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Abstract. The problem of partitioning an orthogonal polyhedron into
a minimum number of boxes was shown to be NP-hard in 1991, but
no approximability result is known except for a 4-approximation algo-
rithm for 3D-histograms. In this paper we broaden the understanding
of the 3D-histogram partitioning problem. We prove that partitioning a
3D-histogram into a minimum number of boxes is NP-hard, even for his-
tograms of height two. This settles an open question posed by Floderus
et al. We then show the problem to be APX-hard for histograms of
height four. On the positive side, we give polynomial-time algorithms to
compute optimal or approximate box partitions for some restricted but
interesting classes of polyhedra and 3D-histograms.

1 Introduction

Partitioning a geometric object or a shape into simpler parts is a classic prob-
lem in computational geometry. Such partitioning problems are motivated by
their applications in image processing, camera placement in security systems,
computer graphics, VLSI manufacturing, and so on.

An important special case is when the object is an orthogonal polygon or
polyhedron—meaning that the edges or faces are parallel to the axes or coordi-
nate planes—and the goal is to partition into a minimum number of rectangles
or boxes, where a box is an orthogonal polyhedron with 6 faces (i.e., the 3D
equivalent of a rectangle).

In two dimensions the problem of partitioning an orthogonal polygon into a
minimum number of rectangles can be solved in polynomial time, both for simple
polygons and for polygons with holes [14, 13, 12, 7, 5]. In three dimensions the
problem becomes NP-hard in general, as proved by Dielissen and Kaldewaij [3].
Our aim is to explore the boundary between hard and easy for a special class of
orthogonal polyhedra, namely histograms.

A 2D-histogram is an orthogonal polygon L that contains an edge e such that
for any point p ∈ L, the line segment connecting p to its orthogonal projection on
e lies entirely inside L. See Fig. 1(a). Similarly, a 3D-histogram is an orthogonal
polyhedron H that contains a face f such that for any point p ∈ H, the line
segment connecting p to its orthogonal projection on f lies entirely inside H.
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Fig. 1. (a) A 2D-histogram with a minimum partition into rectangles, as witnessed by
the given “independent” points, no two of which lie in a rectangle. (b) A 3D-histogram
requiring 4 boxes in its optimal partition since there are four “independent” points (no
two in a box). (c)–(d) A guillotine cut.

See Fig. 1(b). The face f is called the base of the histogram. Note that any
histogram can be adjusted so that the vertices (and consequently also edges and
faces) have integer coordinates, and the combinatorial structure of the histogram
is preserved. Throughout this paper, we assume that any histogram has integer
coordinates and that the base has z-coordinate 0 and all other faces lie above
the base. The height of a face parallel to the base is its z-coordinate, and the
maximum of these is called the height of the histogram.

Floderus et al. [8] gave an O(n log n)-time 4-approximation algorithm to par-
tition a 3D-histogram into a minimum number of boxes and asked whether the
problem is NP-hard for histograms. We note that the NP-hardness reduction of
Dielissen and Kaldewaij [3] does not hold for histograms.

Contributions: In this paper, we prove that partitioning 3D-histograms (even
with height 2) into a minimum number of boxes is NP-hard (Section 3). The
problem is APX-hard for 3D-histograms of height 4 (Section 4). We show that
optimal partitioning must consider cuts beyond those that are “guillotine” (Sec-
tion 5). We then focus on restricted classes of polyhedron (Sections 6–7). If
two dimensions of the polyhedron are fixed, then we compute a minimum box
partition in polynomial time. If one dimension is bounded by t, then we pro-
duce a t-approximation in polynomial time. Finally, we give a polynomial-time
2-approximation algorithm for the box partition of corner polyhedra.

Background: The problem of partitioning an orthogonal polygon into rectan-
gles has also been considered with different objective functions, for example,
minimizing the total length of the cuts (“minimum ink”) [11], avoiding very thin
rectangles by minimizing the aspect ratio [16], or minimizing the so-called “stab-
bing number” [4]. Computing a minimum decomposition of arbitrary polygons
with holes into (perhaps overlapping) convex, star-shaped, or spiral subsets is
NP-hard [15]. If Steiner points are not permitted, then some partition and cover-
ing problems become polynomial-time solvable for arbitrary simple polygons [10].

