server to prepare a response. We manually interacted with
the front-end of each of the subject applications to locate the part
of the front-end that sent the request triggering the anti-pattern
code. We then restarted the server to empty any server-side caches,
triggered the HTTP request again, and collected the time reported
by the aforementioned profiling code. We repeated this process ten
times before applying the code transformations, and ten more times
after: averages and standard deviations of these results are reported
in Figure 5 (the error bars represent the average +/- one standard
deviation), with each pair of bars corresponding to the time before
and after refactoring for a particular HTTP request handler. There
are 27 total pairs of bars, corresponding to each of the affectedHTTP
request handlers, and a link from each “HTTP Request Handler ID”
to the code is included in supplemental material.

We found that a low, constant number of queries were issued
post-refactoring in all cases, and that every refactoring improved
performance. Specifically, we performed a paired two-tailed T-test
comparing the 10 run times before and after at 95% confidence and
found all differences to be statistically significant. The largest per-
formance gain was in eventbright’s handler for getting all events
(ID 10, from 279.77ms before to 36.48ms after, an improvement of
7.67x). All HTTP request handlers in youtubeclone (IDs 0 through
6) had pronounced improvements, with a median performance
improvement of a factor of 2.81x. The smallest benefits were in
the Math_Fluency_App application (IDs 17 through 19), with a
median improvement factor of 1.07x—this is because the number
of queries was very small even before refactoring (the number of
queries was reduced from 5 to 3, as N was small for this application).

To further understand the performance implications of the refac-
torings, particularly as database size increased, we conducted a
case study involving five request handlers from the 27 in which
we refactored instances of the “N+1 problem”. In this case study,
we created three databases of size 10, 100, and 1000 (henceforth
referred to as the “10 scale”, “100 scale”, and “1000 scale” configu-
rations) so that the HTTP request handler needs to process that

much data, and measure the performance of the handlers before
and after refactoring at each database size.

The functionality being examined in each application is:
• youtubeclone: search for users;
• eventbright: main events display;
• property-manage: properties dashboard;
• employee-tracker: view all employees;
• NetSteam: view all reviews for a trailer.

The results of this case study are summarized in Table 3, which
reports averages over 10 runs for each database size for each re-
quest handler. youtubeclone, eventbright, and NetSteam show
dramatic improvements in the relative performance benefits of the
refactored code as databases size increases (up to 38.58x at the 1000
scale for youtubeclone). In contrast, the relative performance dif-
ference for property-manage and employee-tracker is not as
pronounced with large database sizes; in these applications, most
of the time spent serving requests is in processing the data from the
database once it is available, rather than waiting for it to become
available. Nevertheless, the absolute difference between original and
refactored code is substantial at large database sizes even for those
two applications, with a 550ms difference for property-manage
and a nearly 1.5s difference for employee-tracker.

Takeaway. All transformations yield statistically significant per-
formance improvements at 95% confidence. Performance gains in-
crease as the size of the database grows; we observed speedups of
up to 38.58x.

RQ4: How much do the refactorings affect page
load times?
In this research question, we aim to connect the performance im-
provements observed in serving HTTP requests to measurable
improvements in page load time on the client-side.

We conducted a case study on the client-side pages making the
HTTP requests studied in the context of RQ3. Note: there is no
front-end for employee-tracker, thus we focus on the other four.
The manner in which pages load varies significantly from one
application to another, and we found no reliable way to universally
time each page load. For example, the NetSteam page under study
is a pop-up that displays over the main dashboard, and has no
URL associated with it, making refresh-based profiling impossible.

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

Table 2: Information about the run time of reformulator, with project installation time given for reference. The first row of
the table reads: youtubeclone took 5.42s to install; it took 24.96s to build the CodeQL database; it took 30.10s to run the N+1 detection query.
In total, from a freshly installed youtubeclone, reformulator can run in 55.06s.

