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Abstract—Flaky tests are tests that nondeterministically pass
and fail in unchanged code. These tests can be detrimental to
developers’ productivity. Particularly when tests run in con-
tinuous integration environments, the tests may be competing
for access to limited computational resources (CPUs, memory
etc.), and we hypothesize that resource (in)availability may be a
significant factor in the failure rate of flaky tests. We present the
first assessment of the impact that computational resources have
on flaky tests, including a total of 52 projects written in Java,
JavaScript and Python, and 27 different resource configurations.
Using a rigorous statistical methodology, we determine which
tests are RAFTs (Resource-Affected Flaky Tests). We find that
46.5% of the flaky tests in our dataset are RAFTs, indicating
that a substantial proportion of flaky-test failures can be avoided
by adjusting the resources available when running tests. We
report RAFTs and configurations to avoid them to developers,
and received interest to either fix the RAFTs or to improve the
specifications of the projects so that tests would be run only in
configurations that are unlikely to encounter RAFT failures. Our
results also have implications for researchers attempting to detect
flaky tests, e.g., reducing the resources available when running
tests is a cost-effective approach to detect more flaky failures.

I. INTRODUCTION

Flaky tests are tests that can pass and fail in repeated
executions without changes to the test code or the code under
test [1]. Flaky tests are detrimental to developer’s productivity.
In a continuous integration environment where developers
run tests after making code changes, test failures signal to
developers that their changes may have introduced a fault,
which needs to be debugged and repaired so that all tests pass
again. When a flaky test fails, the developers, unaware of the
flakiness at first, may be misled to debug the test failure in
the recent code changes, even though the flaky test failure
is unrelated to the changes and can be due to a myriad of
reasons, such as dependency on specific thread interleavings,
test execution orders, etc. [1]-[3]. The negative effects of flaky
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tests have been reported as a substantial issue in many software
companies, such as Apple [4], Ericsson [5], [6], Facebook [7],
[8], Google [9]-[12], Huawei [13], Microsoft [14]-[18], and
Mozilla [19], [20].

This paper makes the observation that test flakiness can
often be attributed to the (un)-availability of computational
resources, e.g., CPU, memory, etc. We use the term RAFT
(Resource-Affected Flaky Test) to refer to a test that manifests
flakiness under such circumstances. Intuitively, the unavailabil-
ity of required but unspecified computational resources can
lead to runtime errors that affect test execution. For instance,
if CPU resources are unavailable, either due to test execution
on a weakly equipped machine or CPU contention in a multi-
processing multi-tenant setting, implicit test assumptions on
the latency of asynchronous operations may be violated and
lead to test failures [5], [17], [18], [21]. Overall, the (un-
)availability of resources can trigger nondeterministic behavior
associated with different causes of flakiness [22], e.g., ASYNC
WAIT or CONCURRENCY.

Acquiring unlimited resources

is not a realistic solution to ad- I'kfali'I:red
dress RAFT failures as com- o1'0°%  too slow
4+— and flaky

putational resources are finite,
and cloud computing costs can
quickly add up. Increasing re-
sources incessantly will eventu-
ally result in diminishing returns
in terms of RAFT failure preven-
tion relative to cost. Likewise,
maximizing the savings in com-
puting resources may be disrup-
tive and unproductive due to an
increase in RAFT failures. Fig-
ure | illustrates the trade-off be-
tween resource availability and
the likelihood of a RAFT fail-
ure. Conceptually, the “sweet-
spot” region in the figure represents computational resource
configurations that balance cost and failure ratio.

RAFT opens an interesting perspective on the link between

a controlled parameter of the execution environment—the
computing resources—and the detection and prevention of
flaky tests:

1) If resources are constrained, the likelihood for observ-
ing RAFT failures increases. This increase helps RAFT
detection, which is a prerequisite for localization and
repair, in case the failure probability is very low in normal
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Figure 1: Trade-off be-
tween the likelihood of ob-
serving RAFT failures and
resource availability.



operation. A higher failure rate is also beneficial for
debugging a flaky test.

2) If tests are known to be sensitive to resource constraints,
the resource configuration of their runtime environment
can be chosen in a way to reduce failure probability and
thereby prevent RAFT from affecting developers. Future
research might examine specific runtime techniques to
optimize test execution.

To assess the effects of computational resources on flaky
tests, we propose a rigorous statistical methodology to de-
termine which flaky tests are resource-affected. Using this
methodology, we conduct a comprehensive study involving 52
open-source projects written in Java, JavaScript and Python.
We structured the study in three parts:

First, we measure the prevalence of RAFT when running
tests for 300 times on 16 configurations of CPU, memory,
disk, and network. A RAFT is a test whose failure rates differ
with statistical significance under throttling and non-throttling
conditions (§ 11I-C). We find that nearly half of all tests found
to be flaky are RAFT. Determining that a test is RAFT is
important because it can make it easier for developers to avoid
flaky failures (by providing tests with sufficient resources) and
for researchers to detect flaky tests (by providing tests with
fewer resources).

Second, we measure which resources have the highest
impact on RAFTs. We find that CPU availability has higher
importance compared to memory and much higher importance
compared to disk and network. This finding is of high practical
relevance for detection and prevention of RAFTs, as it is a
parameter that can be controlled and scaled in real-world cloud
computing configurations. In our dataset of 52 projects, we
show that RAFTs are more likely to occur when the available
CPU is less than 1 core and memory is less than 1GiB. This
finding is relevant for tests that can run on different hardware
configurations or on shared hardware with load that varies
over time, which can both lead to resource contention. It also
has important implications for debugging flaky test failures,
as debugging is commonly conducted on a different machine
(e.g., a developer’s laptop) than the machine on which the test
failed in continuous integration.

Third, we show that scaling resources beyond certain con-
figurations yields no statistically significant improvements for
preventing RAFTs. This finding has practical implications
for reducing operational cost while mitigating RAFT. Fur-
thermore, we find that RAFTs that manifest nondeterministic
behavior in only one of the fifteen configurations we analyzed
are rare, suggesting that a small sample of configurations can
be used to detect RAFT and that increasing the number of
trials should suffice to increase confidence levels that a flaky
test is a RAFT. Finally, we assess the most cost-effective
configurations for preventing and detecting RAFT.

Overall, we present initial, yet strong evidence of the
importance of RAFTs for regression testing. Our findings
have several implications for developers (§ V) and researchers
(§ V-C) and open an avenue for further research on flaky
tests. Our dataset and scripts are publicly available under the
following repository [23].

II. BACKGROUND AND RELATED WORK

Flaky tests [3] have been the subject of systematic academic
studies for almost a decade with numerous contributions to
their detection, repair, avoidance, and tolerance at run-time.
As the root causes behind the non-determinism of flaky
tests are highly diverse, so are the strategies to effectively
cope with them. Luo et al. [22] identified 10 diverse root
causes for test flakiness across 51 affected projects from
the Apache Software Foundation and derived corresponding
repair strategies from fixing commits. Much of the following
work to combat flaky tests consequently focused on individual
root causes. iDFlakies [24] and iFixFlakies [25], for instance,
have been developed as approaches for detecting and auto-
matically repairing order-dependent flaky tests. In their work,
the authors make a terminological distinction between order-
dependent and non-order-dependent flaky tests, i.e., an explicit
naming of the fraction their approaches aim to address vs.
the totality of flaky tests. While other work is not making
similarly dichotomous distinctions, the addressed root causes
are commonly named explicitly, e.g., Assumed deterministic
implementations of nondeterministic specifications [26] or
infrastructure-dependent flaky tests [27]. RAFTs, which are
the focus of this work, adds to the collection of previously
analyzed root causes of flaky tests.

Besides the extensive study of RAFTSs’ prevalence across
a large variety of popular projects along with mitigation
strategies (detection and prevention), the focus on RAFTs
conceptually distinguishes our work from a technically similar
proposal by Terragni et al. [28]. While Terragni at al. also
hypothesize an effect of resource unavailability on flaky test
executions, their stated goal is root-causing in the sense of
deriving a flaky test’s category from a number of different
possible categories, some of which are not resource-related
(e.g., order-dependency). Our work, in contrast, is focusing
on resource effects and explores two mitigation strategies. For
this purpose, our work leverages resource control offered by
Linux control groups, which provides uniform resource access
control over the entire duration of a test execution, whereas
Terragni et al.’s proposal and other work (Shaker [21]) rely
on dynamic load generation, with which tests compete for
resources.