2 Preliminaries

The top surface of a 3D-histogram H denotes the union of the faces parallel to
the base, excluding the base itself. For any integer h ≥ 1, an h-region of the

2



histogram is a maximal region that all has the same face f as top surface, and
f has height h.

For a point p in R3, we denote its x, y and z-coordinates by px, py and pz,
respectively. A set of points in H is called independent if there does not exist
any box in H that contains two or more of these points. A set of edges in H is
called a set of forcing edges if there does not exist any box in H that properly
intersects two or more of these edges. This implies that the midpoints of the
forcing edges form an independent set of points. Consequently, if there are k
forcing edges in a 3D-histogram, then k is a lower bound on the size of any box
partition of the histogram.

Let L be a plane parallel to one of the axis planes. We say that a guillotine cut
along L partitions a polyhedron H into two polyhedra H1 and H2 if H1∪H2 = H
and H1 ∩H2 ⊂ L (Fig. 1(c)–(d)).

Let G = (V,E) be a graph with n = |V | vertices and m = |E| edges. We call
G a planar graph if it admits a drawing on the Euclidean plane such that no two
edges cross except possibly at a common end-point. G is cubic if the degree of
every vertex in G is exactly three. A vertex cover of G is a set of vertices C in
G such that for every edge (v, w), at least one of v and w belongs to C.

3 3D-Histogram Partition is NP-Hard for height ≥ 2

In this section we prove that partitioning a 3D-histogram into a minimum num-
ber of boxes (3D-Histogram Partition) is NP-hard even when the histogram has
height two. We reduce from the problem of computing a minimum-cardinality
vertex cover in a cubic planar graph, which is NP-hard [18].

Let G be a cubic planar graph and let G′ be the 2-subdivision of G, defined to
be the graph obtained from G by replacing each edge of G by a path with three
edges, of which the middle one is a double edge. Observe that G′ is also cubic
and planar. The crucial idea for constructing a histogram is to use a suitable
drawing of G′. Here, an orthogonal drawing of a planar graph G is a planar
drawing of G such that each vertex is mapped to a point in the Euclidean plane,
and each edge is mapped to an axis-aligned polyline between the corresponding
points. It is called 1-bend if every polyline has exactly one bend.

Lemma 1. Let G be a cubic planar graph. Then the 2-subdivision G′ of G admits
a 1-bend orthogonal drawing Γ ′.

Proof. (Sketch) Take an orthogonal drawing Γ of G with at most two bends per
edge, which can be constructed in linear time [9]. For any edge without bends in
Γ , apply a so-called zig-zag transformation so that it obtains exactly two bends.
We obtain Γ ′ by replacing the drawing of each edge of e with the drawing of a
path with a double edge along e’s poly-line, see Fig. 2(b)–(c). ut

Construction of H: Graph G′ has n′ = n + 2m vertices and m′ = 3
2n
′ edges.

We construct a histogram H that can be partitioned into (4n′+3m′+α′) boxes if
and only if G′ contains a vertex cover of size α′. Note that G′ contains a vertex
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Fig. 2. (a) A cubic graph G. (b) Its orthogonal drawing Γ . (c) A 1-bend orthogonal
drawing Γ ′ of G′. (d) Top view of a vertex gadget, where the edge connections are
shown in gray. (e) Side view of a vertex gadget. (f) Connecting vertex gadgets using
edge gadgets.

cover of size α′ if and only if G contains a vertex cover of size α′ −m (see e.g.,
see [17]), so this then proves the reduction.