Project Name Install Time (s) QLDB Build Time (s) Query Run Time (s) Build + Query (s)
youtubeclone [23] 5.42 24.96 30.10 55.06
eventbright [34] 11.42 28.64 32.39 61.03
property-manage [26] 14.68 30.91 33.17 64.08
Math_Fluency_App [29] 4.87 24.41 33.62 58.03
employee-tracker [13] 4.20 23.43 29.41 52.84
Graceshopper-Elektra [14] 24.29 26.69 30.33 57.02
wall [4] 17.29 26.35 29.88 56.23
NetSteam [31] 14.50 29.02 31.79 60.83
Mean 12.08 26.80 31.34 58.14

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
HTTP Request Handler ID

A
ve

ra
ge

 (
m

s)

Refactored?

no

yes

HTTP Request Handler Time Before/After Refactoring (average over 10 runs)

Figure 5: Summary of effect of refactoring on 27 HTTP request handlers. Lower is better. Each pair of bars corresponds to an
HTTP request handler. Error bars indicate +/- one standard deviation.

Table 3: Results of case study on 5 applications comparing the scalability of original and refactored code. All times are in ms.
The differences were all statistically significant (paired two-tailed T-test at 95% confidence); standard deviations are omitted
for brevity, and can be found in supplementalmaterial. The first row of the table reads: for test ID 1 in the youtubeclone application,
with a database size of 10, the mean before refactoring is 360.30ms, and after refactoring is 118.06ms; this represents a performance improvement
with a factor of 3.05x (= 360.30 ÷118.06).

DB Size = 10 DB Size = 100 DB Size = 1000
Project Name ID Before After Scale Before After Scale Before After Scale
youtubeclone [23] 1 360.30 118.06 3.05x 1937.42 152.96 12.67x 18171.86 471.07 38.58x
eventbright [34] 10 111.38 31.94 3.49x 797.35 49.53 16.10x 7001.48 214.61 32.62x
property-manage [26] 20 56.91 33.71 1.69x 246.06 111.05 2.22x 1333.64 786.44 1.70x
employee-tracker [13] 14 57.15 34.32 1.67x 374.73 153.97 2.43x 2495.92 1010.47 2.47x
NetSteam [31] 21 77.05 39.01 1.98x 337.67 41.62 8.11x 2129.34 108.06 19.71x

ASE ’22, October 10–14, 2022, Rochester, MI, USA

Further, most web profiling tools rely on the collection of a trace as
a page loads, and that trace includes a variable number of frames
before the page begins to refresh, leading to unfortunate variability
and inaccuracies in performance numbers collected automatically.

In light of this, we opted to manually study the behavior of each
page with Chrome DevTools [16] to obtain rich information about
how each page behaves, paying particular attention to the “Perfor-
mance” and “Network” tabs. The times reported are estimations
based on the trace timeline displayed by the “Performance” tab of
the Chrome DevTools (label (E) in Figure 6) that displays a timeline
of screenshots of a page, which we believe corresponds most closely
with the observable user experience. Specifically, as in our study
of RQ3, we triggered each HTTP request 10 times and estimated
the time between when the request was triggered and when the
page was visibly populated with data; we drew these estimates
from the time markers in the timeline, and rounded to the nearest
quarter second, and averages are reported throughout this section.
We examined the behavior of each page at three database scales (10,
100, and 1000), and report on our findings below. Screenshots of
the DevTools profiles used in this study as well as raw observations
are included in supplemental material.

youtubeclone (search for users). In this application, we found
the network time to be the limiting factor in the client page being
fully rendered, as the page was quickly populated once all the data
was returned from the server. At the 1000 scale, the difference
in load time was dramatic (19.88s with the original code vs. 1.9s
with the refactored code, a ∼10x improvement). The difference in
load time is also very noticeable at the 100 scale, and a screenshot
comparing the effect of the transformation on the load time can be
found in Figure 6 (3.8s before refactoring vs. 0.8s with refactoring).
Even at the smaller 10 scale, appreciable load time improvements
were observed (from 1.2s to 0.5s).

eventbright (main events display). The front-end is quickly pop-
ulated with data once it is received from the server. We noted dra-
matic load time improvements at the 1000 scale (7.7s with original
code vs. 1.4s with refactored code), and a noticeable improvement
at the 100 scale (1s with original code vs. 0.3s with refactored code),
and a very small difference at the 10 scale (0.4s before vs. 0.3s after).

property-manage (property dashboard). In this application, the
refactoring did not appear to affect the load time of the page. Even
at the 1000 scale, the dashboard took nearly 3s to be populated with
data, even though the server finished fully processing the request
1.5s faster in the refactored version. This is because the information
computed by the ORM API call in the loop is used internally by the
server, and is not part of the response.

