23
24
25
26
27
28
29

39
40
41
42
43
44

Remediating Superfluous Re-Rendering in React Applications

Anonymous Author(s)

ABSTRACT

React is an extremely popular framework for constructing user
interfaces (Uls). A React Ul is organized as a tree of components,
each of which is defined by a function that returns a literal written
in JSX, a syntactic extension of JavaScript consisting of a combi-
nation of XML tags, executable JavaScript code, and references to
sub-components. React supports incremental re-rendering by main-
taining an in-memory representation of a web page’s Document
Object Model (DOM) and automatically calculating a set of minimal
changes that must be applied to the DOM when state changes occur.
However, React’s semantics are complex and subtle, and program-
mers often write code that gives rise to unnecessary re-rendering,
which hurts performance and responsiveness. We identify 5 React
anti-patterns that give rise to unnecessary re-rendering, present a
static analysis for detecting them, and rewrite rules that suggest
how to refactor the code to improve rendering performance. The
static analysis is potentially unsound, so developers should carefully
review the suggested refactorings. A survey of 7,758 React reposito-
ries showed that 92.1% of them exhibit at least one anti-pattern, and
careful experimental evaluation on 23 React projects revealed that
the suggested refactoring reduces the number of rendering opera-
tions by 33.3% on average while preserving application behavior in
all but one case. With a small increase in code complexity, we find
an average reduction in rendering time of 20.54%, and three case
studies reveal that the refactorings can greatly improve application
responsiveness as the number of components scales.

1 INTRODUCTION

Modern-day web applications are complex pieces of software that
aim to provide a rich user experience. One of the most common
forms of web applications is a single-page application (SPA), where
the content of the current page is updated dynamically instead of
navigating to a new page. This approach enhances efficiency by
eliminating the need to reload the foundational assets of the applica-
tion—such as HTML, CSS, and JavaScript files—during navigation,
thereby streamlining user interactions. This helps applications be
responsive, one of the most desirable properties for user experience.

Building dynamic SPAs is nontrivial, and many UI libraries ex-
ist to help users develop them [1, 12, 17, 21, 23]. Typically, these
libraries drastically change how developers use the language, e.g.,
through intricate APIs and syntactic extensions of the language. In
this paper, we focus on React [21], which is the most widely used
framework for creating SPAs in JavaScript. React is currently the
most popular front-end UI framework for JavaScript and is used
by popular websites such as Instagram, Netflix, GitHub, etc., and
w3techs. com reports that, as of January 2025, 4.7% of all websites use
React [31], including 22 million GitHub repositories [15]. It has also
garnered the attention of the research community [6, 8, 9, 13, 19, 26];
e.g., Madsen et al. specified the formal semantics of React [19].

In React applications, developers define their Ul in a declarative
style. This enables the React engine to compute how much of the UI
needs to be updated, or re-rendered, in response to user interaction.

Unfortunately, the React engine is limited in its ability to detect
situations where re-rendering can be avoided, and, if developers
are not careful, their application may suffer from superfluous re-
rendering, which may reduce responsiveness [9].

Our research aims to reduce the problem of unnecessary re-
rendering in React applications. To this end, we carefully studied
rendering behavior in a corpus of React applications and identified
5 anti-patterns that often give rise to needless re-rendering. We
designed code transformations for each anti-pattern to reduce the
number of rendering operations. We then developed a static anal-
ysis to detect instances of these anti-patterns and rewriting rules
to automate code transformations necessary to eliminate them.
Given the extreme dynamism of JavaScript, the static analysis is
unsound and may potentially suggest transformations that change
program behavior. Therefore, similar to recent work on refactor-
ing for JavaScript [16, 28, 29], the code transformations should be
viewed as suggestions that should be reviewed by a developer. The
technique was implemented in a tool named Reactor that we plan
to make available as open-source software in the near future.

