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Literate programming environments like Jupyter and R Markdown notebooks, coupled with easy-to-use
languages like Python and R, put a plethora of statistical methods right at a data analyst’s fingertips. But
are these methods being used correctly? Statistical methods make statistical assumptions about samples being
analyzed, and in many cases produce reasonable looking results even if assumptions are not met.

We propose an approach that allows library developers to annotate functions with statistical assumptions,
phrases them as hypotheses about the data, and inserts hypothesis tests investigating the likelihood that
the assumption is met; this way, analysts using these functions will have their data checked automatically.
We implement this approach in two tools: prob-check-py for Python, and prob-check-r for R, and to evaluate
them we identify common hypothesis testing and statistical modeling functions, annotate them with the
relevant statistical assumptions, and run 128 Kaggle notebooks that use those methods to identify misuses. Our
investigation reveals statistically significant evidence against assumptions in 84.38% of surveyed notebooks,
and in 53.36% of calls to annotated functions. In the case of hypothesis tests, had an equivalent test that did
not make these assumptions been chosen, a different conclusion would have been drawn in 11.51% of cases.
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1 Introduction

We live in an era of data. Popular languages like R and Python are replete with libraries of statistical
methods for performing data analysis, and literate programming environments like Jupyter and
R Markdown notebooks make it easy to analyze and share insights about data. And beyond this,
these languages and tools are crucial for analyzing huge data sets thanks to the automation of
otherwise tedious and laborious data analysis tasks.

That said, statistics is a tricky business. One reason for this is that statistical methods often make
a variety of statistical assumptions about input data. Consider something as ubiquitous as the t-test,
a method for testing hypotheses about means of one or two samples: perhaps the most famous
t-test is Student’s, and Student’s two-sample t-test makes three assumptions about the samples
under analysis: the distribution of samples means should be normal, the samples should have equal
variance, and they should be independent. A big part of sound statistics is verifying assumptions
and using appropriate methods to analyze data [38, 41, 56, 84].

Part of what makes these statistical assumptions so tricky is that they are probabilistic in nature,
and moreover, they will rarely be exactly met. For example, there is a small chance that a sample
drawn from a normally distributed population will not appear normal. Also, what are the odds that
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two independent samples have the exact same variance? When investigating such assumptions,
statisticians will sometimes plot their data to manually and visually verify them, or use other
statistical methods to test hypotheses related to the assumptions. In other words, they investigate
if there is enough evidence in support of an assumption.

So then the question is: are data analysts doing any checking at all? The short answer is: probably
not. As part of this paper, we investigate 128 notebooks on the popular Kaggle notebook hosting
site, and find that only 11 check or mention all of the assumptions related to the statistical methods
they use. This includes popular notebooks, tutorials, and highly regarded Kaggle data analysis
competition submissions that have been up-voted and cloned thousands of times.

We found this lack of checking to be disheartening, so in this paper we introduce a simple
annotation language to allow popular statistical assumption to be expressed and have an auto-
mated check generated. The idea is to allow library developers to encode statistical assumptions
explicitly and have them be checked, so that analysts using these statistical libraries can receive
feedback pertaining to unmet assumptions automatically. To check an assumption, it is phrased as
a hypothesis about the data, much like a statistician would do, and an automated hypothesis test is
injected into the code of the annotated method. This framework is programming language agnostic,
and we implement two proofs of concept: prob-check-py for Python, and prob-check-r for R. To
use prob-check-py a developer encodes statistical assumptions in numpy docstrings, and to use
prob-check-r they encode the assumptions in the standard Roxygen2 documentation framework.

To evaluate these tools and this approach, we annotate functions implementing common hy-
pothesis testing and linear regression methods with the relevant assumptions, find 128 Kaggle
notebooks containing references to these functions, and run them using the checked versions of
these functions. Of 1,102 calls to annotated functions, 586 had strong evidence against at least
one statistical assumption being met, and such cases were present in 108 notebooks. Moreover,
strong evidence against assumptions was found in 267 of 360 unique call sites to these functions.
When considering hypothesis tests, sometimes the difference between samples is so great that it is
detected even when assumptions may not be met, but in 35 calls (representing 11.51% of calls to
hypothesis testing methods), had the analyst used a more appropriate test given the characteristics
of the data, the conclusion would have been different!

In summary, the primary contributions of this work are:

e an annotation language for expressing assumptions about statistical properties of data;

e two implementations' of the annotation language, one for Python (prob-check-py) and another
for R (prob-check-r), showcasing the generality of the language;

e an evaluation revealing many misuses of statistical functions in popular Kaggle notebooks,
and an investigation of the severity of these misuses.

The remainder of the paper is organized as follows: Section 2 establishes statistical background;
Section 3 presents a glossary of key terms; Section 4 motivates the work with a real example;
Section 5 presents the annotation language, checks, and implementation; Section 6 discusses our
evaluation; Section 7 treats threats to validity; Section 8 surveys related work; and finally, Section 9
concludes and presents some future work.

2 Statistical Background

Statistics is a fundamental method to understand the extensive and complex data collected in various
fields, and to make effective decisions and inference under uncertainty. This section introduces some
basic statistical concepts that are essential to understanding this work with a running example.

ISee https://doi.org/10.5281/zenodo.13756766 for details.
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2.1 Basic Terminology and Hypothesis Testing

The primary goal of statistics is to infer characteristics of populations from samples drawn from
those populations. In order to connect facts about a sample to features of a population, one can use
statistical inference techniques. This could be as complex as fitting a model to the data, but can also
be as simple as posing and testing hypotheses about it. This latter methodology, called hypothesis
testing, is used to determine if there is sufficient evidence in a sample to reject a hypothesis about
the population that sample was drawn from. In a hypothesis test, an analyst poses a null hypothesis,
called Hy, corresponding to a hypothesized property value or relationship between properties of
one or more populations. Then, the alternative hypothesis, called H; or H,, indicates the opposite.

Running Example. Say a civil servant is investigating how much weekly exercise (in minutes)
their town’s citizens are getting based on a recent town survey. They might hypothesize that
teenagers get more exercise than other age groups (their Hy) and would investigate if the data from
the survey would support or refute such a hypothesis about the entire population.

2.2 Assumptions

Many hypothesis testing methods make assumptions about the characteristics of the samples
or populations being analyzed; these are known as statistical assumptions, the most common
assumptions are listed below.

Distributions. Parametric statistical methods make assumptions about the distributions of popu-
lations that were sampled; this allows them to more precisely infer population parameters provided
the assumption is met. The normal distribution is particularly important in statistics, and methods
like the analysis of variance (ANOVA) and t-tests (like Student’s and Welch’s) assume that the
means of the samples being analyzed are normally distributed.

Homoscedasticity. Multiple samples are said to be homoscedastic if they have equal variance.
Statistical methods that assume homoscedasticity often pool the variance of the samples being
analyzed, something that is only really valid if they are homoscedastic. For example, Student’s
t-test and ANOVA assume homoscedasticity, but Welch’s t-test does not.

Independence. Independence is a fundamental requirement in most hypothesis testing methods,
and refers to the condition where the outcome of one observation is not affected by others. There
are two types of independence:

e within-group independence requires that no individual measurement within a sample affects
any other, which is often managed by the experimenter (e.g., by sampling with replacement
instead of without replacement);

o between-group independence ensures that different samples are not interconnected, which
is also often managed by the experimenter but can be investigated through statistical tests
after data collection to some degree.