We transform the 1-bend drawing Γ ′ of G′ into the desired histogram H.
Specifically, we replace each vertex v of Γ ′ (i.e., both original and subdivision
vertices) by a vertex gadget λ(v) (see Fig. 2(d)–(e)). The numbers in Fig. 2(d)
illustrate the heights of the corresponding regions. We then replace each edge
(v, w) of Γ ′ using an edge gadget λ(v, w) (see Fig. 2(f)). The edge gadgets
corresponding to the edges incident to v are attached to the three sides of height
1 of λ(v). This completes the construction of H.

Let Opt(H) be a partition of H into a minimum number of boxes. The
following lemmas (whose proofs are omitted) discuss some properties of the
gadgets with respect to Opt(H). In brief, Lemma 2 follows from the forcing
edges that are illustrated in Fig. 2(c). Lemmas 3–4 follow from the observation
that a box that touches a face of height 2 (on the top surface) cannot touch a
face of height 1, and that the edge gadgets are “non-aligned”.

Lemma 2. For every vertex gadget λ(v), Opt(H) contains at least four distinct
boxes that lie entirely inside λ(v). If it contains exactly four such boxes, then none
of the 1-regions in λ(v) are covered by these boxes.

Lemma 3. For every edge gadget λ(v, w), Opt(H) must contain 3 boxes that
intersect λ(v, w). No box in Opt(H) can intersect more than one edge gadget.

Lemma 4. If an edge gadget λ(v, w) is entirely covered by exactly three boxes in
Opt(H), then these three boxes cover at most one of the two 1-regions of λ(v)
and λ(w) that are adjacent to λ(v, w) (e.g., see Fig. 3(a)–(d)).

Equivalence Between Instances: Given a set of r boxes, it is straightforward
to verify whether the boxes are interior disjoint and cover the input histogram
in polynomial time. Hence the problem 3D-Histogram Partition is in NP.
Since H can be constructed in polynomial time, we can use the following lemma
to obtain the NP-hardness.

Lemma 5. G′ contains a vertex cover C of size α′ if and only if H can be
partitioned into (4n′ + 3m′ + α′) boxes.
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Fig. 3. (a)–(b) Illustration for λ(v, w). (c) A partition of the edge gadget that covers
the 1-region of v at (v, w). (d) A schematic representation of the partition. (e)–(g)
Illustration for Lemma 5.

Proof (sketch). We construct a partition of H from a vertex cover, as follows.

A. If v 6∈ C, then we use four maximal boxes to cover the 2-regions of λ(v),
as illustrated in Fig. 3(e)–(f). The remaining regions of λ(v) are 1-regions,
which will be covered by the boxes partitioning the edge gadgets.

B. If v ∈ C, then we use 5 maximal boxes to cover λ(v), e.g., see Fig. 3(g).

C. We use three maximal boxes to cover each edge gadget λ(v, w). Note that
either v or w must lie in C. If v 6∈ C, then one of these boxes will cover the
1-region of λ(v) at λ(v, w), e.g., see Fig. 3(a)–(d). Similarly, if w 6∈ C, then
one of these boxes will cover the 1-region of λ(w) at λ(v, w).

One easily verifies that Steps A–C partition the histogram H into (3m′ +
4n′ + α′) boxes. For the other direction, assume that H admits a partition B
with (3m′ + 4n′ + α′) boxes, and construct a vertex cover of size at most α′

in G′. By Lemma 2, every vertex gadget contributes to at least four distinct
boxes in B, which corresponds to the 2-regions. Hence we use at least 4n′ boxes
of B to cover those regions. Note that all these boxes lie entirely inside the
vertex gadgets. By Lemma 3, every edge gadget must use at least three distinct
boxes, which altogether sum up to at least 3m′. These boxes may also cover
some 1-regions of the vertex gadgets (e.g., see Lemma 4). Since B contains at
most (3m′ + 4n′ + α′) boxes, we have at most α′ boxes remaining to cover the
remaining 1-regions of the vertex gadgets. We now construct a set S as follows:
(a) If a vertex gadget λ(v) contains more than four boxes lying entirely inside
λ(v), then we include v into S. (b) If four or more boxes intersect an edge gadget
λ(v, w), then we choose one of v and w arbitrarily into S.