A. Example RAFT

Figure 2 shows an example of a RAFT. The test is from the
open-source project delight-nashorn-sandbox [29]
that provides a sandbox (i.e., an isolated environment) for
executing JavaScript code from within Java applications. A
sandbox allows developers to limit the resources, such as
maximum CPU time and memory usage that a sandbox can
use, so that the sandbox will terminate if it is stuck (e.g., in an
infinite loop). In this test, Line 3 first creates the sandbox that
will be used. Line 4 then sets the maximum amount of CPU
time in milliseconds, and Line 5 sets the maximum amount
of thread memory in bytes that the JavaScript code (Line 10)
can take to run. When we run this test in different resource
configurations, we find that the execution of the JavaScript
code from Line 11 can raise ScriptCPUAbuseException,
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@Test public void test () throws
ScriptCPUAbuseException, ScriptException ({
NashornSandbox sandbox =

NashornSandboxes.create () ;
sandbox.setMaxCPUTime (100) ;
sandbox.setMaxMemory (50 * 1024);

ExecutorService executor =
Executors.newSingleThreadExecutor () ;
sandbox.setExecutor (executor) ;
sandbox.eval ("function callMe ()
Assert.assertTrue (sandbox.get ("callMe")
executor.shutdown () ;

{ return 42; };");
!'= null);

Figure 2: Example RAFT from the TestGetFunction class
in the delight-nashorn-sandbox project [29].

ScriptMemoryAbuseException, Or raise no exceptions.
Specifically, when we run this test on a 4 CPU, 16 GiB RAM
machine, we find the test fails twice out of 300 runs — once
with each type of exception. As we throttle the CPU and
thread memory more, we see the expected number of exception
increase. For example, with 0.1 CPU and 16 GiB RAM, the test
fails 80 times, obtaining 64 ScriptCPUAbuseException,
and with 4 CPU and 0.5 GiB RAM, the test fails 18 times,
obtaining 17 ScriptMemoryAbuseException. Note that the
test is flaky because running the Java application and the
sandbox both require a nontrivial amount of CPU and RAM,
and not because the throttled CPU and RAM settings exceeded
what the sandbox specified as limits for the JavaScript code
(lines 4 and 5), i.e., even when we increase the CPU time the
sandbox can use (changing Line 4 to 1000 instead of 100),
the failure rates remain largely the same. When we evaluate
how often this test fails in machine configurations offered by
Amazon Web Services (AWS), we find that the test can fail
as frequently as 76 times in 300 runs. More details about
how often this test fails in various AWS configurations are
in §IV-A. We report further interesting examples of flaky tests
in §V.

III. METHODS AND OBJECTS OF ANALYSIS

This section describes the projects we used (§ III-A), the
setup of our experiments (§ III-B), and the research questions
we posed (§ HI-C).

A. Projects

Our empirical study includes projects written in three
languages: Java, Python and JavaScript. For each language,
we selected projects by examining the literature to identify
projects previously studied in the context of flakiness. We
included projects studied by prior work if we could build the
project, run the tests, and parse the test output. In cases where
projects had missing dependencies (or other infrastructure-
related failures), we spent up to three hours per-project
manually debugging them, improving our tools if necessary.
For each project in our dataset, we create Docker containers
that have all of the project’s dependencies included, ensuring
durable reproducibility and reducing the effort needed by
researchers in the future to build on our results.

1) Java: The corpus of Java projects consists of 30 GitHub
projects selected from two datasets: 15 projects from the
FlakeFlagger dataset [30] and 15 projects from the Lam et
al. dataset [31]. We use the same versions of each of these
projects as studied in our and others’ prior work. This set
of projects has been extensively studied in the context of
flaky tests, and was originally built by searching GitHub
for issues or commits related to flaky tests. We excluded
four projects from the original FlakeFlagger dataset (three of
which manifested deadlocks and one had a broken build) and
excluded five projects duplicated in the Lam et al. dataset (all
of which are also included in the FlakeFlagger dataset).

2) Python: The corpus of Python projects consists of 12
projects selected from Parry et al.’s recent studies [32], [33].
These Python projects were selected at random from a list
of projects critical to open-source infrastructure. We first
attempted to use the exact same versions of these projects that
had been studied in prior work, but despite significant and gen-
erous assistance from the authors, were unable to successfully
build those old versions due to missing dependencies. We did
succeed at building the most recent revision of 21 of these
projects (excluding five), and created container images with
those dependencies cached to ensure durable reproducibility.
For nine of these projects, we did not observe a single flaky test
during any test execution, leaving us with 12 Python projects,
that we were able to build and for which we observed at least
one flaky test.

3) JavaScript: We used a similar methodology to select 10
JavaScript (JS) projects, beginning by examining the projects
studied in Barbosa et al.’s investigation of flaky tests across
programming languages (six JS projects with at least five flaky
test) [34], and Yost’s flaky test detection work [35] (58 JS
projects). We used our NPM-Filter infrastructure [36] for the
building projects, running their test suites and parsing the test
results. We ran each project under NPM-Filter, and included
in our corpus each project that completed within three hours,
and for which NPM-Filter could parse test results (i.e., those
using the Mocha or Jest test runners). We supplemented this
set of JavaScript projects with three projects that we had
previously encountered flaky tests in: ngrok, IcedFrisby
and twilio-video—app-react. Ultimately, this resulted
in a corpus of 10 JavaScript projects with flaky tests.

These datasets are a part of recent research on flaky test
detection, which makes them ideal targets for our study and
provides baselines against which our results can be compared.
Table III lists all of these projects in alphabetical order grouped
by language. Our supplementary artifact [23] contains URLSs
for the projects analyzed including corresponding revisions
used, along with links to docker images that contain the
projects packaged with all necessary dependencies to repro-
duce their test suites.

B. Experimental setup

The experiment consists of two phases:

Phase I: This phase is designed to identify the most prominent
resource(s) responsible for RAFT.



Table I: Throttling configurations for Phase 1. The highlighted
row shows the default configuration (no throttling). Empty
cells indicate that the value of the corresponding cell is
equivalent to that of the default configuration (Baseline).

# C M D N
Baseline 4 16 Unrestricted Unrestricted
©) 0.1

M) 0.5

(D) 50/100 Kbps

(N) 1500/512 Kbps
(CM) 0.1 0.5

(CN) 0.1 1500/512 Kbps

(MN) 0.5 1500/512 Kbps
(CD) 0.1 50/100 Kbps
(MD) 0.5 50/100 Kbps
(DN) 50/100 Kbps 1500/512 Kbps
(CMN) 0.1 0.5 1500/512 Kbps
(CMD) 0.1 0.5 50/100 Kbps
(CDN) 0.1 50/100 Kbps 1500/512 Kbps
(MDN) 0.5 50/100 Kbps 1500/512 Kbps

(CMDN) 0.1 0.5 50/100 Kbps 1500/512 Kbps

Phase II: This phase is designed to identify the most econom-
ically prudent real-world configurations for detection and
prevention of RAFT.

During both phases, the base machine consists of a virtual
machine in our VMWare private cloud. All experiments are
run on virtual machines that are allocated 4 CPU cores and 16
GiB of RAM. Within these virtual machines, we run the test
suites in Docker containers, using Docker to further restrict
the resources available to the test suite. Each experiment is
implemented as a series of “jobs,” where each job includes
the execution of one test suite under one resource-availability
configuration. The invocation of the experiments is managed
using Slurm [37], which schedules the execution of each job
of each experiment on our cluster. To prevent interference
between experiments, only a single container was run at a
time within any virtual machine. It is worth noting that flaky
test failures are inherently nondeterministic. This randomness
can be problematic due to its potential to skew results on a
particularly lucky (or unlucky) run. For that reason, we run
each of the 52 projects on every configuration 300 times and
record the test failures for each run.