In spite of this, the refactoring is still beneficial: as applications
move away from locally-hosted databases, the number of concur-
rent database requests becomes a concern, as many remote database
management systems only allow up to a certain number of requests
simultaneously, after which point requests are refused. The refac-
toring proposed by reformulator reduces the number of requests
here from N+1 (with N being the number of properties) to two.

NetSteam (reviews for trailer). Here, a dashboard presents many
video game titles to the user, and the user may select one of them
to bring up an animated pop-up with the trailer and reviews for

the game. At the 1000 scale, it took 3.8s on average for the reviews
to load with the original code vs. 2s with the refactored code. At
the 100 and 10 scales, the animation displaying the trailer and
reviews masked any performance difference between original and
refactored code, as the animation completes before the reviews load
at both scales before and after refactoring.

Takeaway. In several cases, the refactoring suggested by refor-
mulator results in dramatic speedups (of up to 90%).

RQ5: What is the running time of reformulator?
Table 2 shows the time it takes npm install to install the project’s
dependencies (given for reference, column Install Time), the time
it takes to build the CodeQL database, which is needed to run any
CodeQL queries on the code (QLDB Build Time), and the time
to run reformulator’s anti-pattern detection query (Query Run
Time). The time taken to build the QLDBs and also run the queries
is consistently between 50 and 65 seconds. The time to run the
actual code transformation is less less than a second in all cases
and is not reported in the table.

Takeaway. The running time of reformulator on a fresh instal-
lation of a project is 58.14s on average.

6 THREATS TO VALIDITY
We have identified some threats to the validity of our work.

The primary threat to validity is the fact that the transformations
proposed by our tool may not preserve program behavior. Static
analysis of JavaScript is unsound due to the extreme dynamicity
of the language, as rampant dynamic property redefinition, event-
driven programming, and promise-based asynchrony have made
precise and scalable analysis elusive. reformulator is a tool that
leverages static program analysis, and is thus unsound; we have
accepted this in designing reformulator, and focused on develop-
ing a tool that is practical. During the course of our evaluation, we
found that no behavior-altering transformations were suggested.

It is also possible that our selection of projects for evaluation is
not representative. We mitigate this by selecting projects randomly
from those that explicitly declare Sequelize as a dependency. This
list was pruned to find projects that could be successfully built and
for which we could configure and populate databases, but this was
entirely so that the effect of the transformations could be studied.

7 RELATEDWORK
There is a large body of existing research aimed at improving the
performance of database-backed applications, including database
refactoring, bug detection, and query optimization.

Database refactoring. Existing work has considered refac-
toring database schemas to improve performance. Ambler and
Sadalage [5] catalogue database refactorings, i.e., behavior-
preserving changes to a database schema such as moving a column
from one table to another. Similarly, Xie et al. [36] and Wang et
al. [35] study how application code must be updated in response
to schema changes. Rahmani et al. [28] present an approach for
avoiding serializability violations in database applications by trans-
forming a program’s data layout. This nature of work provides

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

Figure 6: Two screenshots from the Chrome DevTools’ Performance Tab profiling a search turning up 100 users in youtube-
clone. The profile corresponding to the original code is on top, and the refactored one is on the bottom. The two (E) labels
show time series of application activity, where higher values correspond to more CPU cycles. (C) and (D) show spikes in activ-
ity when the HTTP response was received by the client before and after refactoring, resp. The two (F) labels show a series of
screenshots taken of the front-end as it loads and is populated by data. (A) and (B) show the period that the screen was idle
before and after refactoring, resp., and the two boxes in the timelines highlight that the screen is empty during that span.

insight into the relationship between database structure and perfor-
mance, but does not consider query-based performance bugs like
the “N+1 problem”.