Note that each step can be charged uniquely to one of the remaining α′ boxes,
i.e., the box charged in Step (a) lies entirely inside λ(v) and hence cannot be
charged again in Step (b). Hence the number of vertices in S is at most α′. One
argues that S is a vertex cover based on the observation that either (a) or (b)
must apply for each edge gadget. ut

Theorem 1. Partitioning a 3D-histogram into a minimum number of boxes is
NP-hard, even when the histogram is of height two.
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4 3D-Histogram Partition is APX-Hard for height ≥ 4

In this section we prove that partitioning a 3D-histogram into a minimum num-
ber of boxes is APX-hard, even for histograms of height 4. We reduce from the
problem of computing a minimum-cardinality vertex cover in a cubic graph (not
necessarily planar), which is APX-hard [1].

Construction of H: Let V = {v1, . . . , vn} and E = {e1, . . . , em} be the vertices
and edges of G. Consider an integer grid of size (8n+1)×(2n+10m+1). Column
8i−3 is assigned to vi, and column 8i+1 is assigned to the transition from vi to
vi+1 (we write wi,i+1 for short as in Fig. 4(b)). Below the grid we add a staircase
that descends at each column of vi or wi,i+1, and here add a tooth, i.e., a square
for which all but the top sides are on the boundary. Edge ej is assigned to row
10i+2n+4. For each edge, cut out H-shaped holes in the polygon where the row
of the edge meets the columns of its endpoints. These holes have width 7, height
7 or more, and remove four (five) squares from the column of the left (right)
endpoint. The resulting polygon P (Fig. 4(a)) forms the base of the histogram
(except for some additions via edge gadgets that will be listed below). Extrude
all of P to height 2; we call the result the platform.

For each edge e = (v, w), we add an edge gadget λ(v, w) that consists of two
endpoint gadgets and a connector. Here, the endpoint gadget at v consists of
the four (five) squares from the vertex column of v (we call these the decision
column λ(v, e)) as well as a surrounding polygon; all of these have height 1 (see
Fig. 4(d)–(e)). The connector connects the two endpoint gadgets via a sequence
of 2-regions, 3-regions and 4-regions along the row of the edge; it sits partially
on the endpoint gadgets and partially on the platform (see Fig. 4(f)–(g)). This
completes the construction of H.

To argue the correctness, we fix a set F of 13n + 1 edges (shown in bold
in Fig. 4(b)) that can easily be seen to be forcing edges. We use the 2n + 1
horizontal top edges of the teeth, as well as the 2n horizontal top edges that lie
between these teeth. For each edge, we select 6 further horizontal edges from
the hole boundaries of its two endpoints, see Fig. 4(b); we assume that these
hole boundaries were chosen that none of them have the same y-coordinate.
Consequently, we obtain a set of (2n + 1) + (2n) + (6m) = 4n + 9n + 1 forcing
edges, all of which are on top of the platform.

We must argue how many boxes are needed to cover most (but not all) of an
edge gadget λ(v, w). We say that a sub-partition of λ(v, w) is a set of disjoint
boxes that cover the entire edge gadget except that they may leave one or both
decision columns λ(v, e) or λ(w, e) uncovered. Given a partition of the histogram,
we charge a box B to edge-gadget λ(v, w) if either B intersects the interior of
λ(v, w) or if B lies inside the platform and the top front edge of B lies on the
boundary of the 4-region of λ(v, w). (In particular, such a box cannot cover
an edge in F and it can only be charged to one edge-gadget.) Crucial for the
reduction is the following lemma:

Lemma 6. The edge gadgets satisfy the following properties: (P1) Every sub-
partition of an edge gadget has least 12 boxes charged to it. (P2) Every partition

6



v1
v2

v3
v4

e1=(v2, v4)

e2=(v1, v4)

e3=(v2, v3)

e4=(v1, v3)

vi

vl

vj
wj,l

wi,j

(a) (b)

43
1

1
1

1 2 3
1

3
1

1 2 3
1

1

2 2 2 2 2 2 2 2 2 22

0
0

2

(c)

2

vj
e1

e2
vl

e3

wj,j+1

e4

2

(d)

2
1

left endpoint gadget right endpoint gadget

1

(e)

42 33
2
2

(f)

43
2

3
2

1

(g)

Fig. 4. (a) Schematic representation and (b) top view of H. (c) Illustration for the
heights near one edge gadget. (d)–(e) Endpoint gadgets and decision columns. (f)–(g)
A connector gadget is shown in gray.

of an edge gadget (covering both decision columns) has at least 13 boxes charged
to it.