Phase I: To understand the impact of different resources
(CPU, Memory, Disk, and Network), it is necessary to have
control over them and have the ability to restrict them in-
dependently. Table I shows the complete list of throttling
configurations used during Phase I of our study. Column "#”
shows the configuration ID, column “C” shows the number of
CPUs, column “M” shows the amount of memory in GiBs.
The column “D” (abbreviates Disk) shows the limited rate
of IO operations per second and the throughput in kilobit
per second (Kbps), respectively. Finally, the column “N”
(abbreviates Network) shows the network limit for download
and upload in Kbps respectively. The options for CPU, RAM,
and disk throttling are set using the Docker CLI. The option
for networking throttling is set using Wondershaper.!

The first row on Table I shows the default configuration,
where resources are not throttled. The non-default configu-

Uhttps://github.com/magnificO/wondershaper

rations (C)-(CMDN) modify the values assigned to one or
more resources. We chose very small values to assign to each
configuration option (i.e., resource) with the goal of running
the tests under “limit” conditions. The configurations (C)-(N)
throttle only a single resource at a time, and are useful to
understand the impact of individual resources on flaky failures.
We also consider all combinations of those parameters, which
helps us to answer whether certain tests are RAFTs only when
multiple resources are constrained simultaneously.

Phase II: In order to identify the most cost effec-
tive real-world cloud computing configurations for detection
and prevention of RAFTs, we examine resource configu-
rations that more closely match those available by major
cloud providers. Cloud providers offer flexible pricing for
on-demand containers-as-a-service, e.g. AWS Fargate [38],
Google Kubernetes Engine [39], and Azure Kubernetes Ser-
vice [40]. These services are priced by CPU and memory
specifications, and provide “standard” disk and network access
services. During Phase I, we conclude that CPU has a greater
influence on test flakiness compared to memory, disk and
network. As a result, in Phase II, we consider configurations
with a different number of CPUs, assigning the lowest and
the highest memory options available on AWS for each
configuration. No restrictions are imposed on the disk and
network during this phase. As in Phase I, we ran each test suite
300 times. Table II shows the complete list of configurations
used during Phase II of our study. Column “#” shows the
configuration id, column "CPU” shows the number of CPUs,
column “Mem(GiB)” shows the amount of memory in GiBs.
Column “Cost ($/hr)” shows the AWS computing cost per
hour of a given CPU and Memory configuration on AWS
Fargate [38] serverless compute engine. In AWS Fargate,
developers submit Dockers images to the engine and pay for
compute resources when used. We consider 12 combinations
of CPU, ranging from 0.1 to 4, and of memory, ranging from
1 GiB to 16 GiB. The AWS computing cost (measured in
USD per hour) varies with the quality of the service and the
configuration requested [41]. For a given configuration, the
cost of the “spot” service is lower compared to the cost of
the “on-demand” service. Whereas the “on-demand” service
provides guaranteed availability of the container, a “spot”
container may be interrupted and canceled by the service
provider to shed their load during peak usage times. However,
the significant savings may make it attractive for running test
suites in CI, where a canceled test suite can be restarted on
another container.

C. Research questions and methodology

We aim to answer the following key research questions:

RQI. How prevalent are RAFTs?

Rationale. This question is important to justify further in-
vestigation on Resource-Affected Flaky Tests (RAFTs). If we
find that none of the flakiness can be attributed to resource
starvation, then further investigation is meaningless. To un-
derstand the prevalence of RAFTs in flaky test failures, we
aim to answer two key questions:
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Table II: AWS configurations sorted by cost [41]. Disk and
Network are unrestricted.

Cost (USD/hour)

# CPU Mem (GiB) spot on-demand
1 0.1 1 0.002548 0.008493
2 0.1 2 0.003881 0.012938
3 0.25 2 0.005703 0.019010
4 0.5 2 0.008739 0.029130
5 0.5 4 0.011406 0.038020
6 1 4 0.017478 0.058260
7 1 8 0.022812 0.076040
8 2 4 0.029622 0.098740
9 2 8 0.034956 0.116520
10 2 16 0.045624 0.152080
11 4 8 0.059244 0.197480
12 4 16 0.069912 0.233040

RQ1.1. How many of the flaky test failures can be attributed
to resource starvation?
RQ1.2. How sensitive are RAFT failures to resource starva-
tion?

RQI.1 aims to distinguish RAFT failures from other kinds of
failure to establish their prevalence. RQ1.2 aims to quantify
the effect of resource starvation on RAFT failures to establish
how likely these failures are under resource throttling.
Methodology. To answer RQ1, we consider the data for the
following attributes for each project: (i) the number of flaky
tests identified under full resource availability, (ii) the number
of flaky tests identified under all test execution configurations
combined (Table I), and (iii) the number of test failures which
can be considered RAFTSs. Since a definition for RAFTs does
not exist, we present the first quantifiable definition of RAFTs.
Definition: A Resource-Affected Flaky Test (RAFT) is a flaky
test that has a statistically different failure rate when resources
are constrained compared to an unconstrained test execution.
We use Pearson’s chi-squared test to determine whether the
failure rate is statistically different, accepting that difference
as significant only at a level of p < 0.05. To reduce the false
discovery rate, we use the Benjamini-Hochberg procedure to
adjust p-values. For a given throttling configuration, a test can
be a RAFT only if it passed at least once under that same
configuration.

We use the three attributes above to answer RQI.1. To
answer RQ1.2, we consider the increase in failure rates for
every unique test failure. Such increase is defined as the ratio
fi/maz(f1,1), where f; is the number of failures under the
most failure-inducing throttling configuration and f; is the
number of failures under the configuration with no resource
throttling. The ratios are then grouped by different levels of
increase in failure rate.

RQ2. Which resources have the strongest influence on flaki-
ness?

Rationale. This question is important to justify further inves-
tigation of the relationship between resource availability and
test flakiness. If we find that the relationship is weak, then
further investigation is meaningless. To understand the effect
of machine resources on flaky test failures, we aim to answer
two questions:

RQ2.1. What resources are most common at triggering flaky

test failures?

RQ2.2. Are some flaky tests only detected when using
different combinations of resources?

RQ2.1 aims to study the effect that throttling individual
resources has on flaky test failures. RQ2.2 aims to study
the effect that throttling combinations of resources has on
flaky test failures and whether this produces results that are
significantly different to throttling individual resources. It
is important to explore each resource independently and in
combinations to understand their impact. The resources or
combinations with the most impact can then be chosen for
further analysis.

Methodology. To answer RQ2, we compare the number of
RAFTs detected under each throttling configuration shown in
Table 1. Each throttling configuration limits availability of one
to four resources. We compare the number of RAFTSs detected
by each configuration, analyzing the configurations that detect
each RAFT.

RQ3. Which configuration best saves money while running the
test suite to prevent RAFTs?

Rationale. In a typical usage of continuous integration, devel-
opers want to simultaneously (1) avoid flaky tests to reliably
determine whether a bug is present in code when observing test
failures and to (2) run tests efficiently, i.e., maximize test runs
per amount of money. This question focuses on this scenario.
More precisely, it investigates which resource configurations
give the lowest flaky test disruption per amount of money for
given a project.

Methodology. To answer RQ1 and RQ2, we examined the
total RAFTs detected across all 300 test suite invocations.
To answer RQ3, we study instead the number of test suite
invocations (i.e., builds) that have at least one flaky-test failure.
We consider two metrics for every resource configuration
listed in Table II: (i) the number of builds with test failures
across all test runs (as a proxy for reliability) and (ii) the
price per-test suite run. We calculate the price per-test suite
run by multiplying the average time to run the project’s test
suite (as reported by the build system) by the “on-demand”
AWS Fargate cost shown in Table II. The configurations
with the least number of build failures are considered the
most reliable. However, there may be other configurations
which have slightly higher rate of build failures but are more
cost effective. It is worth noting that configurations with a
lower hourly rate can take longer to complete due to limited
resources, resulting in a higher cost for each build compared
to an expensive but fast configuration. For every configuration
in Table II, we consider the number of projects for which it
had the best price, best reliability, or both.

RQ4. Which configuration best saves money while running the
test suite to detect RAFTs?

Rationale. In another use case, developers may want to (1) de-
tect flaky tests in advance (i.e., before observing potentially
spurious failures during regression runs) and (2) run tests effi-
ciently. This question focuses on this scenario. More precisely,
it investigates which configurations maximize the ability of test
runs to detect flaky tests while keeping costs at a minimum.