An empirical evaluation of Reactor on 23 subject React applica-
tions revealed that the refactorings proposed by Reactor reduced
the total number of rendering operations by 33.3% on average and
did not introduce any behavioral differences in all but one trans-
formed application. This reduction in renders results in 20.54% less
time spent rendering on average, and an additional set of experi-
ments on three applications with a scalable number of components
shows appreciable improvements in application responsiveness as
the number of components increases. The refactorings also only
contribute to a modest increase in code complexity. In another ex-
periment, the anti-pattern detection queries were run on a corpus
of 7,758 React repositories. This experiment identified instances
of the anti-patterns in 92.1% repositories, providing evidence that
these anti-patterns are prevalent beyond the subject applications
studied in the empirical evaluation.

In summary, the contributions of this paper are:

(1) The identification of a set of anti-patterns that often give
rise to unnecessary re-rendering in React applications,

(2) A static analysis for detecting anti-pattern instances and
rewriting rules describing remedial code transformations,

(3) An implementation of the static analysis and rewriting
rules in an automated tool called Reactor, which we plan to
release as open-source software, and

(4) An empirical evaluation of Reactor on 23 subject appli-
cations, demonstrating that it reduces the total number of
rendering operations in most cases.

This paper is organized as follows. Section 2 provides background
on React. Section 3 presents a motivating example that exhibits su-
perfluous re-rendering and its remediation. Section 4 describes the
identified anti-patterns. Section 5 describes our static analysis and
code transformation techniques. Section 6 presents our evaluation.
We discuss potential limitations in Section 7 and related work in
Section 8. We conclude with a summary of our findings.

59
60

61

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

106

107

108

109

110

111

112

114

115

116

117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149

150

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173

174

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

2 BACKGROUND

React [21] is a powerful JavaScript library for building interactive
User Interfaces (UIs) that has been embraced enthusiastically by
the web development community.

Components. A React application comprises a collection of com-
ponents corresponding to elements of an application’s UL By struc-
turing Uls in this way, developers can build complex UIs from
simple, modular pieces, facilitating reuse. React components can
be functions or classes. We only consider functional components,
which is currently the preferred mechanism.

React syntax. React applications are typically written in JSX!, a
syntactic extension of JavaScript in which XML values may occur
as literals®. JSX literals can be turned into template literals that
contain placeholders consisting of a JavaScript expression sur-
rounded by curly braces. At run time, such embedded expressions
are executed to obtain concrete values with which the template
is instantiated, resulting in concrete HTML values that a browser
can render. An embedded expression that evaluates to an array is
turned into a sequence of HTML elements. Syntactically, functional
React components are simply JavaScript functions that return a JSX
literal. Figure 1(a) shows an example React application consisting of
two components, CounterButton and counter. The CounterButton com-
ponent consists of a header containing a text message followed by a
simple button, which is expressed by the JSX literal on lines Lines 2-
3. A React component may include another React component by
simply referring to the latter’s name between angular brackets,
called a JSX tag. In the example, the Counter component defines a
UI element that contains a text form in which users can enter their
name, followed by a CounterButton’s JSX tag (lines 11-19).

State and Props. React components may have state, i.e., values
that persist until explicitly changed or the component is destroyed.
State elements are declared by invoking React’s useState function,
which takes the initial value as an input and returns the state and
a state-setter function that must be used to change the state. E.g.,
the Counter component maintains counter and name as its state. On
lines 5-6, these are initialized to the values ¢ and ’Guest’, and on
lines 8, and 9 the setCount, and setName state-setters are invoked.

Components may pass values—commonly referred to as prop-
erties or props in React parlance—to their sub-components (also
known as their child components) by including them as key-value
pairs when referencing the sub-component. For example, on lines 16—
18, the counter component passes values to counterButton bound to
its props message and onClick, S0 CounterButton is a child of counter.

Rendering. Rendering a React component involves executing its
code to produce HTML. A component re-renders if its state, or one
of its ancestor’s state, changes. One of the key strengths of React
is its support for incremental re-rendering of an application’s UL
The virtual DOM (VDOM) is central to this efficiency. The VDOM
is a simplified, in-memory representation of the actual Document
Object Model (DOM). Unlike the DOM, a complex, live structure ren-
dered by the browser, the VDOM is a lightweight abstraction that
allows React to perform updates efficiently. When a state change oc-
curs, React creates a new version of the VDOM. This new version is

18X is an acronym for “JavaScript XML”.
ZReact applications can also use TSX, an equivalent extension of the TypeScript.