Proof (sketch). Consider a (sub-)partition B of some edge gadget λ(v, w). Fig. 4(c)
shows some forcing edges of λ(v, w). Of these, there are three each in the end-
point gadgets, forcing three boxes each, and four more in the connector-gadget.

In fact, the connector-gadget requires five boxes to be charged, as can be seen
as follows: If no box of B intersects the platform below the connector-gadget,
then we can find another independent point (on the downward-facing face of the
3-region on the right in Fig. 4(c), at height 1.5). If some box B of B intersects
the platform, then some other box of the partition of P must share a side with
B, and this other box is also charged to λ(v, w).
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Fig. 5. (a) The maximal boxes determined by the forcing edges. (b)–(c) Partition of
the endpoint gadget excluding the left and right decision column, respectively.

Thus we have now 11 boxes to be charged to λ(v, w). One can also easily
verify that if at one connector-gadget the decision column is covered, then this
requires one additional box not counted elsewhere. This proves the claim in all
cases except the one where neither decision-column is covered, each endpoint-
gadget uses exactly three boxes, and the connector-gadget has exactly five boxes
charged to it. One can verify that this is impossible if none of the boxes overlap.
ut

Equivalence Between Instances: We now prove that H can be partitioned
into (|F |+ 12m+ k) boxes if and only if G has a vertex cover of size at most k.

Lemma 7. If G has a vertex cover C of size k, then H admits a partition into
(|F |+ 12m+ k) boxes.

Proof (sketch). For each vertex v ∈ C, construct a box that has width and height
1 and whose depth is so large that is spans the entire column of v. In particular
it covers all decision columns λ(v, e) of incident edges of v, e.g., see the gray box
for vi in Fig. 5(a). The rest of the platform can be covered using one box per
forcing edge. Finally, there are sub-partitions of an edge gadget λ(v, w) using 12
boxes (e.g., Fig. 5(b)–(c)) so that λ(v, e), λ(w, e), or neither, is covered. Applying
the suitable one to each edge (depending on whether v ∈ C, w ∈ C, or v, w ∈ C)
gives the desired partition. ut

Lemma 8. If H admits a partition B into (|F |+ 12m+ k) boxes, then G has a
vertex cover of size at most k.

Proof. We construct a vertex cover C of G as follows: (a) For every decision
column λ(v, e), if the box covering it lies entirely in the column of v, then add
v to C. (b) For an edge (v, w), if neither v nor w belongs to C, and at least 13
boxes are charged to λ(v, w), then arbitrarily add one of v and w to C.

We first show that C contains at most k vertices. The set F of forcing edges
determines |F | boxes that we denote by RF . All of them cover no decision column
and cover no part of an edge-gadget or are charged to it. B − RF has 12m + k
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boxes. By Lemma 6 at least 12 of them are charged to each edge. This leaves at
most k boxes that lead to an addition to C.

Suppose now for a contradiction that for some edge e = (v, w) neither v nor
w belongs to C. Then the boxes covering λ(v, e) and λ(w, e) cannot lie entirely
inside their corresponding vertex columns. In other words, Step (a) did not apply.
In this scenario, both these decision columns are covered using boxes from the
edge-gadget, so by Lemma 6 at least 13 boxes are charged to λ(v, w). Hence by
Step (b), either v or w must belong to C. ut

Theorem 2. 3D-Histogram-Partition is APX-hard.