Methodology. To answer RQ4, we consider two metrics for
every resource configuration listed in Table II: (i) the number
of flaky test failures (as a proxy for reliability of detection) and
(ii) the price per run. As with RQ3, we calculate the price per-
run by multiplying the average time to run the project’s test
suite (as reported by the build system) by the “on-demand”
AWS Fargate cost shown in Table II. Intuitively, cheaper
configurations are more likely to detect flaky test failures,
but they may not be the most cost effective due to slower
execution times. Furthermore, some configurations may be
entirely unusable for some projects - for example, when a
project’s tests require some minimum amount of memory to
run at all. Hence, it is necessary to consider computing cost
for this analysis. For every configuration in II, we consider
the number of projects for which it had the best price, best
detection, or both.

IV. RESULTS

A. Answering RQI1: How prevalent are RAFTs?

This research question evaluates prevalence of Resource-
Affected Flaky Tests (RAFTs) among flaky tests. Table III
summarizes the results of 300 test runs on each of the 52
projects for every throttling configuration in Table I. For every
project in the table, the column “Baseline Flaky” contains the
number of flaky tests identified under no resource throttling.
The columns “Flaky” and “RAFTs” under “Total, All Runs”
represent the total number of flaky tests identified across all
configurations, and those unique tests which can be consid-
ered RAFTs, respectively. The remaining columns show how
many RAFTs were observed by throttling different kinds of
resources: CPU (C), Memory (M), Disk (D), or Network (N),
and combinations thereof.

1) RQ1.1 How many of the flaky test failures can be
attributed to resource starvation?: With no resource throttling,
we observed a total of 86 flaky-test failures when running
the tests of each project for 300 times and aggregating
results across all 52 projects. Across all configurations, we
observed a total of 608 flaky test failures, of which 283 tests
were classified as RAFTs. The highest number of RAFTSs
identified in a single Java project is 32 in java-websocket
(=86.48% of the total of flaky tests on that project). Within the
JavaScript projects apollo-client-devtools showed the
highest number of RAFTs (13, or 61.90% of total flaky tests
in that project), and within the Python projects, setuptools
showed the highest number of RAFTs (89, or 50.28% of the
total flaky tests in that project). We observed no RAFTs in 15
projects of 52 projects. Note that the number of test runs for
all combinations of resource throttling is significantly greater
than that for no resource throttling (4,500=300%15 versus 300).
We run baseline configuration and every other configuration
for 300 times. This, in conjunction with potentially increased
failures in RAFTs due to throttling accounts for the difference
in the numbers between the columns “Baseline Flaky” and
“Total, All Runs/Flaky”.
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Figure 3: Just how resource affected are these flaky tests? For
each project with flaky tests, we show the failure increase rate
from the baseline “no throttling” configuration to the most
failure-inducing resource throttling condition.

Summary: Of all flaky tests detected in our
study, we find that 46.5%(=283/608) of them are
RAFTs.

2) RQ1.2 How sensitive are RAFT failures to resource
starvation?: The barplot in Figure 3 shows the distribution of
tests on various “resource-affectedness” levels for each project
that contains RAFTs. A level is defined as the increase in fail-
ure rate relative to the baseline “no throttling” configuration.
The colors indicate different levels. For example, dark green
denotes a test that is not resource affected, while red indicates
a test that is severely resource affected. The length of each
bar denotes the number of flaky tests found with throttling
runs, i.e., it corresponds to the value in column “Total, All
Runs/Flaky” on Table III.

Based on Figure 3, we observe that the level of resource-
affectedness varies with each project. Most projects contain
RAFTs which are slightly affected by resources with an
increase in failure rate of less than 25x (shown in light
green). Some projects such as incubator-dubbo for Java,
IcedFrisby for JavaScript, and setupTools for Python
have a large number of RAFTs that are heavily affected by
resource availability with an increase in failure rate of over
200x. RAFTs that are heavily affected by resources are quite



Table III: For each project with flaky tests, we report the baseline number of flaky tests identified without resource throttling
(Baseline Flaky) and the number of flaky tests identified as RAFT under each throttling condition. Throttling conditions are
identified by the resources throttled, i.e., CPU(C), Memory(M), Disk(D), Network(N), and combinations thereof. “Total, All
Runs” summarises all flaky tests (and RAFT) detected including the Phase II (AWS) configurations. Some projects resulted in

catastrophic failures under certain configurations that are indicated as ”-”.
Baseline Flaky Tests Identified as RAFT Under Throttling Conditions Total, All Runs

Language Project Flaky (C) (M) (D) (N) (CM) (CN) (MN) (CD) (MD) (DN) (CMN) (CMD) (CDN) (MDN) (CMDN) Flaky RAFTs
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uncommon and mostly exist in small numbers in few projects.
We should note that RAFTs that are heavily affected by
resources may already be well-known to developers, as they
are clearly very sensitive to resource availability, and are quite
likely to fail if resources are unavailable. On the contrary, the
most commonly-occurring RAFTs in our experiment (shown
in light green, those that increased in failure rates more
marginally), may be the most dangerous, since developers
are less likely to make the connection between the flaky-
test failures and resource availability. Heavily affected RAFTSs
on the other hand, can fail two or hundreds of times more
frequently than normal and are therefore easier to identify.
Section V-A describes developer feedback to the RAFTSs that
we identify.

Summary: Most commonly, RAFTs are slightly
affected by resources. In a 0-300 scale of
resource-affectedness, the most predominant
range is 1-50.

B. Answering RQ2: Which resources have the strongest influ-
ence on flakiness?

This research question evaluates the impact of individual
resources and their combination on test flakiness. Table III
summarizes the test failures for 300 runs on all configurations.
The columns (C), (M), (D), and (N) contains the number of
test failures for throttling of individual resources. The columns
after those show the test failures for combinations of these
resources.

1) RQ2.1 What resources are most common at triggering
flaky test failures?: We begin by examining the characteristics
by language. Across all 30 Java projects, we observed 82 test
failures under CPU throttling, 10 under memory throttling,
one under disk throttling, and one under network throttling.
Across all 10 JavaScript projects, we see a similar pattern: we
observed 28 failures under CPU throttling, zero under mem-
ory throttling, 1 under disk throttling, and 1 under network
throttling. This trend breaks among the 12 Python projects,
apparently due to the influence of a single project (setup-
tools): we observe only two failures under CPU throttling, 54
under memory throttling, 13 under disk throttling, and zero
under network throttling. This behavior might be explained
by different minimum memory requirements across projects:
our “memory” throttling configuration allows only 512MB of
RAM, which was insufficient to even run tests for some of
the projects with the most RAFTs in other languages (e.g.
incubator-dubbo, apollo-client-dev-tools), whereas this amount
appeared to be just enough to run the tests in setuptools,
albeit sufficiently little to cause many flaky test failures.
However, what is clear from the results is that disk and
network throttling play a much more minor role in causing
flaky test failures. Hence, we conclude that CPU starvation is
the most significant and ubiquitous factor for increasing test
failures, while memory throttling may also be impactful.

Summary: The resource that triggers flakiness
most frequently in Java and JavaScript projects
is the CPU, and in Python is the memory.

2) RQ2.2 Are some flaky tests only detected when using
different combinations of resources?: Recall that, according to
our definition, a RAFT is a test that has a statistically greater
failure rate in at least one resource-throttled configuration, as
compared to its baseline failure rate (under no throttling). Of
the total of 283, we identified 24 tests that were RAFTSs in
only one configuration. In each case, the absolute difference
in failures was relatively small, ranging from an increase
between seven and 23 additional failures observed under the
single configuration that exposed the test as RAFT and the
baseline failure count. To further investigate these tests, we
use Pearson’s chi-squared test to determine whether there
were other throttling configurations that resulted in failure
rates that were statistically indistinguishable from that single
RAFT case. In all but three cases, we found at least one
other throttling configuration that induced the RAFT to fail
at a rate that was indistinguishable from both the RAFT-
inducing configuration and the baseline configuration. Two of
these tests belonged to the Python project setuptools, and
were RAFTs only in the CMD configuration. The last test
belonged to the Java project riptide, and was flaky only in
memory-throttling configurations, failing persistently in CPU-
throttled configurations. We conclude that it is unlikely that it
is necessary to examine every resource configuration in order
to detect RAFTs, and simply increasing the number of trials
may be sufficient to increase confidence levels. Nonetheless,
in projects where tests are known to rely on disk input/output
(such as in the case of the setuptools project), adding disk
throttling combinations may help to detect RAFTS.