Running Example. 1t is possible that weekly exercise minutes is not normally distributed; probably
most people get little-to-no exercise, with outliers that exercise a lot, making for a long-tailed
distribution. Also, the data may not be homoscedastic: there might be more variability among
teenagers than among all non-teenagers. If the survey was given to households, the data might not
be independent, since children of parents who exercise more might also exercise more.

2.3 Confirming Assumptions

Confirming assumptions and exploring the characteristics of data is an important first step in
statistical analysis, but most assumptions cannot be checked with complete certainty. This is a
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consequence of the probability theory underlying statistics. For example, there is a (tiny!) chance
that a sample drawn from a normally distributed population does not appear normal.

There are two major ways to investigate assumptions and data characteristics. First, plotting
and visual checks: statisticians plot histograms to visualize distribution shapes, box plots to see
quartiles, outliers, and data spread, or even quantile-quantile (Q-Q) plots to visualize how closely
the quantiles of probability distributions align. Beyond visual checks, there are hypothesis testing
methods to test hypotheses about sample properties. For instance, the Shapiro-Wilk test can be
used to test the null hypothesis that a sample is drawn from a normally distributed population. But,
and very crucially, one must understand that these hypothesis tests can incorrectly reject a null
hypothesis when it is in fact true, discussed next.

Running Example. Our civil servant plots a histogram of weekly exercise minutes, confirming a
long-tailed distribution. They could use a non-parametric statistical method to investigate their
hypothesis, but instead choose to log-scale the data, and perform a Shapiro-Wilk test to assess
its normality. They perform Bartlett’s test (a homoscedasticity test) to test an assumption of
homoscedasticity between the log-scaled groups, confirming it.

2.4 Quantification of Uncertainty

Inferring population characteristics from samples introduces uncertainty, which can lead to two
types of errors:

e Type 1 error: when the hypothesis is true but is rejected, also called a false positive.
e Type 2 error: when the hypothesis is false but is accepted, also called a false negative.

Calculating the probabilities of these two errors can effectively quantify the uncertainty in
hypothesis testing. The probability of committing a Type 2 error is related to the power of a
test against the alternative hypothesis, which often plays a role in choosing which tests to use.
In statistics, one test is considered more powerful than another if its Type 2 error rate is lower.
Intuitively, a more powerful test is more able to detect departures from the null hypothesis, and
typically tests that make more assumptions are more powerful.

As for the reliability of statistical results, the probability of committing a Type 1 error (named
@) is more relevant. In hypothesis testing, an acceptable threshold of « is pre-set; this is called
significance level. The significance level should be chosen by the statistician based on the situation,
and 0.01 or 0.05 are the standard, commonly used values [56]. A common way to see if a hypothesis
test rejects or fails to reject the null hypothesis is to calculate the p-value, indicating the degree with
which the data contradicts the null hypothesis, and compare it with the chosen significance level.
A p-value less than the significance level leads to Hy being rejected, and represents statistically
significant results. The p-value can be thought of as the lowest significance level a at which H,
could be rejected. A lower p-value signifies stronger evidence against the null hypothesis.

Running Example. Since there is little evidence against the data being normally distributed, and
say the survey was designed such that all observations are independent, the civil servant decides
to use a t-test to investigate the difference in the mean of weekly exercise minutes. There are
several versions of the t-test, two notable ones are Student’s, which assumes homoscedasticity, and
Welch’s, which does not. Given that the civil servant has previously established that the groups are
homoscedastic, they decide to use Student’s test, as it has a higher power than Welch’s.

2.5 Confirming Assumptions with Tests

One consequence of this uncertainty is that it complicates confirming assumptions, and there
is no clear consensus on the “best” way to verify them. Particularly with tests for assumptions,
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some methods are quite sensitive to departures from the assumed properties of the data. Moreover,
automated testing can result in false positives as well as false negatives due to the inherent statistical
nature of the data collection process. These are the Type 1 and Type 2 errors we discussed in the
previous section. Also, many statistical methods are robust, meaning that assumptions not being
met does not translate to significant errors in the results.

The statistics community is far from united when it comes to testing assumptions, with plenty
of work discouraging testing [54, 58, 75, 91], and plenty recommending testing [6, 12, 26, 29, 38, 41,
42, 80]. In practice, a study [21] where researchers were tasked with investigating a fictitious data
set found that they rarely investigated assumptions about data, and when they did, would often
use statistical tests. Besides tests, visual methods can help analysts ascertain properties of data, and
yet Schoder et al. [58] recommend against using visual techniques to assess the distribution of data,
as do Wilk and Gnanadeskain [16], due to subjectivity concerns. But ultimately, being aware of
and investigating whether or not assumptions are met is generally regarded as wise, and testing is
one of many tools for this purpose.

Even those that are in favor of testing disagree on which statistical tests to use. In particular, the
Shapiro-Wilk test has been the standard for many years for testing normality, and it was shown to
have a lower Type 2 error rate [35] by Razali and Yap in 2011, but recently the Anderson-Darling test
has gained favor. Keselman et al. [26, 27] and Othman et al. [40] suggest using the Anderson-Darling
test (as opposed to the Kolmogorov-Smirnov or the Cramer-von Mises tests), although they did
not compare with the Shapiro-Wilk test since Shapiro-Wilk specifically tests for adherence to the
normal distribution, and these others are more generic.

The software engineering community routinely performs statistical tests on user studies; Kitchen-
ham et al [28] point out several issues in studies in the human-centered software engineering
domain. They highlighting three pieces of recent work in statistics performing simulation stud-
ies which examine the error rates of statistical tests with and without pre-testing distributional
assumptions. While conducted in similar ways, these studies came to conflicting conclusions:

e Rasch et al. [54] find that no pre-test should be used, Welch’s test should be used by default,
and the Mann-Whitney U test should not be used,;

e Rochon et al. [55] find that pre-testing did not cause much harm, at worst beign unnecessary
for large samples, and in the case of small samples the Shapiro-Wilk test is not powerful
enough to detect deviations from normality, so non-parametric methods should be preferred;

e Lantz et al. [29] conclude that simply using ANOVA or the Kruskal-Wallis test without
pre-testing did not perform noticeably better than with pre-test, but that in cases of strong
non-normality, pre-testing was much better than simply using ANOVA.

We aim to incorporate the lack of agreed upon best practice into our annotation design. By
allowing developers to specify the testing method, as well as the significance level, we will give
them the ability to align with their preferred school of thought.

2.6 Statistical Modeling

Hypothesis tests are not the only way to analyze data, and there is a wide array of methods to fit
models to data. For instance, linear regression is a method to estimate the linear relationship between
a dependent variable and one or more independent variables. Such relationships are often obtained
by minimizing the sum of the squared residuals, i.e., the sum of the differences between the fitted
line and the actual data. These techniques also make assumptions, such as “the residuals should be
normally distributed”, and “the residuals should be homoscedastic” (in this case, homoscedasticity
of residuals means that the variance of the residuals is constant throughout, i.e., the variance does
not depend on any of the independent variables).
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Running Example. The civil servant wants to use linear regression to determine if there is a linear
relationship between daily exercise minutes and age. They fit a model to the data, find a negative
linear relationship between exercise minutes and age, and analyze the residuals: while the residuals
seem to be normally distributed, they are not homoscedastic, as the variance in exercise minutes
seems to decrease with age. They hypothesize that this is because, as people get older, they are less
able to exercise in general.