Proof. Let C∗ and S∗ be the optimum vertex cover of G and the optimum box
partition of H, respectively. Assume that we had an (1 + ε)-approximation algo-
rithm for 3D-Histogram-Partition that computes a solution S from which
we extract a vertex cover C. By Lemmas 7–8, we have |S| = |F | + 12m + |C|
and |S∗| = |F |+ 12m+ |C∗|. Since G is cubic, |C∗| ≥ n/3. Finally observe that
|S∗| ≤ |F |+ 12m+ |C∗| ≤ 13n+ 1 + 18n+ (n− 1) = 32n. Hence we get

|C|
|C∗|

=
|S|−|F |−12m

|S∗|−|F |−12m
≤ (1+ε)|S∗|−|F |−12m

|S∗|−|F |−12m
= 1+

ε|S∗|
|C∗|

≤ 1+
32nε

n/3
= 1+96ε,

implying an approximation algorithm for vertex cover. The APX-hardness of
3D-Histogram-Partition now follows from the APX-hardness of minimum
vertex cover. ut

5 Partitioning Using Guillotine Cuts

In this section we show that there is an infinite family of 3D-histograms that can-
not be optimally partitioned using guillotine cuts, whereas 2D-polygons can be
partitioned optimally using such cuts by first cutting along “good diagonals” [5].

We say that P is a partitioning of a polyhedron H into boxes using guil-
lotine cuts if P is a partition of H into boxes and there is a sequence P0 =
{H},P1, . . . ,Pk = P of sets of polyhedra such that every Pi+1 is obtained from
Pi by partitioning Pi using guillotine cuts.

Theorem 3. There is an infinite family of 3D-histograms that cannot be parti-
tioned optimally using only guillotine cuts.

Proof. We first refer the reader to the histogram H of Fig. 6(a). Since H has
five faces of distinct height, any partition of H into boxes would require 5 boxes,
and H admits such a partition (e.g. by cutting along the edges of the top view in
Fig. 6(b)). We now show that H cannot be partitioned into 5 boxes if we restrict
the cuts to be guillotine.

Consider starting with a vertical guillotine cut, i.e., a cut perpendicular to
the x-axis or y-axis. Any such cut results in two polyhedra: one with at least 4
faces of distinct height, and another with at least 2 faces of distinct height. Any
further cutting of these polyhedra will result in at least 6 boxes, a contradiction.
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Fig. 6. (a) Illustration for H. (b) The top view of H. (c) Construction of Hk.

If instead we start with a horizontal cut (perpendicular to the z-axis), we
have 4 choices: cutting at heights 1, 2, 3, or 4. Cutting at any height other than
1 results in two polyhedra, one of which with 5 boxes in its optimal partitioning,
a contradiction. Assume that we start by cutting at height 1. Any subsequent
vertical guillotine cut results in two polyhedra: one with at least 3 faces of distinct
height, and another with at least 2. Therefore, no vertical guillotine cuts are
acceptable. Any subsequent horizontal cut immediately result in a contradiction:
one of the polyhedra resulting from such a horizontal guillotine cut has 4 boxes
in its optimal partitioning, and together with the 1 box from the first cut and
the (at least) 1 other box from this cut we have at least 6 boxes.

It is now straightforward to create an infinite family of polyhedra H1(=
H), H2, . . . ,Hk by attaching up to k copies of H on a rectangular box, as in
Fig. 6(c), such that none of them can be partitioned optimally using only guil-
lotine cuts. ut

6 Orthogonal Polyhedra with Bounded Dimensions

In this section we focus on orthogonal polyhedra with bounded dimensions (re-
call that all vertex-coordinates are assumed to be integers). If one dimension of
the input polyhedron P is bounded by t, then we construct a t-approximate box
partition. If two dimensions are bounded, then we compute an optimal box par-
tition in polynomial time. This works for all polyhedra of bounded dimensions,
even if they are not histograms or have holes.