Summary: RAFTs rarely manifest only in
specific throttling configurations. Of the 283
RAFTs, 24 of them manifested only in one of
the 15 configurations.

C. Answering RQ3: Which configuration best saves money
while running the test suite to prevent RAFTs?

This research question evaluates the reliability of test exe-
cution and cost for each AWS configuration. To answer this
question, we analyzed the percentage of build failures and
the price to run every project on each AWS configuration in
Table II. Figure 4 summarizes the results as a stacked bar
chart ranking each configuration on price, reliability, and both.
Some projects may run with equal reliability on more than
one configuration, but have different price points. In such
cases, the project is only shown under the “Best Reliability
and Price” category. Conversely, some projects may show
significantly different behavior at drastically different price
points on different configurations.

Figure 4 shows that the best configuration for reliability
and price largely depends on individual projects. We observe
that the price of builds does not scale linearly with price of
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Figure 4: What are the best resource configurations to prevent flaky failures? For each configuration that we analyzed, we

show the number of times that it was the best at avoiding flaky failures, the best in terms of price, or the best in terms of both.
If a configuration was tied for best in terms of reliability for a project, we select the cheaper one. We hide configurations that

were not optimal on either dimension.

configurations. Configurations with lower resources generally
have a lower billing rate. However, the constrained resources
can make individual builds significantly slower. As a result,
it can often be more expensive to run builds on cheaper
configurations compared to those with slightly higher billing
rates. In addition, some projects could not be run on low
resources configurations due to catastrophic failures (e.g., de-
terministically running out of memory). The most reliable and
most cost effective configurations vary based on the projects.
We observed that the configuration “CPU 0.5 and RAM 2GiB”
is the most cost effective configuration, followed by “CPU 2
and RAM 4GiB” and “CPU 1 and RAM 4GiB.” We observed
that the configurations “CPU 0.5 and RAM 2GiB” and “CPU
2 and RAM 4GiB” are the most reliable configurations. A
table showing the price and reliability of each configuration
for each project is included in the appendix to this article.

Summary: The most cost-effective configuration
to prevent RAFTs largely depends on the
project.

D. Answering RQ4: Which configuration best saves money
while running the test suite to detect RAFTs?

This research question evaluates the reliability of test fail-
ures and cost for each AWS configuration. To answer this
question, we analyzed the number of test failures and the cost
to run every project on each AWS configuration in Table II.
Figure 5 summaries the results as a stacked bar chart ranking
each configuration on price, detection, and both. As discussed
in the prior sub-section, the cost for individual runs depends
on the time taken for each run and thus can vary significantly
for different configurations. The cost of execution on cheaper
configurations can be more than the cost of execution on
expensive configurations because of the longer execution time
on weaker hardware. Similar to RQ3, Figure 5 shows that
the best configuration for detecting flaky test failures and
obtaining best price depends on individual projects. Note that
the “best price” configuration is the same for both detecting
or avoiding flakiness.

The most cost effective and failure detecting configurations
vary based on the projects. We observe that the configuration
“CPU 2 and RAM 4” is cost effective on many projects, but
not every effective at detecting flaky failures. We observe that
the configuration “CPU 0.1 and RAM 1GiB” is effective at
detecting test failures on many projects but not very cost
effective. However, the configuration “CPU 0.5 and RAM
2GiB” combines the desirable properties of the previously
discussed configurations for our dataset and is the most cost
effective and reliable configuration for detecting flaky tests.

Summary: The most cost-effective configuration
to detect RAFTs largely depends on the project.

V. DISCUSSION

Our study confirms the presence of resource-affected flaky
tests (RAFTs) in open-source Java, JavaScript, and Python
projects. Our experiments find that the presence and impact
of RAFTs can vary substantially between projects. While
some of these failures might be obvious — in the case of
incubator-dubbo, we find tests that failed in almost every
single run when executed with restricted resources — other
tests have a more subtle dependency on system resources.
As test suites grow, and resources are increasingly stretched
thin to run more test suites concurrently, developers should be
aware of slowly-increasing flaky-test failure rates.

Projects that have mostly small, deterministic tests are less
likely to be impacted by resource-related flakiness than other
projects that have large, resource-dependent integration tests.
By specifying the expected resource requirements for reliably
running tests, developers can reduce the occurrence of RAFT-
related failures. In this section, we describe our experiences
reporting these concerns to developers, provide a qualitative
discussion of exemplar and unusual RAFT and non-RAFT
flaky tests, and implications for future research in flaky tests.

A. Feedback from developers

To gain further insight into the implications of our study,
we contacted developers of projects in which we detected
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Figure 5: What are the best resource configurations to detect flaky failures? For each configuration that we analyzed, we show

the number of times that it was best at detecting flaky tests (number of unique flaky tests detected), the best in terms of price,
or the best in terms of both. If a configuration was tied for best in terms of detection for a project, we select the cheaper one.
We hide configurations that were not optimal on either dimension.

RAFTs and suggested they update the project specifications
(e.g., README .md) with the minimal resource configurations
that should be used to mitigate RAFTs. As developers are
likely more hesitant to accept changes related to their projects’
specifications (than typical, code-related changes), we open
issue reports on only a subset of our evaluation projects to
gauge developers’ interest in our findings — specifically we
start by engaging with developers only for our Java-based
projects. We next describe the process by which we contacted
developers, along with a summary of the developers’ responses
to our recommendations.

1) Overview: First, we identify Java projects from our
evaluation that:

e are active, i.e., had a commit or developer interaction on
issues or pull requests in the last three years (this resulted
in only 18 of the 30 projects);

e are runnable, i.e., could be cloned at their latest version,
the code compiles, and the tests run (all 18 ran);

e had a flaky test in their latest revision, i.e., we run the
project test suites 300 times in each of the 12 throttling
configurations from Table II, and keep the projects that
have at least one RAFT (14 of the 18 projects had at
least one RAFT). The latest version of each project that
we used is in our artifact [23].

For each of the remaining 14 projects, we initiate com-
munication with developers by creating an issue, either via
GitHub or on the project’s custom issue tracking system, that
clearly indicates which tests are RAFTs, how to reproduce
the issue (with step-by-step instructions on how to clone the
code, build the Docker container, and run the tests), and which
configuration likely prevents RAFTs.

2) Feedback: For 14 projects that we initiated commu-
nication with, six have responded to us and the remaining
eight are still pending with no response. In two of the six
projects [42], [43], developers quickly asked for or created
their own PRs with minimum required resources to avoid
RAFTs after we reached out. In two other projects [44],
[45], developers initially expressed confusion to the concept
of RAFTs and did not understand why stating minimum
requirements for running tests were relevant. However, after
follow-up comments describing how the RAFT configurations
were plausible cases in which a contributor might run their

tests, the developers agreed with our concern and accepted
our proposed documentation changes. Lastly, there were two
projects [46], [47] in which developers felt that the change
to documentation was not appropriate, noting that these tests
might be flaky “regardless of resources” and preferred to create
a task to improve those tests to reduce their flakiness directly.

3) Discussion: There were common threads throughout our
interactions with developers.

First, developers generally want to reduce the flakiness in
their test suites, but are more focused on fixing tests to make
them less flaky. In http—core [44], [48], the developer was
initially quite dismissive, and eventually acquiesced with the
caveat that they would “rather see efforts spent on analyzing
the failing test cases and fixing them”. The developer in
shardingsphere-elasticjob [47] simply linked our
issue to another flaky-test related issue, and eventually fixed
the flakiness by using more robust assertions. These developers
were not convinced that poorly provisioned machines can lead
to more flakiness, perhaps because they do not experience
the flakiness on their own machines or believe that their
application would be used on such machines.

In fact, developers of the timely [46] project had diffi-
culties imagining their applications/test suites would be run
in resource-constrained environments. The developer was not
interested in specifying minimum resources because they
said their application is “designed to work with Apache
Accumulo, an inherently ‘big data’ application”. Similarly,
in db-scheduler [45], [49], the developer said that they
always “run the tests on a multicore machine”. In these situa-
tions, noting that different developers have different machine
specifications helped. (Note that suggesting asynchronously
executing test suites in cloud environments may also have
convinced developers, though we did not try this suggestion.)