Anon.

then compared to the last snapshot of the VDOM, a process known
as diffing. During diffing, React identifies the exact differences
between the old and new VDOMs and computes the minimal set
of changes needed to update the actual DOM in a process referred
to as reconciliation. This selective update process ensures the
browser re-renders only the changed parts of the DOM rather than
the entire DOM. This targeted updating enhances performance sig-
nificantly by reducing the amount of DOM manipulation required,
as browser re-rendering is time-consuming.

State Management. React applications adopt a centralized state
management approach where the nearest common ancestor compo-
nent maintains the state needed by several sub-components. This
ancestor makes the state accessible to its children, passing it as
props in their JSX tags. This may include event handlers, allowing
child components to update the state also accessed by its parent
and/or sibling sub-components. Consequently, any change in the
ancestor’s state prompts re-rendering of the ancestor and its descen-
dants, ensuring UI consistency across the component hierarchy.

This is demonstrated in the example snippet, where counter com-
ponent passes handleClick, a function that uses setcount to update its
state, as the onClick prop to its child (Figure 1(a), line 18). When the
button is clicked, onclick handler of the <button> element invokes the
handlecClick function from the counter component. Inside handleclick,
the setCount state-setter is called, causing the counter component to
be re-rendered. As a descendant, the CounterButton component also
re-renders, ensuring the Ul reflects the updated state.

Hooks. React’s diffing and reconciliation mechanisms aim to en-
sure efficient updates to the DOM. However, as we shall see in
Section 4, React may occasionally re-render components unnec-
essarily, i.e., without causing changes in the DOM. Fortunately,
React provides a number of mechanisms for functional components
that provide more fine-grained control over the rendering process.
These are known as hooks because they enable one to “hook into”
React’s state and life-cycle management. The usestate function we
saw previously is an example of React hooks and provides access
to a component’s state. We now discuss a number of other hooks.

o useRef enables value persistence across rendering operations
without triggering a re-render when the stored mutable value
is updated. This hook is commonly used to keep a reference
to a DOM element or to keep track of mutable data whose
change does not require a re-render of the component. It
returns a reference object with a .current property where the
stored value can be accessed or modified.

e Memoization is a performance optimization technique for
preventing unnecessary re-rendering by performing a shallow
comparison between the current and new props and only re-
rendering the component if there is a difference. A functional
component can be memoized by wrapping it in React.memo®.
React maintains a copy of the VDOM for comparison, so
memoization does not incur a significant overhead.

3React.memo is a higher-order component that enhances a functional component
by wrapping it. Wrapping in this context means that React.memo takes the original
component as an argument and returns a new component with added functionality.

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231

232

233
234
235
236
237
238
239
240

242
243
244
245
246
247
248
249
250

251

253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

278
279
280
281
282
283
284
285
286
287
288
289

290

Remediating Superfluous Re-Rendering in React Applications

1 function CounterButton({ message, onClick }) {
2 return (<div><h1>{message}</h1>

3 <button onClick={onClick}>Click me!</button> </div>);}
4 function Counter() {

5 const [count, setCount] = useState(0);

6 const [name, setName] = useState('Guest');

7 const handleClick = () => {

8 setCount(count + 1); };

9 const handleNameChange = (e) => { setName(e.target.value); };
10 return (

11 <div>

12 <input type="text"

13 value={name}

14 onChange={handleNameChange}

15 placeholder="Enter your name" />

16 <CounterButton

17 message={ Hi ${name}, you clicked ${count} times. }
18 onClick={handleClick} />

19 </div>);} (a)

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

const CounterButton=React.memo(({message, onClick})=>{

return (<div><h1>{message}</h1>

<button onClick={onClick}>Click me!</button></div>);}

function Counter() {

const [count, setCount] = useState(?);

const nameRef = useRef('Guest');

const handleClick = useCallback(() => {

setCount((prevCount) => prevCount + 1);3}, [1);

return (
<div>
<input type="text"
ref={nameRef}

placeholder="Enter your name" />
<CounterButton
message={ Hi ${nameRef.current.value}, you clicked ${count} times. }
onClick={handleClick} (i;
</div>);})

Figure 1: (a) Example React application. (b) Optimized version where components are re-rendered less often.

e React’s useCallback hook memoizes functions within compo-
nents: it returns a version of a callback function that only up-
dates when its dependencies (specific states or props that, if al-
tered, necessitate an update) change. This is useful when pass-
ing callbacks to child components, specifically those wrapped
in React.memo, which compares props by reference. By keeping
the function reference unchanged across re-renders, usecallback
helps prevent child components from redundant re-rendering.