So let P be a polyhedron that resides within the [0,W ]× [0, L]× [0, H] box.
If H is bounded by t, then we partition the polyhedron into (up to) t sets of
polyhedra Pi where 0 ≤ i < t and Pi is bounded by the planes z = i, z = i+ 1.
For each Pi, we compute an optimal box partition B∗i = Opt(Pi) using the
algorithm for partitioning 2D-polygons [5]. We claim that

⋃
iB
∗
i gives a partition

that is within a factor of t of the optimum.
Fix an optimal partition Opt(P) and partition it by the planes z = i. Let

Bi be the boxes between the planes z = i and z = i + 1. Then |Bi| ≥ |B∗i | but
also |Bi| ≤ |Opt(P)|. Hence

∑
i |B∗i | ≤

∑
i |Bi| ≤ t · |Opt(P)| and we have:

Lemma 9. For orthogonal polyhedra with one dimension bounded by t, a mini-
mum box partition can be approximated within a factor of t in polynomial time.

10



a

b

c

x

y

z

a

b

c

x

y

z ε

ε

ε

ε

Intersection of the plane
x = px with the polyhedron

(a) (b)

Fig. 7. Illustration for Lemma 10.

Consider now the scenario when two dimensions are fixed, e.g., W ·L ∈ O(1).
We rely on the following lemma.

Lemma 10. Any orthogonal polyhedron P with vertices having integer coordi-
nates can be optimally partitioned into boxes where the coordinates are integral.

Proof (sketch). Assume that in a partition some box-face is within a plane (say
plane x = px) for which px is not integral. Then we can shift all box-boundaries
within that plane to lie within x = px + ε instead (see Fig. 7) to get closer to a
solution where all coordinates are integral. ut

Let the voxel vi,j,k be the unit cube [i−1, i]× [j−1, j]× [k−1, k] and let the
column ci,j be all the voxels {vi,j,k : 1 ≤ k ≤ H}. (In the following, whenever the
range of i, j is unspecified then we mean 1 ≤ i ≤ W and 1 ≤ j ≤ L.) We have
W · L ∈ O(1) columns, and hence O(H) voxels. Consider some box partition B
of P that uses only boxes with integer coordinates. Let B′ be some set of boxes
obtained from B by removing (repeatedly) some box whose entire top is visible
to infinity, or becomes visible after some other boxes in B − B′ were removed.
Boxes B′ cover a subset P ′ of P, and this subset can be described as follows:
For each column ci,j , P ′ contains all voxels of ci,j that belong to P, up to some
limit bi,j , and then contains no other voxels of ci,j .

This observation is the key idea for a dynamic programming algorithm to find
the optimum partition of P. For any integer values bi,j , define the polyhedron
P[{bi,j}i,j ] to be the polyhedron obtained from P by removing for each column
ci,j all voxels vi,j,q with q > bi,j . For each such polyhedron, we compute (recur-
sively) the size T [{bi,j}i,j ] of the optimal box partition. This gives the optimal
box partition for P = P[{H}i,j ].

We can fill an entry T [{bi,j}i,j ]by considering any box B = [i1, i2]× [j1, j2]×
[k1, k2] that could be part of a box partition of P[{bi,j}i,j ] such that the top face
of B is visible to infinity. In particular, we must have bi,j = k2 and vi,j,k ⊂ P
for all i1 < i ≤ i2, j1 < j ≤ j2, and k1 < k ≤ k2. If this is satisfied, then one
possible value for T [{bi,j}i,j ] is to add one to the value for T [{b′i,j}i,j ] (where
b′i,j = k1 for all i1 < i ≤ i2, j1 < j ≤ j2 and b′i,j = bi,j otherwise).
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Fig. 8. (a) P, with peaks shown as red dots. (b) H, the projection of P to the z = 0
plane, and a partition of H into rectangles. (c) A forbidden corner in H.

There are W 2L2 ∈ O(1) possibilities for i1, i2, j1, j2, and for each of them, we
can find the only possible value k2 in O(W ·L) = O(1) time and all possible values
of k1 in O(H) time. One update to the table can hence be done in O(H) time.
There are O(HWL) table-entries, so the entire dynamic program takes O(HO(1))
time. We may assume that any plane z = i for integral i contains at least one
vertex of P (else we could shrink the polyhedron to obtain a combinatorially
equivalent one) so that H ∈ Θ(n). Therefore we can find the optimal partition
in O(nO(1)) time.