2.7 Python, R, Kaggle, and Notebooks

Python and R are among the most popular programming languages, particularly for data analysis
partly due to how many statistical libraries are available in each language. Kaggle is a website that
hosts Python and R data science notebooks, which are literate programming environments in which
users mix blocks of code with accompanying text, mathematical formulas, plots, etc. Unless other-
wise specified, Kaggle notebooks are accompanied by a data set, making results reproducible and
robust. These notebooks represent statistical software, and as the software engineering community
it is our responsibility to develop languages and tools to support the creation of robust software;
this is the purpose of the approach presented in this paper.

3 Glossary
In this section, we provide a comprehensive glossary of terms that will appear in the paper.

e a statistical assumption is an assumption related to statistical properties of data.

e a statistical method is some method or procedure from statistics that tests statistical
properties. These statistical methods typically make statistical assumptions, but not always.

e a statistical function is a function (in Python, R, etc.) that implements a statistical method.
Student’s t-test is a statistical method, and Python’s ttest_ind function (from scipy.stats
library) is a statistical function.

e a statistical library is a library that implements one or more statistical functions.

The above are simple or generally recognized terms in statistics. We propose to augment this
with additional terminology:

e a statistical assumption is unconfirmed if a statistical test cannot conclude that the the
assumption is met (by rejecting the null hypothesis); otherwise, the assumption is confirmed.

e a potential misuse of a statistical method occurs if one of the statistical assumptions made
by the method are unconfirmed.

e a significant misuse is a misuse of a statistical method where a different method that
tests the same property and makes no unconfirmed statistical assumptions would conclude
differently at the same statistical significance level.

Also, in the context of this paper, we will draw an explicit dichotomy between developers
of statistical libraries and analysts, or users of statistical libraries. The developers of Python’s
scipy.stats library are developers, and people who use scipy.stats are analysts.

4 Motivation

To help illustrate how analysts can stumble into pitfalls, consider a Kaggle notebook in which an
analyst is investigating the factors that contribute to the attrition rate of employees at IBM [77].
We forked this notebook [78] and modified it with the analysis we will present here, and Fig. 1
contains snippets and graphs required for following along in this section.

In the notebook, the analyst is working with a data set containing a plethora of information
about IBM employees, like salary and hours worked, in addition to their responses to various survey
questions and whether or not the employee quit. The analyst wants to determine which features
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1 def get_p_value(sl, s2):

2 if(len(s1) > 30 & len(s2) > 30):

3 z, p = ztest(sl,s2)

4 return p

5 else:

6 t, p = ttest_ind(s1,s2)

7 return p

8

9 def get_p_values(data, cat, numerics):

10 output = {}

11 for numeric in numerics:

12 s1 = ... # lost employees

13 s2 = ... # retained employees

14 row = {"p-value" : get_p_value(sl,

s2)}

15 output[numeric]l = row

16 return pandas.DataFrame(data=output).T

17

18 def get_sig_numerics(data, cat, numerics):

19 df = get_p_values(data, cat, numerics)

20 return list(df[df["p-value"] < ©.05].
index)

(a) Analyst defines their own automated statistical
analysis methods

Years Since Last Promotion (Kept Employees)

800
700
600 4
500
>
9
]
% 400
&
300 1
200 1
100 +
0 - —
0 2 4 6 8 10 12 14
Years

(b) Histogram of years since promotion

FSE121:7
21 import scipy.stats as stats
22
23  yslp = 'YearsSincelastPromotion'
24
25 lost = dataldatal'Attrition'] == 'Yes']
26 kept = dataldatal'Attrition'] == 'No']
27

28 kept.hist(yslp) # Fig. 1(b)

29 lost.hist('HourlyRate') # Fig. 1(d)
30

31 stats.shapiro(lost['HourlyRate'])
32 # -> 1.40e-06

33 stats.shapiro(kept[yslp])

34 # -> 1.08e-41

35

36 p_kept = keptl[yslp]

37 p_lost = lostl[yslp]

38

39 # the following yields ©.2058

40 stats.ttest_ind(p_lost, p_kept)

41 # the following yields 0.0412

42 stats.mannwhitneyu(p_lost, p_kept)

(c) Our own investigation of the characteristics of the
data (e.g., assumed properties)
Hourly Rate Histogram (Lost Employees)

Frequency

60 70
Wage ($)

(d) Histogram of hourly rate

Fig. 1. IBM Employee Attrition Analysis Example

differ between lost and retained employees, and so they extract all of the numeric data and wish to

perform automated statistical analysis on it.

The analyst then defines a function, get_sig_numerics on line 18, which identifies all of the
numeric features that have different means (with statistical significance) between lost and retained
employees. To do so, they call a function, get_p_values (line 9), that loops over the data structure,
separates the employees into two groups, and performs either a Z-test? or t-test (in get_p_value,
line 1). Then, if the resulting p-value is smaller than the chosen significance level 0.05 (line 20), the

feature is deemed significant.

Now, the function ttest_ind performs Student’s t-test by default, and as we saw in the pre-
vious section this version of the t-test makes three assumptions: normality, homoscedasticity,

“The Z-test is a test for the mean of normally distributed samples.
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and independence. In the snippet just discussed, we see that the analyst is not performing any
automated checking of these assumptions to accompany their automated analysis, and we found no
mention of the assumptions in text blocks or comments and did not find any visual investigation of
assumptions, although it may be possible that they were aware of or investigated the assumptions
elsewhere (e.g., in another notebook). So, consider Fig. 1c, wherein we perform our own exploratory
analysis of a few features of the data. We first split the data into lost and retained employees
(since those are the groups that will be passed to the test), then plot two histograms: one for the
'YearsSincelLastPromotion' feature, and another for the 'HourlyRate' feature, which can be
found in Figs. 1b and 1d respectively. We argue that there is strong evidence against these samples
being normally distributed, and so that the assumption of normality is unconfirmed. To further
corroborate this, we perform a Shapiro-Wilk test of normality on both samples on lines 31 and 33,
which yields very small p-values, further evidence against normality.

Given this, what should the analyst have done? Even though many statistical methods are quite
robust when assumptions do not appear to be met, there is a significant consequence of unconfirmed
assumptions in this notebook. First, note that a non-parametric method to investigate the difference
between two independent groups is the Mann-Whitney U signed rank test; we compute such a test
on line 42, which yields a p-value of 0.0412, compared with the p-value of the t-test obtained on
line 40 (0.2058). Had the Mann-Whitney U test been employed, the automated analysis on line 20
would have categorized the 'YearsSincelLastPromotion' feature as being significant, where it
was deemed insignificant using Student’s t-test.

In summary, a little checking goes a long way. In this paper, we propose a framework to allow
developers of statistical libraries to annotate functions with statistical assumptions and have these
assumptions checked automatically by inserting hypothesis tests into the code, which tries to
automatically confirm the assumptions when analysts use the statistical functions. This one time
effort by developers can benefit analysts at no cost to them; the next section describes our approach.

5 Annotation Language and Checks

We first describe the design of the annotations themselves, and then explain the statistical assump-
tions we have encoded in our language, and finally discuss the methodology for checking those
assumptions before sketching the implementation of this approach.