There are also  developers like  those in
delight-nashorn-sandbox [43] and dubbo [42]
that were immediately interested in our fixes. In fact, the
developer of the former created a new test that failed if system
specifications were not adequate to better inform developers
that RAFT failures may be occurring. This example highlights
how developers may be content with simple RAFT mitigation
strategies.

In summary, we reached out to the developers of 14 Java



projects regarding RAFTs and the minimum machine spec-
ifications their projects’ should run in to avoid RAFTs. Of
the 14 projects we reached out to, developers of six projects
have responded to us, while the remaining eight are pending
with no response. Of the six that responded, developers of four
projects have improved their project based on our suggestions,
while the remaining two indicated that they prefer actual fixes
over specification clarifications.

B. Qualitative examination of flaky tests

To complement our statistical analysis, we also provide a
qualitative discussion of exemplar and unusual RAFT and non-
RAFT flaky tests.

1) An unusual RAFT case: Intuitively, a RAFT is due to
the limited availability of resources (e.g., lack of RAM needed
to properly run the test). However, we also observed RAFTS
that are due to the abundance of resources. One such example
is the test Issue677 [50] from the project Java-Websocket.
This test first creates a server and two clients, instances
of the WebSocketServer and WebSocketClient classes,
respectively. Then, the test starts the server and connects
the first client to the server. After connecting, the test calls
webSocket0.close () under the thread of the first client to
close the connection to the server. The test then checks if
the server is indeed closing. However, sometimes, when the
assertion runs, the connection with the server has already been
closed (when the machine is highly available) or it is still
open (when the machine is highly overloaded), as opposed to
“being closed.” As a result, the assertion in this test fails when
the machine is overloaded or when it is highly available. In
more detail, this test failed 14 times out of 300 executions in
a regular execution where resources have not been throttled
(4CPU and 16GiB of RAM). However, when we run this test
in an environment with slightly less CPU (between 0.5 and 4),
memory (between 4GiB and 16GiB), and disk I/O throttling,
the test can actually fail less often than the regular execution
— failing as little as just four times out of 300 executions. On
the other hand, when the test is run with less than 0.1CPU or
2GiB of RAM, the test always failed more 30 times and can
even fail up to 69 times. We submitted a pull request to the
owner of the project explaining why that specific assertion was
unreliable and recommended its removal (the test has other
assertions). The owner accepted the PR.

2) Non-RAFT flaky tests: Of course, not all flaky tests
are RAFTs. We provide a qualitative discussion of two
flaky tests that we observed in our dataset, which are
not RAFTs. The Timely [51] project contains two tests
from the class TimeSeriesGroupingIteratorTest that are
flaky but non-RAFT: testTimeSeriesDropOff and test-
MultipleTimeSeriesMovingAverage. The goal of these
tests is to check that the averages of numeric values in two
data structures are the same. However, the tests use time-based
random number generation, which results in unpredictable and
unreliable test results.

The flakiness of these tests is not dependent on the environ-
ment in which they are run, but rather on the time in which
they are run. A developer can run the same test multiple times,

even in different environments, and get different results each
time. In our experiments, we observed that these tests were
flaky in all configurations. In the baseline configuration, the
tests failed eight times in 300 runs, while in other configura-
tions, the tests failed at least once and up to 12 times. Our
findings for this test are confirmed by our prior anlaysis [52],
which also described these tests to be flaky due to time. In
fact, that prior analysis found a 2.6% failure rate for these
tests, which translates to roughly eight failures in 300 runs.

C. Implications for researchers

One line of flaky test research has focused on detecting
flaky tests, generally by re-running them hundreds [24] or
thousands [30], [52] of times to detect unlikely failures. We
have found that these experiments can be conducted more cost
effectively by reducing the resources that are used for each test
execution: providing each test suite with 4 CPUs and 16GiB
of RAM may be an over-provisioning of resources. From our
experiments, we found that as long as there is enough RAM
available to reliably complete a test suite execution without
reaching a fatal out-of-memory error, reducing resources avail-
able to a test suite increases the number of flaky tests detected.
Rather than deploying “stressor” tasks that acquire CPU and
RAM in an effort to starve tests of resources [28], [53], it may
be substantially cheaper to simply limit the resources available
to those tests, and use those resources for other purposes.

Surveys of developers show that detection of flaky tests is
a less pressing problem than the mitigation of flaky tests [54].
This article outlines a simple, yet effective approach for
mitigating the impact of flakiness in test suites, when that
flakiness is tied to resource availability. Researchers should
investigate other approaches to reduce the incidence of flaky
failures, considering factors beyond the test code itself, such
as environmental factors. Our supplemental artifact includes
our dataset and the scripts used to detect RAFTs from test
executions [23].

D. Implications for Continuous Integration Infrastructure

Cloud-based continuous integration (CI) systems have be-
come increasingly popular. Major cloud vendors provide CI
services, such as Amazon’s CodeBuild [55], Microsoft’s Azure
DevOps Pipelines [56] and Google Cloud Build [57]. We
reviewed the pricing and configuration options available for
popular cloud-based CI services, to see how the configura-
tions aligned with the resource configurations that we evalu-
ated. Specifically, we reviewed the configuration and pricing
of Amazon’s CodeBuild [55], Microsoft’s Azure DevOps
Pipelines [56], Google Cloud Build [57], GitHub Actions [58],
GitLab CI/CD [59], BitBucket Pipelines [60], CircleCI [61],
TravisCI [62] and TeamCity [63]. Builds are executed by
CI runners, which may be provided by the cloud service
(“cloud builders”), or managed by developers using their own
(“self-hosted builders”). Some services provided only a single
configuration of cloud builder: Azure DevOps and GitHub
Actions both provide runners with 2 CPUs and 7GiB of
RAM [56], [58] (at time of writing, GitHub has a beta-only
feature to support larger cloud runners). BitBucket provides



an unspecified CPU resource, but allows memory to be scaled
between 4 and 32 GiB [60]. GitLab and Google Cloud Build
allow developers to select as little as 1 CPU with 4GiB
of RAM [57], [59], while Amazon CodeBuild, GitLab CI,
TravisCI and TeamCity start at 2 CPUs with 4GiB of RAM,
with a maximum configuration (on Amazon CodeBuild) of 72
CPUs and 144GiB of RAM [55], [59], [62], [63].

Our finding that some projects can reliably build with only
0.5 CPU and 2GiB of RAM indicates that some developers
may be able to save money by using lower-end CI runners than
are available using the “cloud runner” model. Each of these
CI services also supports a “self-hosted” runner model, where
builds take place on compute resources that are managed by
the developers (e.g., a dedicated “builder” machine, or an auto-
scaling cluster of builders). For example: developers could
deploy an auto-scaling cluster of builders with 0.5CPU/2GiB
RAM on AWS for $0.008739/hour, while GitHub Actions
would charge about 55 times as much ($0.008/minute) for a
runner with 2 cores and 7GiB of RAM. Furthermore, each
of these services support only a limited number of resource
configurations, forcing specific combinations of CPU and
memory (e.g., on CircleCl, a configuration 1 CPU with 4GiB
of RAM is not available, developers must pay for 2 CPUs
to receive 4GiB of RAM). Based on the mismatch between
the resource requirements of projects and the configurations
provided by cloud CI services, we believe that significant cost
savings may be achievable for developers. Using “self-hosted”
runners that auto-scale on containers [64] that match the actual
resources required by a build (rather than over-provisioning)
can have significant cost savings.

E. Threats to validity

1) Construct validity: There are two central constructs to
our study, the flakiness of tests and resource-dependency.

Test flakiness: For classifying a test as flaky, we rely on
the observation of different test outcomes across repeated
executions. These executions may be affected by uncontrolled
factors and, hence, we may erroneously classify tests as flaky.
More precisely, there may exist an execution environment
under which the tests do not non-deterministically pass and
fail. However, the manifestation of this behavior demonstrates
that the investigated tests can be flaky in some execution
environment. This interpretation of flakiness follows common
practice in existing work.