Figure 1(b) shows a variation of the example of 1(a) that uses
these useRef, useCallback, and React.memo functions. On line 6,
useRef is used to initialize a variable nameRef to “Guest”. This ref-
erence tracks the user’s name from the input element (line 13),
updating as the input value changes. These updates do not trigger a
component re-render on every key press. Instead, the updated value
becomes visible only after the counter component re-renders, which
occurs upon a button click. Figure 1(b) also illustrates memoization:
the child counterButton is wrapped in React.memo (line 1), signaling
React to bypass re-rendering it if the current and new props are
the same. Also, the handleclick function is wrapped in usecallback
(line 7) to ensure that the reference to the onclick prop remains the
same when its parent component Counter re-renders.

Having these memoization steps applied, the counterButton com-
ponent will not re-render if counter updates without altering message
or handleclick. This example highlights the two different ways of
handling form data in React. Figure 1(a) presents an example of a
controlled component, where the React component’s state handles
form data. On the other hand, Figure 1(b) presents an instance of
an uncontrolled component where the DOM handles form data.

3 MOTIVATING EXAMPLE

Figure 2(a) shows a screenshot of Calculadora [2], a basic open-
source calculator built using React in which needless re-rendering
occurs. We developed a profiling tool that highlights re-rendered
components by drawing a red box around them. The screenshot
shows the Ul while running it with our re-rendering profiler after
the user has entered a formula 2+2. In Figure 2(a), each button is
surrounded by a red box, indicating that it was re-rendered. Intu-
itively, one would expect only the display to be re-rendered when
a button is pressed and the buttons’ Ul could remain unchanged.

2*2 2*2

= 0 " i/

Clear

(b) After transformation

(a) Before transformation

Figure 2: Re-render comparison before vs. after memoization when a
button is clicked, red indicating components that were re-rendered.

To understand why the buttons re-render, we review the rel-
evant code in Figure 3(a). Each button is represented by a Button
component, and the calculator’s display is modeled by a Screen
component, all of which are children of a top-level App component.
App maintains an input state, representing screen’s content, used for
performing calculations. On lines 4-5, function addInput is declared
that concatenates a value to the input. This function is passed as
the handleclick prop to each Button. Hence, clicking a button will
invoke addInput, causing App’s state-setter setInput to be invoked. As
we discussed in Section 2, any update to the App component’s state
triggers re-rendering of all its child components.

Inspecting the code reveals that Button does not have mutable
state of its own and that the same function, addInput, is always passed
as a property. In such cases, React’s memoization mechanism can
be employed to prevent unnecessary re-rendering. This requires
the two transformations shown in Figure 3(b):

o The Button component is memoized using React.memo (line 11).
This instructs React not to re-render it when its parent App
does, provided that the same props are passed.

o The addInput function passed as a prop from App to Button is
memoized using useCallback (line 4). Without memoization,
App recreates the addInput function on each re-render, thereby
creating a new reference for the same function. Wrapping the
function in usecallback and passing in an empty dependency
list circumvents this, thus avoiding unnecessary re-renders.

291
292
293
294
295
296
297
298
299

300

302
303
304

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334

336
337
338
339
340
341
342
343
344
345
346
347
348

362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

1 import { useState } from 'react';

2 function App() {

3 const [input, setInput] = useState('');
4 const addInput = val => {

5 setInput(input + val); };

6 // ...

7 return (/* ... */

8 <Screen input={input}/>

9 <Button handleClick={addInput}>1</Button>
10 /% .. 0%/)5}

11 function Button(props) { /* ... */ }

(@)

Anon.