5.1 Annotation Design

The guiding philosophy behind the annotation language design is to capture statistical assumptions
for which there exist statistical tests. Thus, we propose the following design:

b=P:AT,1-«

In this annotation, we have the following:

e b is an optional expression that should evaluate to a boolean indicating when the assumption
should be checked;

e P indicates which parameter(s) the assumption applies to, and can refer to one or multiple
parameters, or can also be an arithmetic expression over parameters, e.g., P = x — y would
indicate that the assumption applies to the difference between the parameters x and y;

e A is an assumption, and the assumptions we encode are discussed in the next subsection;

e T is the method to automatically test the assumption, also discussed in the next subsection;

e o € [0, 1] is the significance level for checking the assumption, i.e., the significance level in
the generated test. The expression 1 — « is the confidence associated with the check.
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A note on the “residuals” parameter. In the case that an assumption applies to the residuals of a
model, note that the residuals are computed once the model has been fit. To support the expression
of assumptions in this case, a parameter p can take the form residuals = e, where e is an expression
in the target language to compute the residuals of the model in the body of the function that is
building it. To sketch, imagine a function 1m that builds a model object m and returns it to the
user, and imagine that that the model class has a resid() method to compute the residuals; the
parameter in this case would be residuals = m.resid().

In the rest of this section we will progressively apply our approach to a running example of a
hypothetical developer implementing a two-sample version of the t-test that gives the user the
option to specify if Welch’s method should be used (with Student’s method as the default). We will
work with the following snippet:

43 #' Uses Student's t-test or Welch's t-test.
44 def my_t_test(x, y, use_student = True):
45 # ...

5.2 Statistical Assumptions

To determine the most common assumptions used in statistical methods, we consulted documenta-
tion from Python’s scipy.stats [71] package, the R stats package [50], as well as several statistics
textbooks [33, 56, 84, 86]. As it is now, our approach currently supports checks related to the distri-
bution of data, homoscedasticity, and sample independence—to the best of our knowledge, these are
the most common assumed statistical properties. Moreover, these correspond to the assumptions
made by the most commonly used statistical methods in a variety of fields [34, 42, 76, 84, 87].
Concretely, our criteria for including an assumption is that the assumption must have an associated
statistical test, so that it may be inserted into the code.

Distributions. A common assumption is that data is drawn from a population that follows a
particular distribution. There is a widely accepted nomenclature for writing distributions, e.g., the
normal distribution is written like N (%, 0?) where % indicates the mean, and ¢? the variance. In our
survey of the literature, there are not many cases where specific values of distribution parameters
(like x) were assumed, mostly cases where a particular distribution was assumed, so the distribution
family alone can be encoded, but the parameters can also be optionally specified.

To express this in our framework, one can write A as dist <D>, indicating that a parameter
is distributed according to distribution D. We deliberately include dist as part of the annotation
as, without it, the annotation would read as though it is suggesting that the parameter is that
distribution, e.g., x : N suggests that x is a normal distribution.

In our running example, we would add the following annotation to express that x and y should
be normally distributed. Note the confidence 1 — «, here 0.95:

46 #' Uses Student's t-test or Welch's t-test.

47 #' x, y : dist<N>, 0.95

48 def my_t_test(x, y, use_student = True):

49 #o

If a developer wanted to specify that a quantity resid be normally distributed with mean 0 and
arbitrary standard deviation with confidence 0.95, they can express further parameters along with
the distribution family resid : dist<N(@, _)>, 0.95.

Homoscedasticity. Many statistical methods investigating multiple samples assume that all sam-
ples have equal variance, and methods investigating a single sample assumes that the sample has
constant variance. In our framework, we encode this assumption with A = homoscedastic. E.g.,
Do, - Pn = homoscedastic, 0.90 means “parameters po through p,, should have equal variance”. In our
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running example, Student’s t-test assumes homoscedasticity of its two input samples, but Welch’s
test does not; as such, we can make use of the b = ... component of our annotation and write:

50 #' Uses Student's t-test or Welch's t-test.
51 #' x, y : dist<N>, 0.95

52 #' use_student => x, y : homoscedastic, 0.95
53 def my_t_test(x, y, use_student = True):

54 # ...

Sample Independence. Many statistical methods require that samples be independent, and special-
ized alternative methods exist for paired (or dependent) data (e.g., the samples are from the same
set of students but for different tests). Independence is expressed with A = independent, so, e.g., an
annotation like x, y : independent, 0.99 expresses that x and y should be independent.

5.3 Checking Assumptions

Conceptually, these statistical assumptions are checked by posing them as hypotheses, and testing
them using an appropriate hypothesis testing method, comparing the p-value of the test with the
provided significance level « in the annotation.

Note on Hypothesis Testing. Technically, a “positive” hypothesis test does not accept the null
hypothesis (Hy), it can either fail to reject the null hypothesis, or reject it in favor of the alternative
(H1). We are not accepting Hy, we are saying that there is not enough evidence to reject it in favor
of Hy; i.e., the data supports Hy more than H;.

Distributions. For a parameter p, we pose:

e Hy: p sampled from distribution D;
e H;: p not sampled from distribution D.

To test this, we utilize the Kolmogorov-Smirnov test, which compares the empirical cumulative
distribution function of the sample with the cumulative distribution function of the reference
distribution by computing the distance between the two. If D is the normal distribution, we instead
utilize the Shapiro-Wilk test for normality, as it is designed specifically for that distribution and has
been shown to have a lower Type 2 error than alternative tests [35]. Our annotation also allows
the developer to specify which test is run, bypassing these rules, and also allowing for alternative
testing methods. E.g., the Anderson-Darling test is an alternative for the Kolmogorov-Smirnov test.

Homoscedasticity. For a set of parameters P, we pose, for each pair (p;, p;) of parameters € P:
e Hj: p; and p; have equal variance;
e H;: p; and p; have unequal variance.

We use Levene’s test which, at a high level, compares the variance of each sample with the pooled
variance of all samples. If normality is also assumed, we instead use Bartlett’s test. A low p-value
from these tests indicates significant evidence to reject Hy.

In the single parameter p case, we pose:

e Hj: p has constant variance;
e H;: p does not have constant variance.

In this case, we use the non-parametric version of Goldfeld-Quandt’s test of homoscedasticity.

Independence. In general, independence cannot be tested for. A related notion is correlation,
which can be tested for (e.g., correlation has been used in the context of testing for independence,
e.g., Badea and Vlad [3], Quessy [44]). Intuitively, two independent samples are highly unlikely to
be correlated, and if we consider the contrapositive, correlated samples are highly unlikely to be
independent. The idea is to identify potential misuses rather than correct uses, and formulating a
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test by looking at correlation is useful in this respect. Given this, to test the independence of a set
of parameters P, for each pair (p;, p;) € P, we pose the following:

e Hj: there is no significant correlation between p; and pj;
e H;: there is significant correlation between p; and p;.

We test this by computing the Spearman rank correlation coefficient—this also yields a p-value
which indicates the probability of unrelated populations producing the same correlation. A small p-
value is strong indication of a correlation between populations, and evidence against independence.

The Nuance of Confirming Assumptions. In Section 2.5, we outlined statistical literature with
vastly differing opinions on the matter of testing statistical assumptions to highlight the fact
that there is no universally agreed upon best practice in the community. For instance, while the
Shapiro-Wilk test has been the standard for many years for testing normality, and it was shown
to have a lower Type 2 error rate [35] by Razali and Yap in 2011, recently the Anderson-Darling
test has gained favor (see Keselman et al. [26, 27] and Othman et al. [40]). Statisticians routinely
publish papers on simulation studies investigating the relative effectiveness of equivalent testing
methods, e.g., see Yazici et al. [90] for a comparison of normality tests. Morris et al. [37] describe
good practice for conducting such studies and study 100 simulation studies that were undertaken in
a recent volume of Statistics in Medicine, and there are many other simulation studies [9, 14, 19, 36].