Resource dependency: In our work, we determine resource
dependency by controlling resource access via Linux control
groups in a uniform manner, i.e., resource accesses are affected
throughout test execution. This access control closely resem-
bles execution on a resource-constrained machine. It does not
resemble resource constraints resulting from dynamic load on
shared resources well, as they are proposed in Terragni et
al.’s work [28]. However, the extreme resource restrictions
we experimented with for Phase I of our work resemble
extreme dynamic loads and lead to very sensitive detection.
We consider that part of our experiments to be a desirable
property for a detector of rare events like flaky test failures. For
Phase II, the uniform resource restriction leads to potentially

optimistic results if control for additional load on the test setup
cannot be controlled for, which is an important restriction that
users of our results should be aware of.

2) Internal validity: The conclusions we draw are based
on 300 re-executions of tests under each configuration. Other
work has shown that flaky tests can fail much more infre-
quently than once in 300 runs [30] and our results do not
systematically address such rare cases. The focus of our work
lies on flaky tests that fail frequently enough to significantly
disrupt developer activity.

To classify tests as RAFTSs, we rely on a x? test of inde-
pendence between failure rates under normal operation and
resource constraints. As we consider different configurations
for analyzing the effect of resource constraints, we conduct
several such tests against the same baseline failure rate, which
may lead to multiple comparison problems. We account for
these by adjusting the obtained p-values using the Benjamini-
Hochberg procedure [65].

3) External validity: Our results are restricted to the studied
projects and may not generalize to other projects. We expect
that the main conclusions of this paper (that RAFTs exist, and
that failure rates of RAFTs can be influenced by adjusting
resource constraints) will hold. However, it would be difficult
to extrapolate from our study to determine precisely how
prevalent RAFTs are in software overall, or which resource
configurations are the “best” overall for reducing or increasing
those failure rates. Even from our study of only 52 open-source
projects, we can see that the observed prevalence of flaky tests
and their sensitivity to resource restrictions differs. We, hence,
recommend to reassess RAFTs for other projects using the
methodology outlined in this work.

VI. CONCLUSIONS

Using rigorous statistical methods, we have empirically
demonstrated the link between test flakiness and the re-
sources available for running tests. Our study of 52 Java,
JavaScript, and Python open-source projects revealed that
resource-affected flaky tests (RAFTs) may be more prevalent
in some projects than others, likely tied to the kinds of behav-
iors that each projects’ test suite examines. By controlling the
quantity of CPU cores and RAM available to a test suite while
it runs, developers can reduce the likelihood of observing flaky
failures, or if desired, increase it. When we reached out to
the developers of 14 projects regarding the minimum machine
specifications their projects’ should run in to avoid RAFTs,
developers of six projects responded, while the remaining
eight are pending with no response. Of the six that responded,
developers of four projects improved their project based on
our suggestions, while the remaining two indicated that they
prefer actual fixes over specification clarifications. Comparing
the cost of each cloud configuration, we found that developers
can likely save money and reduce flakiness by using a “self-
hosted” CI runner configuration, as opposed to the ‘“cloud
runners” supported out-of-the-box by platforms like GitHub
Actions. Future research in detecting flaky tests will benefit
from running tests in reduced resource configurations, which
may be cheaper to run and reveal more flaky failures. Future



research on RAFTs might consider examining (1) the different
failures that occur under different resource configurations for
a given test, (2) the impact of other environmental factors on
flaky-test failures, (3) the idea of ignoring test runs when there
are insufficient resources to reliably run tests, and (4) how
regression testing techniques, such as test parallelization, can
leverage RAFT information to allocate machines for testing.
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APPENDIX A
RQ3 APPENDIX: PRICE AND RELIABILITY PER-PROJECT PER-CONFIGURATION

Table IV: For each of the cloud configurations, we report the number of builds (test suite executions) that contained at least one flaky test failure (F), and the cost per
thousand builds in USD (P). The configuration with the lowest cost is bolded.

0.1¢/1GiB 0.1¢/2GiB 0.25¢/2GiB 0.5¢/2GiB 0.5¢/4GiB 1c/4GiB  1¢/8GiB  2c/4GiB  2¢/8GiB 2¢/16GiB  4¢/8GiB  4c¢/16GiB

Language Project F P F P F P F P F P F P F P F P F P F P F P F P

java assertj-core 2290.16 2020.24 57 0.13 27 0.10 26 0.12 29 0.10 32 0.13 29 0.09 23 0.11 41 0.18 34 0.15 32 0.19
java assertj-core 2290.16 2020.24 57 0.13 27 0.10 26 0.12 29 0.10 32 0.13 29 0.09 23 0.11 41 0.18 34 0.15 32 0.19
java carbon-apimgt 3 0111 016 0 011 O 011 O 0.5 0 017 1 022 0 024 0 028 0 038 0 048 0 056
java commons-exec 11 009 6 013 6 012 8 016 6 021 2 029 4 037 0 0451 055 0 072 0 097 0O 1.11
java db-scheduler 79 0.07 86 0.10 45 0.06 10 0.06 10 008 1 009 0 0.11 1 0.2 0 015 0 019 0 023 0 0.27
java delight-nashorn-sandbox 1110.35 1150.54 144025 1030.19 106023 23 0.17 18 023 2 016 1 019 1 025 0 030 2 035
java elastic-job-lite 0 028 0 042 0 025 0 024 - - 0 0290 038 0 049 0 049 0 065 0 097 0 0.89
java esper 0 007 0 011 0 007 2 006 1 007 4 0.07 3 0.10 22 009 17 0.10 16 0.13 19 0.16 26 0.19
java excelastic 27 0.06 37 0.09 23 0.06 48 0.05 66 0.06 1700.06 1740.08 1820.08 1940.09 1900.10 2080.13 2030.17
java fastjson 30 038 27 059 11 033 5 027 4 035 3 028 3 036 0 031 0 036 0 047 0 069 0 072
java fluent-logger-java 1140.09 61 014 1 010 0 012 0 015 0 019 0 025 0 030 0 036 0 046 0 059 0 0.70
java handlebars.java 10 0.12 6 0.18 6 010 1 008 3 0.10 2 008 8 0.10 5 0.07 3 009 5 011 7 0.13 5 0.17
java hector 147040 1420.59 109032 1100.24 107032 89 0.25 1100.32 39 0.27 10 032 60 043 10 0.54 58 0.68
java http-request 0 005 0 008 0 004 0O 003 O 004 O 003 0 004 0 0030 004 0 0050 007 0 0.08
java httpcore 46 0.11 42 0.18 24 0.10 24 0.09 23 0.12 25 0.13 17 022 7 0.15 15 0.17 19 0.23 22 048 23 0.52
java hutool 4 005 2 006 2 004 4 003 1 004 1 003 1 0040 0020 0041 0050 005 1 0.06
java incubator-dubbo - - - - 0 207 11 193 11 250 13 262 10 355 2 355 8 419 4 546 2 7.19 5 8.14
java java-websocket 12 0.10 10 0.14 73 0.09 91 0.07 1040.09 99 0.08 95 0.10 97 0.08 1110.12 99 0.14 87 0.15 61 0.23
java logback 1110.21 122036 48 045 42 059 29 091 40 1.04 35 144 7 167 6 261 13 3.09 9 383 12 5.19
java luwak 8§ 012 13 0.18 12 010 3 0.08 1 0.10 O 0.09 12 011 0 011 O 0.2 1 0.15 2 020 O 0.21
java ninja 4 023 5 035 8 019 6 015 7 020 7 017 8 021 4 0.18 11 0.19 11 025 11 030 7 0.33
java noxy 5 026 2 039 0 023 0 016 0 022 0 017 0 023 0 016 O 0.19 0 024 0 030 O 037
java orbit 1090.22 110035 72 026 37 0.27 48 035 38 0.43 35 0.56 24 0.65 25 0.77 15 099 22 128 24 1.50
java oryx 0 009 0 015 0 010 O 011 O 014 0O 017 0 022 1 026 3 031 0 041 2 048 1 058
java riptide 0 012 0 019 0 012 0 011 0 015 0 016 0 020 0 021 8 029 0 033 0 026 0 031
java rxjava2-extras 3 0221 03 1 022 1 021 1 027 6 0301 039 2 041 3 050 2 065 1 087 5 095
java spring-boot - - 1 169 0 102 1 073 2 097 2 080 1 098 1 077 0 090 0 1251 146 0 2.00
java timely 0 022 0 033 0 018 0O 014 0 017 O 013 0 0.17 0 012 0O 0.14 0 0.18 0 020 O 0.23
java wro4j - - - - - - - - 5 127 7 091 8 1.20 1720.83 253093 1871.27 275122 193 1.44
java yawp 46 0.08 53 0.13 11 007 9 0.06 6 0.07 8 0.06 14 0.08 5 0.07 17 0.09 14 0.11 23 0.13 23 0.16
java zxing 29 0.67 22 090 20 050 23 038 24 049 23 038 17 049 25 056 18 0.66 27 0.86 18 1.12 22 1.32
js apollo-cache-persist 0 020 0 030 0 016 O 012 0 0.14 0 010 0 0.14 0 009 0 010 0 013 0 0.09 0 O0.11
js apollo-client-devtools ~ 2920.44 67 1.06 0 028 0 020 0 050 0 034 0 047 0 029 0 034 0 044 0 031 0 035
js AVA 0 181 0 134 0 067 0O 050 0 061 0O 041 0O 058 0 035 0 041 0 052 0 037 0 042
js cavy 0 001 0 002 0 001 O 001 O 001 O 0.01 0 001 0 001 O 0.01 O 0.02 0 002 0 0.03
js configure-aws-credentials0 0.04 0 0.06 0 003 0 003 0 003 0 003 0 003 0 0.02 0 003 0 004 0 004 0 0.05
js derivablejs 0 009 0 013 0 007 O 005 0 007 O 002 0 003 0 0030 003 0 0.04 0 005 0 0.06
js facepaint 0 002 0 003 0 002 0 001 O 002 0 001 0 002 0 001 0 0020 0020 0.03 0 0.03
js graphdoc 0 018 0 028 0 015 O 011 O 014 O 010 O 0.12 0 008 0 009 O 0.13 0 0.10 0 O0.11
js IcedFrisby 3000.03 1 002 0 0.01 O 001 0O 0.02 26 0.03 3000.15 3000.20 3000.23 3000.30 3000.39 0 0.05
js javascript-action 0 001 O 002 0 001 O 001 O 001 O 001 0 0.1 0 0020 0020 0.020 003 0 004
Js lock 0 068 0 095 0 054 0 040 O 050 0 038 0 050 0 051 0 063 0 080 0 1.02 0 1.11
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Table IV: For each of the cloud configurations, we report the number of builds (test suite executions) that contained at least one flaky test failure (F), and the cost per
thousand builds in USD (P). The configuration with the lowest cost is bolded.