Identifying the “N+1 problem” in database code. Yang et
al. [38] use dynamic analysis to detect performance anti-patterns
in Ruby on Rails [30] applications and manually refactor them to
assess performance impact. One of these anti-patterns, “inefficient
lazy loading”, is a variant of the “N+1 problem” they report to be
prevalent in their experiments. Chen et al. [9] report on industrial
experience, observing 17 ORM-related performance problems in
PHP applications that use the Laravel ORM [2], including the same
“inefficient lazy loading” anti-pattern. Chen et al. [10] use static
analysis to detect anti-patterns in JPA, a popular ORM for Java,
including “one-by-one processing” where a list of objects of one
class is iterated over, and objects from another class are found
by issuing a SELECT query. Their proposed resolution involves
introducing batching (i.e., waiting for several queries to be created
before issuing them all at once). Cheung et al. [12] created a “lazy-
ifying” compiler that also batches queries to reduce the number
of round trips to the database. Batching queries does alleviate the
“N+1 problem” by reducing the amount of database round-trips, but
it does not eliminate the problem through permanent refactoring.

Identifying other performance bugs in database code.
Chen et al. [11] consider situations where calling the API of the

Hibernate ORM [18] for Java results in accessing redundant data
(e.g., some columns in a table need to be updated, but a query is gen-
erated that updates all of them). They assess performance impact
by manually rewriting subject applications. Yan et al. [37] identify
optimization opportunities in Ruby on Rails [30] applications using
static analysis and profiling, including a “Fusing queries” optimiza-
tion targeting situations where the result of a query flows into
another query. Yang et al. [40] present a framework in which static
analysis and dynamic profiling are used to visualize, for each HTML
tag, the set of database queries needed to generate the data needed
to render it. Their framework also suggests view-changing refactor-
ings (e.g., introducing pagination) to improve performance. While
there is much work on detecting query-based performance bugs,
including the “N+1 problem”, using static and dynamic analysis,
this work leaves actual optimization to manual refactoring.

We know of 2 research efforts to use static analysis to automati-
cally refactor source code to remove database bugs. Yang et al. [39]
design a RubyMine IDE plugin named PowerStation which uses
static analysis to identify and refactor common ORM performance
inefficiencies. While this work relates most closely to ours, Pow-
erStation does not identify or refactor the “N+1 problem”. Instead,
PowerStation tackles other inefficiencies like dead stores, redundant
loads, and Ruby-specific API misuses. Lyu et al. [22] present an auto-
matic refactoring technique for repetitive autocommit transactions,

ASE ’22, October 10–14, 2022, Rochester, MI, USA

using static analysis to detect this database ineffiency common to
the Android platform. However, repetitive autocommit transactions
refer to writes, whereas the “N+1 problem” concerns reads.

In sum, previous work explored database-related refactorings
and the detection of ORM anti-patterns. However, we are not aware
of automated refactoring tools for eliminating the “N+1 problem”.

8 CONCLUSION
ORMs provide an object-oriented interface to databases and facili-
tate the development of database-backed applications. In an ORM,
databases can be accessed using method calls to the ORM, which
maps those calls into database queries.While convenient, this added
layer of abstraction hides the significant performance cost of data-
base operations, and misuse of ORMs can lead to far more queries
being generated than necessary. In particular, the “N+1 problem” is
prevalent in ORM-backed applications. It is natural to iterate over
collections in object-oriented languages, but iterating over data
that originates from a database and calling an ORM method in each
iteration may result in suboptimal performance. In such cases, it is
often possible to reduce the number of round-trips to the database
by issuing a single query that fetches all desired results at once.

In this work, we presented an approach for automatically refac-
toring applications that use ORMs to eliminate instances of the
“N+1 problem”, which relies on static analysis to detect data flow
between ORM API calls. We implemented this approach in refor-
mulator, a tool targeting the Sequelize ORM in JavaScript, and
evaluated it on 8 JavaScript projects. We found 44 N+1 query pairs
in these projects, and reformulator refactored all of them success-
fully, resulting in improved performance while preserving program
behavior. At a small scale, performance improvements of up to
7.67x were observed, and improvements of up to 38.58x were ob-
served at scale. Further, a detailed study of the front-ends of these
applications revealed page load time improvements of up to 90%.

ACKNOWLEDGMENTS
A. Turcotte was supported in part by NSERC. A. Turcotte and F.
Tip were supported by NSF grant CCF-1907727. Authors would like
to thank Oracle Labs for their support.