But ultimately, being aware of statistical assumptions is generally regarded as being wise. The
goal of our approach is to empower library developers to specify statistical assumptions made by
their functions, to help ensure that users (e.g., analysts) are not misusing them; these annotations
are turned into automatic and inexpensive statistical tests.

Now, analysts might be plotting data to verify assumptions, so when turning these annotations
into checks our framework also injects new function parameters to allow users to skip the checks.
The idea is, if a user is unaware of the assumptions, the checks will run and they will be notified if
any assumptions are not confirmed, and if they are aware of them, they can choose to skip them.

As we have mentioned, there are also several statistical tests that test the same assumptions. To
reflect this in our framework, the optional T parameter allows annotators to specify the method
they want to be run to confirm the assumption. Our approach currently supports the following,
though this list is extensible and can support more tests:

o for distributional assumptions, we support the Kolmogorov-Smirnov test (default), Shapiro-
Wilk test (default for normal distribution, most powerful test for normality [35, 89]), and
Anderson-Darling (recent alternative to the Kolmogorov-Smirnov test, advocated for in recent
work [26, 27, 40]). See Yazici et al. [90] for a comparison of normality tests.

for homoscedasticity, we support Levene’s test (default), Bartlett’s test (default if normality is
also assumed), and Goldfeld-Quandt’s test (default if testing single sample homoscedasticity).
See Katsileros et al. [25] for a comparative study of the effectiveness of various multi-sample
homoscedasticity tests (they find Levene’s to be favorable in most cases).

for the assumption of independence, which cannot be tested for in general, we instead test for
correlation, supporting the Spearman’s rank correlation coefficient; also, users can specify
that no test should be run for this assumption. Spearman’s rank coefficient has been used in
the context of testing for independence, e.g., Badea and Vlad [3], Quessy [44]. A comparison of
correlation testing methods was performed by Fujita et al. [13] in the context of DNA similarity.
Some recent work investigated permuting samples and checking various characteristics about
the original and permuted samples, but this is not a full-fledged statistical test [81]. The
chi-square independence test [32] is only designed for categorical data.
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5.4 Implementation

To illustrate the effectiveness and generalizability of this technique, we implemented prob-check-py
for the Python programming language, and also implemented prob-check-r for the R programming
language. We defined the annotation language using a simple grammar; in prob-check-py, a devel-
oper can write annotations directly using numpy docstrings, and in prob-check-r a developer writes
annotations in the roxygen2 framework using the @robcheck tag. This documentation is then
parsed and checks are inserted into the function being documented:

e Distribution: for the general case, in prob-check-py a call to kstest [63] is inserted, and
in prob-check-r a call to ks. test [48] is inserted. In the case of the normal distribution, for
prob-check-py a call to shapiro [66] is inserted, and prob-check-ra call to shapiro. test [51]
is inserted. Annotators can also specify alternative testing methods; the tool currently sup-
ports the Anderson-Darling test, using anderson from scipy.stats [60] in prob-check-py
and ad. test from the nortest [39] package in prob-check-r.

e Homoscedasticity: for prob-check-py, we insert a call to bartlett [61] if the samples are
assumed normal, and levene [64] otherwise. For prob-check-r, a call to bartlett.test [46]
is inserted if the samples are also assumed to be normally distributed, and to leveneTest [5]
from the car package otherwise. (Note: we insert the code implementing leveneTest from
the car package directly to avoid introducing additional package dependencies.) In the single
sample case, we insert a call to het_goldfeldquandt [79] from the statsmodels package,
and in R gqtest [31] from the Imtest package.

o Independence: in prob-check-py, we insert a call to spearmanr [67], and in prob-check-r we
call cor. test [47] specifying method = "spearman".

R is an incredibly dynamic programming language: it is vectorized, dynamically typed, lazy and
functional with limited side-effects, and has many retrofitted object systems [82]. A particular
example of R’s dynamism is in its formula data type: in R, users can define formulas like x ~
y in which the “terms” x and y refer (dynamically) either to lists in scope, or to columns in an
accompanying data frame. We expand the annotation language with a special parameter term
P = terms(pr[, pal) to capture this, with pr specifying the formula parameter and p; the optional
data parameter. This annotation would look like: terms(formula, data) : dist<N>, 0.95.

Who Writes the Annotations? These annotations are designed to accompany statistical functions,
and so the developers of statistical libraries write them. If analysts use the checked version of the
library, no further effort will be required on their part, and their data will be automatically checked.

6 Evaluation

In order to evaluate our approach, we selected some of the most common parametric hypothesis

testing functions from Python’s scipy.stats [71] library and R’s stats [50] package, as well

as linear regression methods (two from Python, one from R); Table 1 lists each function that we

annotated (Function), as well as the assumptions we encoded (Assumption). We determined

which assumptions to encode by reading the documentation and consulting statistical literature.
Then, we pose the following research questions:

(RQ1) How many annotations are required to be written by developers of statistical libraries?
(RQ2) How many unconfirmed statistical assumptions are detected by the checks?

(RQ3) How many potential/significant misuses of statistical functions are detected by our tests?
(RQ4) How often do analysts manually test assumptions?

(RQ5) What is the overhead associated with the checks?
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Table 1. Which statistical functions were annotated with which assumptions, and how many of those
assumptions were detected as unconfirmed in our evaluation. The first row of the table reads as: ttest_1samp
from Python was annotated with an assumption of normality of the input sample, there were 29 call sites (53)
calls to it, and the assumption was unconfirmed in 21 call sites (44 calls).

Function (Language) Assumption Call Sites (Calls) | Call Sites (Calls) w/ Unconfirmed
ttest_1samp [68] (py) Normality 29 (53) 21 (44)
ttest_ind [69] (py) Normality 42 (107) 37 (93)
ttest_ind [69] (py) Homoscedasticity 42 (107) 13 (43)
ttest_ind [69] (py) Independence 42 (107) 2(5)
ttest_rel [70] (py) Normality of differences 22 (22) 5(5)
f_oneway [62] (py) Normality 38 (94) 35 (87)
f_oneway [62] (py) Homoscedasticity 38 (94) 33 (33)
f_oneway [62] (py) Independence 38 (94) 2(2)
linregress [65] (py) Residual normality 28 (464) 22 (165)
linregress [65] (py) Residual homoscedasticity 28 (464) 9 (48)
LinearRegression.fit [59] (py) | Residual normality 17 (35) 13 (31)
LinearRegression.fit [59] (py) | Residual homoscedasticity 17 (35) 5 (16)
t.test [52] (R) Normality 38 (38) 18 (18)
t.test [52] (R) Homoscedasticity 38 (38) 0(0)
t.test [52] (R) Independence 38 (38) 2(2)
aov [45] (R) Normality 47 (47) 34 (34)
aov [45] (R) Homoscedasticity 47 (47) 14 (14)
aov [45] (R) Independence 47 (47) 0(0)
1m [49] (R) Residual normality 99 (242) 63 (88)
1m [49] (R) Residual homoscedasticity 99 (242) 34 (48)

The primary motivation behind RQ1 is to establish the annotation burden on statistical library
developers, noting that analysts using these libraries write no annotations. RQs 2 and 3 investigate
the prevalence of unconfirmed assumptions, and explores how these unconfirmed assumptions
translate into potential misuses of statistical methods. We pose RQ4 to determine if the assumptions
encoded by our annotations are confirmed in any other ways by analysts in notebooks. And finally
RQ5 aims to investigate the overhead of the dynamic tests inserted by our tool.