1 import { useState, useCallback } from 'react';
2 function App() {

3
4
5
6
7
8
9

10

const [input, setInput] = useState('');
const addInput = useCallback((val) => {
setInput((currentInput) => currentInput + val); 3}, [1);
/] ...
return (/x ... */
<Screen input={input}/>
<Button handleClick={addInput}>1</Button>
/% oo%/)3}

11 const Button = React.memo(function Button(props) { /* ... */ }

Figure 3: Example: unnecessary re-rendering in Calculadora. (a) Non-memoized. (b) Memoized.

We tested the optimized code and confirmed that extra re-renders
were eliminated while preserving application behavior, evidenced
by the absence of red borders around buttons in Figure 2(b). Elimi-
nating these re-renders results in 31.3% less time spent on average
rendering the application when a button is pressed.

4 ANTI-PATTERNS

The example laid out in the last section is an example of a broader
anti-pattern that leads to re-rendering, and this section describes
our methodology for identifying other such common anti-patterns
that give rise to needless rerendering in React applications.

4.1 Anti-pattern detection Methodology

To identify anti-patterns, we randomly sampled 10,000 GitHub
repositories that listed React as a dependency. We attempted to
build the CodeQL [14] databases for these repositories, which suc-
ceeded for 7,758 repositories. Repositories for which we could not
build a CodeQL database were excluded from further analysis, as a
database is required to run our analysis queries. We wrote a static
analysis using CodeQL to identify React components where at least
one child component did not depend on all of its parent’s state,
representing likely scenarios with needless re-rendering. We ran
this static analysis on the 7,758 repositories, which identified 2,047
repositories for further analysis.

To construct a set of repositories for manual investigation, we
iteratively sampled from the 2,047 candidates and applied a series
of filtering criteria. A repository was retained only if it (1) was
still available on GitHub, (2) could be built and installed locally, (3)
could be executed and interacted with, (4) exhibited visual indica-
tions of unnecessary re-rendering (as indicated by the profiler tool)
despite no visible change in its appearance, and (5) did not require
significant structural changes due to excessive code complexity or
deep reliance on external libraries. This process continued until
we observed the same anti-patterns emerging repeatedly, at which
point we considered the search saturated.

In cases where remediating re-rendering did not require such
significant changes, we studied and attempted to remediate the
observed re-rendering manually. This filtering process yielded 40
repositories suitable for detailed analysis, of which we found and
fixed unnecessary re-rendering issues in 14.

4.2 Anti-Pattern 1: Controlled Component

Figure 1(a) shows an example of a controlled component (counter)
declaring a state variable name and an associated setter setName (line 6).
In the JSX returned by this component, name is referenced on line 13

and setName is invoked through handleNamechange on line 14. Here,
each update to the input element will cause the component to re-
render because one of its state-setters is called. E.g., in Figure 1(a),
each keystroke triggers a re-render, which is unnecessary.

To avoid unnecessary re-rendering in this type of scenario, one
can rewrite the application so that the DOM handles the form data.
This approach, commonly referred to as an uncontrolled component,
is illustrated in Figure 1(b), and involves using React’s useref hook
to create a reference object with a “.current” property, allowing val-
ues to persist across re-renders without triggering new re-renders
when modified. Now, changing the controlled component of Fig-
ure 1(a) into an uncontrolled component of Figure 1(b) involves
the following changes: (i) importing the useref hook, (ii) creating a
reference nameref for the input element (line 6), (iii) extending the
form with a reference ref attribute bound to the reference nameref
(line 13), and (iv) getting/setting the value of the input element by
accessing it via the reference object (line 17).

4.3 Anti-Pattern 2: State Var. not Affecting Ul

Developers may use state variables for internal logic rather than
updates to the UI, which may cause components to re-render un-
necessarily. Figure 4(a) shows a component CompFuncCiclovida, taken
from one of the 14 repositories under study (16-feb-react-grupo-1).
Here, the mivariable state variable does not impact the UI, but it is
updated by a state-setter in the updatevar function (line 6), which is
bound to the button’s onclick handler (line 9), the compFuncCiclovida
component is re-rendered after each button click.

In such cases, the problem can be remediated by using React’s
useRef hook to introduce a reference object so that changes to the
variable’s value no longer cause re-rendering. Figure 4(b) shows
how the code of Figure 4(a) can be transformed to prevent the un-
necessary re-rendering by: (i) importing the useref hook (line 1), (ii)
replacing the declaration of the target state variable with a reference
object (line 3), and (iii) replacing any access to (or modification of)
that state variable with access to (or modification of) the “.current”
property of the reference variable (lines 6, 7, 8).