REFERENCES
[1] 2021. ECMAScript 2021 Language Specification Section 27.2: Promises. https:

//262.ecma-international.org/#sec-promise-objects.
[2] 2022. Laravel: The PHP Framework for Web Artisans. See https://laravel.com/.
[3] 2022. Sequelize ORM. See https://sequelize.org.
[4] adam dill. 2022. wall. See https://github.com/adam-dill/wall/commit/ae6c815.
[5] Scott Ambler and Pramod Sadalage. 2006. Refactoring Databases: Evolutionary

Database Design (1 ed.). Addison-Wesley.
[6] Ellen Arteca, Frank Tip, and Max Schäfer. 2021. Enabling Additional Parallelism

in Asynchronous JavaScript Applications. In 35th European Conference on Object-
Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference) (LIPIcs, Vol. 194), Anders Møller and Manu Sridharan (Eds.). Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:28. https://doi.org/10.4230/
LIPIcs.ECOOP.2021.7

[7] Ellen Arteca and Alexi Turcotte. 2022. npm-filter: Automating the mining of
dynamic information from npm packages. arXiv preprint arXiv:2201.08452 (2022).

[8] Babel. 2022. Babel. See https://babeljs.io/.
[9] Boyuan Chen, Zhen Ming Jiang, Paul Matos, and Michael Lacaria. 2019. An Indus-

trial Experience Report on Performance-Aware Refactoring on aDatabase-Centric
Web Application. In 34th IEEE/ACM International Conference on Automated Soft-
ware Engineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019. IEEE,
653–664. https://doi.org/10.1109/ASE.2019.00066

[10] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2014. Detecting Performance Anti-Patterns for
Applications Developed Using Object-Relational Mapping. In Proceedings of the
36th International Conference on Software Engineering (Hyderabad, India) (ICSE
2014). Association for Computing Machinery, New York, NY, USA, 1001–1012.
https://doi.org/10.1145/2568225.2568259

[11] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed
Nasser, and Parminder Flora. 2016. Finding and Evaluating the Performance
Impact of Redundant Data Access for Applications that are Developed Using
Object-Relational Mapping Frameworks. IEEE Transactions on Software Engineer-
ing 42, 12 (2016), 1148–1161. https://doi.org/10.1109/TSE.2016.2553039

[12] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. 2014. SLOTH: Being
Lazy Is a Virtue (When Issuing Database Queries). In International Conference
on Management of Data, SIGMOD 2014, Snowbird, UT, USA, June 22-27, 2014,
Curtis E. Dyreson, Feifei Li, and M. Tamer Özsu (Eds.). ACM, 931–942. https:
//doi.org/10.1145/2588555.2593672

[13] daedadev. 2022. employee-tracker. See https://github.com/daedadev/employee-
tracker/commit/ba4a195.

[14] Elektra-GHP. 2022. Graceshopper-Elektra. See https://github.com/Elektra-
GHP/Graceshopper-Elektra/commit/c327530.

[15] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic migration from
synchronous to asynchronous JavaScript APIs. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–27. https://doi.org/10.1145/3485537

[16] Google. 2022. Chrome DevTools. See https://developer.chrome.com/docs/
devtools/.

[17] Neville Grech and Yannis Smaragdakis. 2017. P/taint: Unified points-to and taint
analysis. Proceedings of the ACM on Programming Languages 1, OOPSLA (2017),
1–28.

[18] Hibernate. 2022. What is Object/Relational Mapping? See http://hibernate.org/
orm/what-is-an-orm/.

[19] Rezwana Karim, Frank Tip, Alena Sochurková, and Koushik Sen. 2020. Platform-
Independent Dynamic Taint Analysis for JavaScript. IEEE Trans. Software Eng.
46, 12 (2020), 1364–1379. https://doi.org/10.1109/TSE.2018.2878020

[20] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si WooMun, Jeong Hoon
Shin, and Kyounggon Kim. 2022. DAPP: automatic detection and analysis of
prototype pollution vulnerability in Node.js modules. Int. J. Inf. Sec. 21, 1 (2022),
1–23. https://doi.org/10.1007/s10207-020-00537-0