6.1 Evaluation Corpus

To help answer these research questions, we collected a corpus of 128 notebooks from Kaggle
that used at least one statistical function for which we added annotations. We focused on Kaggle
notebooks due to their reproducibility, as Kaggle notebooks are provided along with their data
sources in most cases. To find these, we used the Kaggle CLI to list notebooks that contained at
least one textual reference to one of the functions we annotated. Once this list was obtained, we
had to manually validate the listed notebooks:

e we ensured that the notebook contained an actual call;

o we discard notebooks that reference a private data source;

e we discard notebooks that take more than 10 minutes to run;

e we cloned the notebook manually so the correct execution environment was maintained and
ran the notebook once, discarding cases where the notebook contained a non-trivial error.

We did this until we found 15 notebooks for each function. Many of these notebooks are either
highly up-voted, cloned by many other uses, or both. Some notebooks contained calls to several
functions under analysis, hence why we have fewer than 135 total.
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Table 2. A selection of annotations for prob-check-py (written in numpy docstrings) and prob-check-r (written
in Roxygen2 comments, here the "@probcheck" tag is omitted).

Function ‘ Assumption ‘ Annotation

ttest_1samp [68] | Normality a : dist<N>, 9.95

ttest_ind [69] Homoscedasticity equal_var => a, b : homoscedastic, 0.95

t.test [45] Normality of Difference | !is.null(y) && paired => x - y : dist<N>, 0.95

t.test [45] Independence ! "paired" %in% names(list(...)) || "paired" %in% names(list(...)) &&
! list(...)$paired => terms(formula, data) : independent, 0.95

linregress [65] | Residual normality residuals = y - (result.intercept + result.slope*x) : d<N(@, _)>, 0.05

6.2 Methodology

For RQ1, we count the annotations we wrote. RQ2 requires running notebooks, so we redefine the
relevant functions at the top of a notebook, run it, and count the warnings emitted by our checks
when an assumption is unconfirmed. RQ3 requires more finesse. We first want to determine how
many of the unconfirmed assumptions detected in RQ2 translate to potential misuses, but more
importantly, in the case of hypothesis tests we want to determine how many of these potential
misuses would result in different outcomes if a more appropriate statistical method was employed.
Le., how many potential misuses translate to significant misuses. When a statistician performs a
hypothesis test, they select a significance level a that determines when to reject the null hypothesis
Hy. The most common significance levels are 0.01 and 0.05 [56], and typically a statistician will
compare the p-value of the test with that significance level, rejecting Hj if the p-value is less than
a. So, for this research question, if a statistical function had at least one unconfirmed assumption,
we identify the statistical function that should have been used given the assumptions that were
confirmed, insert a call to it, and compare the p-value of the results. Let p, denote the p-value of
the appropriate test, p; denote the p-value of the inappropriate test: if both p, and p; are greater or
smaller than the chosen «a, the outcome of the test would be the same, otherwise using a different
method would result in a different outcome, which we classify as a significant misuse.

Then, for RQ4, we manually read through the notebooks to identify other methods to check
assumptions, e.g., if a user plotted a histogram of the data to view the distribution, or if they
mentioned assumptions in comments or text blocks. And finally for RQ5, we conduct a small
synthetic experiment comparing the mean run time of functions with and without checks on
random samples of length 100.

6.3 Research Questions
RQ1. How many annotations are required to be written by developers of statistical libraries?

Table 1 lists which assumptions were encoded in which functions. Some of these assumptions
needed multiple annotations to realize: for example, R’s t. test function is highly dynamic, and
implements a 1 sample t-test, 2 sample t-test, and even a paired t-test depending on the value
of flag parameters, and thus three annotations were required to capture just the assumption of
normality over all these cases. Thus, in total we introduced 12 annotations in Python, and 14 in R.
R requires more annotations relative to Python due to its aforementioned dynamicity, since t. test
effectively implements Python’s ttest_1samp, ttest_ind, and ttest_rel. In principle, if the API
features one function for each statistical method, one annotation per assumption should suffice;
the 8 annotations for 8 assumptions in the Python case provide evidence of this.

To get a feel for the annotations, Table 2 shows a selection of five annotations ranging in
complexity from both Python and R. Most of the annotations are like the first two cases, but
the annotations for R do have a higher complexity on average. For instance, functions with a . . .
parameter are variadic in R, and (perhaps shockingly) users can pass named extra parameters to these
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Table 3. Summary of misuses of statistical functions. Functions below the double line are regression functions,
which we did not test for significant misuses since alternate methods are highly subjective. The first row of
the table reads as: for ttest_1samp from Python, we found 29 call sites (53 calls) total, 21 call sites (44 calls) with
an unconfirmed assumption (i.e., potential misuse), and 2 call sites (6 calls) where a more appropriate statistical
method would have yielded a different conclusion (i.e., a significant misuse).

Function (Language) Total Call Sites (Calls) | Call Sites (Calls) w/ Pot. Misuse | Call Sites (Calls) w/ Sig. Misuse

ttest_1samp (py) 29 (53) 21 (44) 2(6)

ttest_ind (py) 42 (107) 39 (95) 10 (10)
ttest_rel (py) 22 (22) 5(5) 1(1)
f_oneway (py) 38 (94) 35 (89) 5(8)
ttest (R) 38 (38) 23 (23) 6 (6)
aov (R) 47 (47) 46 (46) 4(4)
linregress (py) 28 (464) 22 (165) -()
LinearRegression.fit (py) 17 (35) 13 (31) -(-)
1m (R) 99 (242) 63 (88) -0

z 360 (1,102) 267 (586) 28 (35)

functions, and the names of those extra parameters can be accessed with names(list(...)). So,
the long and complex annotation for independence on t. test is really saying: check independence
if the string "paired" is not specified as the name of an extra parameter, or if "paired" is the
name of an extra parameter, the value should be false. This is an R expression, so we imagine that
an R developer should be comfortable writing that portion of the check.

Takeaway. A total of 26 annotations were required to annotate 18 assumptions.

RQ2. How many unconfirmed statistical assumptions are detected by the checks?

We ran each Kaggle notebook in our corpus with checked versions of the functions listed in
Table 1 that emit warnings if annotated assumptions are unconfirmed. Again in Table 1, the column
Call Sites (Calls) indicates how many call sites (resp. calls) to the annotated function are found in
our corpus, and the column Call Sites (Calls) w/ Unconfirmed indicates how many of those call
sites (resp. calls) had at least one unconfirmed assumption. Note that in this experiment the tests
are performed at a significance level of 0.05, the default for the annotations.

Judging by the results, it would appear that data analysts are using statistical methods when there
is strong evidence suggesting that underlying statistical assumptions are not met. The assumption
of normality, a distributional assumption, is the most frequent unconfirmed assumption; not only is
it the easiest assumption to check, many non-parametric methods exist for the (apparently, many)
cases where populations do not appear to be normally distributed.

Takeaway. We find strong evidence against assumptions very often, and especially evidence
against the assumption of normality.

RQ3. How many potential/significant misuses of statistical functions are detected by our tests?

When there is strong evidence against a statistical assumption from Table 1 being met, the
analyst should probably have used a different statistical method that assumes less. Table 3 breaks
down calls and call sites where assumptions were unconfirmed.

Potential Misuses. In total, 267 call sites and 586 calls had at least one unconfirmed assumption,
and so are classified as potential misuses (column Call Sites (Calls) w/ Pot. Misuse in Table 3).
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Notably, ttest_ind has many such calls due to its use in a few loops, like in the motivating
example. Analysis of variance methods like aov and f_oneway process multiple samples at a time,
increasing the likelihood that an assumption is unconfirmed (as, e.g., all samples should be normally
distributed). In all of the R notebooks we looked at, each call site of t. test and aov only had one
associated invocation, indicating perhaps that R users are less likely to call these functions in loops
or such structures.