Theorem 4. Given an orthogonal polyhedron P such that two dimensions of P
are bounded, one can compute a minimum box partition of P in polynomial time.

7 Corner Polyhedra

In this section we give a polynomial-time algorithm with approximation factor
2 for partitioning a corner polyhedron into a minimum number of rectangular
boxes. This improves on the approximation factor of 4 for histograms.

A corner polyhedron (as defined by Eppstein [6]) is an orthogonal polyhedron
in which all but three “back” faces are oriented towards the vector (1, 1, 1), i.e.,
visible from a point at infinity on the line x = y = z. See Fig. 8. Without loss
of generality we will assume that the three back faces intersect at the vertex
(0, 0, 0). A corner polyhedron can be drawn in the plane by isometric projection
with all vertices except (0, 0, 0) visible. For any point p = (px, py, pz) inside a
corner polyhedron, the three orthogonal line segments connecting p to the planes
z = 0, y = 0, and x = 0 are contained in the polyhedron. This implies that a
corner polyhedron is a histogram with any of the three back faces as the base.

A peak of a corner polyhedron is a vertex that is a local maximum in the
direction (1, 1, 1). Equivalently a peak is a vertex where the solid angle is 4π/8,
not including the vertices that lie on the axis planes. Let k be the number
of peaks. Observe that the peaks form a set of independent points, thus k is
a lower bound on the number of boxes needed in a partition. We will show
that any corner polyhedron can be partitioned into 2k boxes, which gives the
approximation factor 2.

Lemma 11. A corner polyhedron P with k peaks can be partitioned into 2k
boxes. Furthermore, such a partition can be found in polynomial time.
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Proof. Project P onto one of the axis planes, say z = 0. Call the result H. Then
H is a histogram partitioned into orthogonal polygons that correspond to the
top faces of P.

We claim that each such polygon consists of two monotone chains, each
consisting of edges in the +x and −y directions. See Fig. 8(b). To justify this
claim, observe that if a polygon of H were not monotone then it would have
a vertex v where one edge goes to the left and one edge goes up, as shown in
Fig. 8(c). Let p1 be a point just above and left of v, and let p2 be a point just
above and right of v. Assume that p1 and p2 are the projections of points q1 and
q2 on the surface of P. We consider their z coordinates. If z(q1) > z(q2) then a
line from q1 to the y = 0 plane leaves P, and if z(q1) < z(q2) then a line from
q2 to the x = 0 plane leaves P—a contradiction in both cases.

Given that the polygons of H are monotone, we can partition them into
rectangles by adding, from each peak vertex in H, two vertical (i.e., in the y
direction) segments, one going upwards and one going downwards. Each line
segment stops when it is blocked by the interior of a horizontal edge of H. This
partitions H into at most 2k rectangles. Expand each rectangle into a 3D box
from z = 0 to the maximum possible height. The result is 2k boxes that partition
P. See the final partition of P in Fig. 8(a). ut

Theorem 5. There is a polynomial-time 2-approximation algorithm to partition
a corner polyhedron into boxes.

8 Open Problems

1. Is there a constant-factor approximation algorithm for the case of general
3D orthogonal polyhedra?

2. For histograms, there is a 4-approximation algorithm [8]. Can the approxi-
mation factor of 4 be reduced?

3. For corner polyhedra, we gave a 2-approximation algorithm. Is there a PTAS,
or even a polynomial-time algorithm?

4. What about other special cases of histograms, for example “convex polyhe-
dra”[3] and “orthoballs”[2]?

For all these questions, the concept of independent points may be useful.
While there are histograms for which the optimal box partition has a higher
cardinality than any independent set of points (e.g. the one in Fig. 1(c) has only
three independent points but requires four boxes), the maximum cardinality of
an independent set of points could serve as a lower bound for an approximation
algorithm. Can it be computed efficiently?
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