[21] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. 2021. Detecting Node.js
Prototype Pollution Vulnerabilities via Object Lookup Analysis. In ESEC/FSE ’21:
29th ACM Joint European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, Athens, Greece, August 23-28, 2021, Diomidis
Spinellis, Georgios Gousios, Marsha Chechik, and Massimiliano Di Penta (Eds.).
ACM, 268–279. https://doi.org/10.1145/3468264.3468542

[22] Yingjun Lyu, Ding Li, and William G. J. Halfond. 2018. Remove RATs from Your
Code: AutomatedOptimization of Resource Inefficient DatabaseWrites forMobile
Applications. In Proceedings of the 27th ACM SIGSOFT International Symposium
on Software Testing and Analysis, ISSTA 2018, Amsterdam, The Netherlands, July
16-21, 2018, Frank Tip and Eric Bodden (Eds.). ACM, 310–321. https://doi.org/10.
1145/3213846.3213865

[23] manikandanraji. 2022. youtubeclone. See https://github.com/manikandanraji/
youtubeclone-backend/commit/47002fc.

[24] Microsoft. 2022. CodeQL. See https://codeql.github.com/.
[25] Microsoft. 2022. CodeQL. See https://codeql.github.com/docs/codeql-language-

guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-
flow-in-javascript-and-typescript.

[26] mikethecodegeek. 2022. property-manage. See https://github.com/
mikethecodegeek/property-manage/commit/33f92a9.

[27] Joonyoung Park, Inho Lim, and Sukyoung Ryu. 2016. Battles with False Positives
in Static Analysis of JavaScript Web Applications in the Wild. In Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016, Austin, TX,
USA, May 14-22, 2016 - Companion Volume, Laura K. Dillon, Willem Visser, and
Laurie A. Williams (Eds.). ACM, 61–70. https://doi.org/10.1145/2889160.2889227

[28] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. 2021.
Repairing Serializability Bugs in Distributed Database Programs via Automated
Schema Refactoring. In PLDI ’21: 42nd ACM SIGPLAN International Conference
on Programming Language Design and Implementation, Virtual Event, Canada,
June 20-25, 2021, Stephen N. Freund and Eran Yahav (Eds.). ACM, 32–47. https:
//doi.org/10.1145/3453483.3454028

[29] rayace5. 2022. Math_Fluency_App. See https://github.com/rayace5/Math_
Fluency_App/commit/5c1658e.

[30] Ruby on Rails. 2022. Ruby on Rails. See https://rubyonrails.org/.
[31] W the V. 2022. NetSteam. See https://github.com/W-the-V/NetSteam/commit/

5b1cd86.
[32] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.

2009. TAJ: effective taint analysis of web applications. ACM Sigplan Notices 44, 6
(2009), 87–97.

[33] Alexi Turcotte, Mark W. Aldrich, and Frank Tip. 2022. Reformulator: Artifact.
https://doi.org/10.5281/zenodo.6959485

https://262.ecma-international.org/#sec-promise-objects
https://262.ecma-international.org/#sec-promise-objects
https://laravel.com/
https://sequelize.org
https://github.com/adam-dill/wall/commit/ae6c815
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://babeljs.io/
https://doi.org/10.1109/ASE.2019.00066
https://doi.org/10.1145/2568225.2568259
https://doi.org/10.1109/TSE.2016.2553039
https://doi.org/10.1145/2588555.2593672
https://doi.org/10.1145/2588555.2593672
https://github.com/daedadev/employee-tracker/commit/ba4a195
https://github.com/daedadev/employee-tracker/commit/ba4a195
https://github.com/Elektra-GHP/Graceshopper-Elektra/commit/c327530
https://github.com/Elektra-GHP/Graceshopper-Elektra/commit/c327530
https://doi.org/10.1145/3485537
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
http://hibernate.org/orm/what-is-an-orm/
http://hibernate.org/orm/what-is-an-orm/
https://doi.org/10.1109/TSE.2018.2878020
https://doi.org/10.1007/s10207-020-00537-0
https://doi.org/10.1145/3468264.3468542
https://doi.org/10.1145/3213846.3213865
https://doi.org/10.1145/3213846.3213865
https://github.com/manikandanraji/youtubeclone-backend/commit/47002fc
https://github.com/manikandanraji/youtubeclone-backend/commit/47002fc
https://codeql.github.com/
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://github.com/mikethecodegeek/property-manage/commit/33f92a9
https://github.com/mikethecodegeek/property-manage/commit/33f92a9
https://doi.org/10.1145/2889160.2889227
https://doi.org/10.1145/3453483.3454028
https://doi.org/10.1145/3453483.3454028
https://github.com/rayace5/Math_Fluency_App/commit/5c1658e
https://github.com/rayace5/Math_Fluency_App/commit/5c1658e
https://rubyonrails.org/
https://github.com/W-the-V/NetSteam/commit/5b1cd86
https://github.com/W-the-V/NetSteam/commit/5b1cd86
https://doi.org/10.5281/zenodo.6959485