Significant Misuses. Now, what is the significance of these misuses? To answer, let us focus on
hypothesis tests. If analysts are unsure about their data meeting assumptions, there are myriad other
statistical methods that make fewer assumptions that can easily be substituted in. When performing
a hypothesis test, an analyst will typically compare the p-value obtained with a significance level,
commonly 0.05 or 0.01, and if the p-value falls below that threshold, they will reject their null
hypothesis. So, to investigate the consequences of unconfirmed assumptions in this context, we
inserted a call to an equivalent hypothesis test that was appropriate given the assumptions that
were confirmed at call sites in which at least one assumption was unconfirmed, and compared the
p-value obtained in both cases. Here, we deem a potential misuse significant if the p-value obtained
by the two tests fall on different sides of the significance level chosen by the analyst.

Specific to our evaluation, whenever the assumption of normality was unconfirmed, we used
the non-parametric alternative: for multi-sample independent t-tests (ttest_ind, t. test), we ran
a Mann-Whitney U test; for single-sample and paired t-tests (ttest_1samp, ttest_rel, t. test),
we ran a Wilcoxon signed-rank test; for one-way analyses of variance (f_oneway, aov), we ran
a Kruskal-Wallis test. If homoscedasticity was unconfirmed but not normality, we use Welch’s
t-test (ttest_ind with equal_var=False in Python, or t.test with var.equal = FALSE in R)
for two-sample t-tests, and a Kruskal-Wallis test for one-way analysis of variance. If independence
appeared unconfirmed (because the samples appeared to be correlated), we would expect the analyst
to confirm that the variables are indeed independent and that the correlation was due to chance or
some other factor. In cases where the samples were indeed dependent, they should use a paired
test instead. We did not proceed further with these cases as it was not possible to tell if the samples
were actually independent (which in general would require the domain knowledge of the analyst,
or a deeper understanding of the data set).

Column Call Sites (Calls) w/ Sig. Misuse summarizes these results. Overall, at 16.47% of call
sites (11.51% of calls) where an assumption was unconfirmed, the more appropriate test would
have resulted in a different conclusion being drawn. Here are some examples:

¢ In a notebook exploring post-university salaries in the US [8], the analyst concludes that
students of state schools that are also “party” schools tend to have a higher mid-career salary
than students that attend non-party state schools. In the notebook, the analyst even writes
“I’m pretty surprised that there is some significance here”, and they would have found no
statistical significance if they used the appropriate test.

e In a COVID-19 data notebook from India [15], the analyst finds that there is not a significant
difference in the COVID-19 “cure rate” between the states of Tamil Nadu and Kerala, when
they would have found a significant difference had they used the appropriate test.

Conceptually, these significant misuses occur when the evidence against the null hypothesis is
neither extremely strong nor weak; in these cases, a discerning analyst should pick the most powerful
test given the characteristics of the data and of the population to ensure the most appropriate
conclusion. (Recall that the power of a test is a technical term in statistics quantifying the probability
that the test commits a Type 2 error, i.e. the probability of falsely accepting the null hypothesis.)
We focused on hypothesis tests here because there are clear non-parametric alternatives that
can be very easily substituted when an assumption is unconfirmed. In contrast, in the context of
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statistical modeling and linear regression, there are many options available to developers to correct
a mistake, e.g., fitting a different model, considering different dependent variables, using a weighted
method in case of a lack of homoscedasticity, transforming the data, etc. To avoid bias, we focus on
hypothesis tests since the procedure for selecting an alternative is clear.

Takeaway. Unconfirmed assumptions result in 267 potential misuses in call sites (and in
586 calls). Furthermore, 28 call sites calling hypothesis testing functions (representing 35
calls) would result in different conclusions being drawn if more appropriate methods were
used; this corresponds to 16.47% call sites (11.51% calls) to hypothesis testing functions.

RQ4. How often do analysts manually test assumptions?

Given the inexact nature of statistical assumptions, there are many ways to investigate them: as
discussed in Section 2, statisticians will plot histograms, box plots, Q-Q plots, etc., or will conduct
hypothesis tests about assumptions, or a combination. So the question is: how often do they do this?
We manually checked the notebooks in our corpus for evidence of assumption checking, and found
that only 11 (or 8.59%) notebooks discuss and check all assumptions. Interestingly, in one of those
cases, they find evidence against normality and homoscedasticity and yet proceed with the test
anyway without mentioning robustness—perhaps they were ignorant of alternative methods.

On the other hand, 62 notebooks performed no checking. This leaves 55 notebooks with partial
or imperfect checking, in which we identified the following trends:

e many notebooks check distributional assumptions, but not homoscedasticity;

e few notebooks discuss independence, and when they do, they either assume it based on the
subject of the sample, or they check by investigating correlation, as we do in our checks;

e in many cases, assumptions are incorrectly checked on the grouped data before it is divided,;

e residuals were only explicitly investigated in 3 notebooks;

e plotting and visual checking are the most common methods of verifying assumptions.

In exploring this research question, a few notebooks stood out to us. In notebook “AB_Testing” [2],
the user created an automated assumption checking method, but an incorrectly written if state-
ment results in ttest_ind being called with equal_var=True if the samples do not appear to
be homoscedastic; we believe this is a bug. Also, several tutorial notebooks [7, 73, 74] with 471
up-votes and 809 forks or clones between them have no discussion of statistical assumptions.

Takeaway. Of the 128 notebooks we surveyed, 11 check all assumptions, and 55 check a
subset imperfectly. Data visualization is commonly used to investigate assumptions.

RQ5. What is the overhead associated with the checks?

Table 4 shows the results of a synthetic experiment comparing the run time of the functions with
and without inserted checks: we report the mean and standard deviation of running the functions
with and without checks on synthetic samples of length 100. Note the table reports milliseconds;
none of these functions take long to run. While the overhead factor is high (column Factor), the
additional cost of checking these calls in milliseconds is small, and we do not imagine it would
interfere with a data analyst using the functions in a notebook.

Takeaway. The overhead of the checks appears low.
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Table 4. Summary of experiments investigating run time. The first row of the table reads: the average run time
of ttest_ind on a sample of length 100 is 0.133ms without checks, with a standard deviation of 0.015ms, and is
0.183ms with checks, with a standard deviation of 0.099ms. The factor overhead in this case is 1.37x.

RT Before (ms) | RT After (ms)

Function Avg. | St. Dev. | Avg. | St. Dev. | Factor
ttest_1samp 0.133 | 0.015 0.183 | 0.099 1.37x
ttest_ind 0.203 | 0.089 0.412 | 0.205 2.03x
ttest_rel 0.134 | 0.016 0.317 | 0.133 2.37x
f_oneway 0.044 | 0.005 1.286 | 1.162 29.2x
linregress 0.027 | 0.003 0.269 | 0.008 9.96x
LinearRegression.fit | 0.133 | 0.014 0.400 | 0.051 3.01x
t.test 0.046 | 0.005 0.668 | 5.183 14.5x
aov 0.333 | 0.222 5.789 | 5.103 17.4x
Im 0.353 | 0.117 0.672 | 0.140 1.90x

7 Threats to Validity

The principle threat to validity of this work is the statistical nature of the approach, since tests to
confirm statistical assumptions can commit Type 1 and Type 2 errors. Type 1 errors occur when
the null hypothesis is rejected when it is true, and Type 2 errors occur when the null hypothesis is
accepted when it is false. The null hypothesis of the assumption checks is that the assumption is
met, so a Type 1 error would result in a check failing when it should have passed, and vice-versa
for a Type 2 error. These are risks inherent to statistics, which we mitigate by choosing appropriate
testing methods (to mitigate Type 2 error) and a reasonable confidence & = 0.05; the probability
that the statistical checks make a Type 1 error is a.