0.1¢/1GiB 0.1¢/2GiB 0.25¢/2GiB 0.5¢/2GiB 0.5¢/4GiB 1c/4GiB  1c¢/8GiB  2c/4GiB  2¢/8GiB 2¢/16GiB  4¢/8GiB  4c¢/16GiB

Language Project F P F P F P F P F P F P F P F P F P F P F P F P

js next-compose-plugins 0 0.09 0 0.13 0 007 O 005 0 006 0 005 0 007 0 0.04 0 005 0 007 0 007 0 0.07

Jjs ngrok 0 002 0 003 0 002 O 002 0O 003 0 003 0 0050 0050 006 0 0091 011 0 0.13

js preset-modules 0 014 0 018 0 013 0 010 O 012 0 009 O 011 O 0.08 0 0.09 0 0.12 0 011 0 0.12

Jjs react-datetime 0 015 0 022 0 013 O 009 O 010 O 010 O 0.1 O 0.09 0O 0.11 0 014 0 013 0 0.15

js react-native 26 101 21 179 2 092 1 068 0 079 0 057 0 077 0 046 0 056 0 074 0 1.19 0 0.64

Jjs react-slick 0 034 0 051 0 027 O 019 O 025 0 017 0 023 0 014 0O 0.18 0 023 0 0.16 0 0.19

js react-stdio 0 002 0 002 0 001 O 001 O 001 O 001 0O 001 O 001 O 0.02 0 0.02 0 003 0 0.03

Js redux-ship 0 002 0 003 0 001 O 001 O 001 O 001 O 001 0 0.01 O 002 0 0020 0.02 0 0.03

js resume-cli 0 008 0 012 0 007 O 007 O 008 O 009 O 012 0 013 0 0.16 0 020 0 026 0 0.31

js semantic-pull-requests 0 0.05 0 008 0 004 0 0.03 0 004 0O 003 0 004 O 004 O 0.04 O 005 0 007 0 0.08

js shields 1050.03 2050.05 0 003 O 0.02 0 003 0 001 0 001 O 002 0 002 0 0.03 0 003 0 0.03

is tippyjs-react 0 023 0 034 0 018 0 013 0 016 0 0120 017 0 011 0 013 0 017 0 015 0 0.16

js twilio-video-app-react - - 16 258 3 141 O 108 0 099 0 074 0 103 0 0.8 0 0750 094 0 068 0 0.77

js whenipress 0 004 0 006 0O 003 0 003 0O 004 0 003 0 004 0O 0.03 0 0.04 0 005 0 005 0 0.06

python  celery 0 008 0 013 0 019 0 029 0 061 O 053 0 071 0 091 0 107 0 141 0 178 0 2.16

python  conan 0 48 0 7.12 0 408 0 313 0 406 0 347 0 453 0 581 0 694 0 841 0 1143 0 1341
python  django-rest-framework 0 0.11 0 0.16 0 0.09 0 007 0 0.09 0 007 0 009 0 0.11 0 0.13 0 018 0 023 0 0.27

python  electrum 0 051 0 078 0 047 0 034 0 046 0 040 0O 053 0 068 O 0.80 0 109 0 135 0 1.62

python  Flexget 0 262 0 395 0 227 0 172 0 232 0 181 0 2350 3030 3550 470 0 6.13 0 727

python  fonttools 0 021 0 031 0 018 O 013 O 0.18 0 014 0 017 0 022 0 027 0 035 0 046 0 0.55

python  graphene 0 003 0 005 0 004 0 003 0O 005 0 004 O 006 O 007 0O 008 0 0.11 0 0.14 0 0.17

python  hydra 0 09 0 141 0 079 0 059 0 077 0 059 0 077 0 098 0O 1.17 0 152 0 197 0 222

python  ipython 0 023 0 034 0 022 0 020 0 026 0 026 0 034 0 044 0 052 0 0.68 0 088 O 1.05

python  kombu 0 008 0 011 O 008 0 008 O 011 0 013 0 017 0 022 0 027 0 034 0 044 0 0.0

python  loguru 290028 0 042 0 029 0O 028 0 037 0 041 0 053 270069 0 0.81 0 1.06 2601.37 0 1.62

python  mitmproxy 0 017 0 025 0 015 0 012 0 015 0 013 0 017 0 022 0 027 0 034 0 044 0 0.52

python  Pillow 0 004 0 007 O 010 O 015 0 035 0 028 0 0350 0450 053 0 067 0 09 0 1.06

python  prefect 0 440 0 670 0 985 0 15090 19.690 30.170 39380 51.140 60.350 78.770 102280 120.70
python  PyGithub 0 013 0 020 0 012 0 010 O 0.14 0 013 0 017 0 021 0 025 0 033 0 042 0 0.0

python  pyramid 0 010 0 015 0 008 O 006 O 008 O 006 0O 008 0 011 O 0.12 0 0.16 0 021 O 0.24

python  requests 23 0.09 29 0.13 19 0.17 19 025 21 0.33 18 049 21 0.65 19 0.84 20 0.99 23 1.27 24 1.63 19 2.00

python  seaborn 0 026 0 442 0 285 0 264 0 346 0 347 0 448 0 467 0 5550 736 0 858 0 10.23
python  setuptools 1 324 0 497 299270 298222 2982.89 2984.17 298536 0 7.02 3008.36 29710.3530014.31 5 16.66
python  sunpy 0 137 0 208 0 122 0 096 0 124 0 098 0 130 0 147 0 1750 230 0 269 0 326

python  xonsh 0 063 0 098 0 052 0 040 0O 051 0 041 0 052 0 066 0 079 0 1.04 0 135 0 157
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