ASE ’22, October 10–14, 2022, Rochester, MI, USA Alexi Turcotte, Mark W. Aldrich, and Frank Tip

[34] twincarlos. 2022. eventbright. See https://github.com/twincarlos/eventbright/
commit/e417020.

[35] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. 2019. Synthesizing
Database Programs for Schema Refactoring. In Proceedings of the 40th ACM
SIGPLAN Conference on Programming Language Design and Implementation, PLDI
2019, Phoenix, AZ, USA, June 22-26, 2019, Kathryn S. McKinley and Kathleen
Fisher (Eds.). ACM, 286–300. https://doi.org/10.1145/3314221.3314588

[36] Sophie Xie, Junwen Yang, and Shan Lu. 2021. Automated Code Refactoring upon
Database-Schema Changes in Web Applications. In 36th IEEE/ACM International
Conference on Automated Software Engineering, ASE 2021, Melbourne, Australia,
November 15-19, 2021. IEEE, 1262–1265. https://doi.org/10.1109/ASE51524.2021.
9678934

[37] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. 2017. Understanding
Database Performance Inefficiencies in Real-World Web Applications. In Proceed-
ings of the 2017 ACM on Conference on Information and Knowledge Management
(Singapore, Singapore) (CIKM ’17). Association for Computing Machinery, New
York, NY, USA, 1299–1308. https://doi.org/10.1145/3132847.3132954

[38] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung.
2018. How Not to Structure Your Database-Backed Web Applications: A Study
of Performance Bugs in the Wild. In Proceedings of the 40th International Confer-
ence on Software Engineering (Gothenburg, Sweden) (ICSE ’18). Association for
Computing Machinery, New York, NY, USA, 800–810. https://doi.org/10.1145/
3180155.3180194

[39] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. 2018.
PowerStation: Automatically Detecting and Fixing Inefficiencies of Database-
Backed Web Applications in IDE. In Proceedings of the 2018 ACM Joint Meeting
on European Software Engineering Conference and Symposium on the Foundations
of Software Engineering, ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, No-
vember 04-09, 2018, Gary T. Leavens, Alessandro Garcia, and Corina S. Pasareanu
(Eds.). ACM, 884–887. https://doi.org/10.1145/3236024.3264589

[40] Junwen Yang, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Cheung. 2019.
View-Centric Performance Optimization for Database-Backed Web Applications.
In 2019 IEEE/ACM 41st International Conference on Software Engineering (ICSE).
994–1004. https://doi.org/10.1109/ICSE.2019.00104

https://github.com/twincarlos/eventbright/commit/e417020
https://github.com/twincarlos/eventbright/commit/e417020
https://doi.org/10.1145/3314221.3314588
https://doi.org/10.1109/ASE51524.2021.9678934
https://doi.org/10.1109/ASE51524.2021.9678934
https://doi.org/10.1145/3132847.3132954
https://doi.org/10.1145/3180155.3180194
https://doi.org/10.1145/3180155.3180194
https://doi.org/10.1145/3236024.3264589
https://doi.org/10.1109/ICSE.2019.00104

	Abstract
	1 Introduction
	2 Background and Motivation
	3 Approach
	3.1 Data-Flow Analysis
	3.2 Refactoring

	4 Implementation
	5 Evaluation
	6 Threats to Validity
	7 Related Work
	8 Conclusion
	Acknowledgments
	References