Our findings may not generalize beyond the Kaggle notebooks we studied, but we took measures
to minimize potential bias. Mainly, we randomly selected notebooks from those that contained a
reference to a statistical function we had annotations for. Our corpus contains a variety of styles
of notebooks, e.g., “first notebooks”, tutorials, and submissions to Kaggle competitions, among
others. The notebooks in our corpus have a wide range of up-votes and forks, hail from a diverse
set of author accounts, and none of them are themselves forks, indicating a mix in quality and
provenance. Separately, notebooks hosted on Kaggle offer a very important advantage as they very
often contain the dataset used by the notebook, unlike notebooks hosted on, e.g., Github.

Finally, in our approach an unconfirmed assumption results in a warning to the analyst, and
there is a real possibility that too many warnings will cause analysts to ignore them. This could be
addressed by annotation writers choosing a strict « for the checks. For instance, an « of 0.01 rather
than 0.05 would generate fewer warnings, and so likely result in a smaller Type 1 error (at the cost
of a higher Type 2 error). Also, some statistical methods are robust under certain conditions, e.g., if
the sample has low variance or if sample size is high, and are not overly affected by unconfirmed
assumptions in those cases. Investigating how to incorporate robustness into the annotations is an
interesting avenue of future work.

8 Related Work

8.1 Contracts

In the context of programming languages and software engineering, contracts are essentially a
specified desired property for data, and are typically checked at runtime with assertions. Contracts
appear in many domains, and are a well-studied area of research [20]. Option contracts [10] are
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contracts where the server gives the client the option of having the contract checked. The concept
of blame [11, 30, 88] is integral to contracts: essentially, when a contract is found to be violated, the
party responsible for the violation is “blamed”, a boon for debugging. Some work proposes checking
certain properties with hypothesis tests, e.g., in the context of stochastic algorithms [72]. Joshi et
al. [22] perform statistical tests on execution profiles of approximate programs to investigate if
a user-supplied accuracy formula holds. Gopinathan and Sergey [17] go a step further towards
verification and propose a set of mechanised theorems for proving properties of abstract approximate
query structures, which often use randomization to achieve time- and space-efficiency.

8.2 Probabilistic Programming

Probabilistic programming is a tool for statistical modeling, which, at face value, seems a very
related topic. In actuality, the field is more concerned with building statistical modeling methods,
and not to statistical data analysis. Work by Bornholt et al. [4] presents a type for uncertain data,
e.g., position from a sensor. In their scheme, an “uncertain” value is accompanied by the distribution
it is known to follow, and the distribution is sampled at conditionals as part of a probabilistic check,
in contrast to our approach that inserts checks for the raw values without requiring sampling.
Separately, work by Sampson et al. [57] presents probabilistic assertions for probabilistic programs.
They allow programmers to express assertions about probabilistic programs, and they propose
a tool to verify statically that those assertions pass, up to some specified probability and with
specified confidence. Unlike their approach, ours is concerned with a particular execution of a
program, and testing the likelihood that a raw input has a particular statistical property.

8.3 Statistical Languages

The annotations proposed in this work can be viewed as a step towards types for statistical languages.
There has been some work in this area: for R, work by Turcotte and Vitek [83] discusses challenges
associated with developing a static type system for R, and Turcotte et al. [82] propose a set of
type annotations that are translated to dynamic checks. Neither of these pieces of work mentions
statistical assumptions. On the side of Python, the language has added support for type hints [43],
which has led to further research: Rak et al. [53] investigate how they are used, Allamanis et al. [1]
proposed a framework for inferring such types with a graph neural network, and separate work
by Guo et al. [18] investigate the state-of-the-art in type inference. If the annotations proposed
in this paper are extended, adapted, or incorporated into type annotations, inferring them will be
interesting due to their probabilistic nature: e.g., a list of values drawn from a normal distribution
may not look normal, or “pass” a Shapiro-Wilk test due to the randomness of sampling.

Separately, a number of systems have been proposed to facilitate statistical analysis, such as
Statsplorer [85], Tea [23], and Tisane [24]. Broadly, these approaches offer opt-in frameworks to
help analysts perform sound model building and analysis, either as standalone software or libraries.
In contrast, our approach does not ask anything from the analyst: a developer of functions making
statistical assumptions can encode those assumptions and have checks inserted for them, so that an
analyst using those functions will have their data checked for compliance. Our approach can also
be more easily integrated into existing tools; e.g., our prototype applies our technique to Python’s
scipy and R’s stats library, so analysts can keep their notebooks and continue using these languages,
and has already revealed significant misuses in many popular Kaggle notebooks.

9 Conclusion

Statistical methods like hypothesis tests and modeling make assumptions about the data or popula-
tions that the data was drawn from. These assumptions, being statistical in nature, are not trivial
to check, and in this work we propose a language to allow developers of statistical libraries to

Proc. ACM Softw. Eng., Vol. 2, No. FSE, Article FSE121. Publication date: July 2025.



FSE121:20 Alexi Turcotte and Zheyuan Wu

annotate methods with common statistical assumptions that those methods are predicated on. Our
framework translates these assumptions into checks that account for the nuance in verifying them:
in short, we generate hypothesis tests investigating the likelihood that the assumption is met.
We implemented prototypes® of this approach for Python and R, annotated common hypothesis
testing and regression methods, and surveyed 128 Kaggle notebooks that use them. These annotated
methods are some of the most widely used statistical techniques in a variety of fields [34, 42, 76,
84, 87]. We found misuses of statistical methods in 108 notebooks, with evidence of unconfirmed
assumptions in 74.44% of call sites (53.36% of calls). Specifically for hypothesis tests, while many
are robust to unconfirmed assumptions we nevertheless found that at 16.47% call sites (and in
11.51% of calls), the use of more appropriate methods would have resulted in a different conclusion!

Future Work. The approach presented in this paper generalizes to support any statistical assump-
tion for which there is an associated test. For instance, there exist statistical tests for multivariate
normality, co-linearity, and conditional independence; many of these more complex assumptions
are widely used in the machine learning domain, which is an exciting future direction for this
work. Given the scale of the data involved and the complexity of the tests, we hypothesize that the
performance of the tests will be a challenge in this domain. Moreover, in many cases the model
needs to be built already in order to confirm certain properties about it (akin to how regression
needs to be performed before residuals can be tested); there is an interesting dynamic here, where
perhaps there is a subset of data on which assumptions can be investigated before proceeding.

There are also interesting direct extensions to this work within the domain of statistics, e.g., we
view this work as a step towards a true, purpose-built, modern programming language for statistics
and data analysis. One technical challenge there is developing a static technique which can precisely
determine where and on exactly what data assumptions are checked; if one were to implement
such a system in Python or R, precise type checking is difficult due to language dynamicity. Beyond
that, in this paper we have extensively discussed the nuance associated with testing assumptions,
and incorporating this nuance into a static type system will also be conceptually challenging; e.g.,
what would it mean for a notebook to be well-typed w.r.t. the rules of statistics?
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