4.4 Anti-Pattern 3: Propless Child Component

As outlined in Section 2, re-rendering a React component causes all
its descendent components to re-render to guarantee UI consistency.
In cases where components do not receive props, they inherently
exhibit no change in their rendered output upon parent component
re-rendering. Memoizing a prop-less component means that the
shallow comparison of props trivially succeeds (given that there
are none), enabling React to bypass the re-rendering process.

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463

464

465
466
467
468
469
470
471
472
473
474

476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494

495

Remediating Superfluous Re-Rendering in React Applications

1 import { useState, useEffect } from "react"
2 const CompFuncCicloVida = () => {

3 const [miVariable, setMiVariable] = useState<boolean | undefined>()

4 /.

5 const updateVar = () => {

6 setMivariable((val) => {

7 if (typeof val === "undefined") return true

8 return !val });}

9 return (<div><button onClick={updateVar}> Actualiza </button></div>)}
(@

R N T

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

import {useState,useEffect,useRef} from "react"
const CompFuncCicloVida = () => {
const miVariableRef = useRef<boolean | undefined>()
/...
const updateVar = () => {
miVariableRef.current =
typeof miVariableRef.current==="undefined"
? true : !miVariableRef.current }
return (<div><button onClick={updateVar}> Actualiza </button></div>)}

(b)

Figure 4: pattern State Variable not Affecting UI example: (a) Uses state. (b) Uses reference.

4.5 Anti-Pattern 4: Child Component with
Object or Array Element Prop

Figure 5(a) shows a Tic-Tac-Toe game implementation exhibiting
this anti-pattern. Here, the App component defines the game’s grid
structure, with a Square component for each grid square which
receives a value prop that is either “X”, “O”, or empty. Each square’s
value comes from the squares array (a state variable in App) and
changes only once, even though squares is updated with each action.

Each time a player clicks a square in the game grid, the onclick
handler, bound to the handleclick prop received from the App com-
ponent, is called, which calls the setSquares state-setter in turn and
triggers App to re-render. Hence, in accordance with React’s strategy
of re-rendering all child components when a parent component
re-renders, all Squares re-render when their parent App re-renders.

Figure 5(b) shows how re-rendering can be prevented. Here,
Square is wrapped in React.memo (line 1), signaling React to bypass
re-rendering of Square components with unchanged props. Since
each square’s value prop only changes when it is first clicked, this
prevents re-rendering of the non-clicked squares as long as the
value passed to handleClick also remains unchanged.

4.6 Anti-Pattern 5: Child Component with
Function Prop

Figure 3 shows an example where a parent component App passes the
addInput function as handleclick prop to its child component Button
(line 9). When a button is clicked, the handleclick handler invokes
addInput, which in turn calls App’s setInput, triggering a re-render
of app. However, functions defined in a component are re-defined
each time it is rendered. Consequently, all buttons re-render, even if
Button is memoized, because addInput is recreated on each re-render
of App, passing new references to the Button instances.

In such cases, wrapping a function in usecallback ensures that
its identity remains unchanged across re-renders unless its depen-
dencies, specified in the dependency array, change. As a result,
utilizing the usecallback React hook can prevent these redundant re-
renders by preserving the reference of the handler function across
re-renders. Figure 3(b) shows how the code can be rewritten using
a memoized handler(line 4) to avoid the unnecessary re-rendering.
In particular, by memoizing both the Button component (line 11) and
its handleClick prop ensures that only the clicked button re-renders,
preventing unnecessary re-renders of the other buttons.

5 DETECTING AND REMEDIATING
ANTI-PATTERNS

The previous section used code examples to illustrate a number of
anti-patterns that give rise to needless re-rendering along with the

code changes required to remediate them. This section defines the
anti-patterns and changes more formally through a set of declara-
tive rewrite rules. Our tool (Reactor) implements the static analyses
and code transformations required to realize these rewrite rules.

5.1 Rewrite Rule Syntax

The general format for a rewrite rule is as follows:

preconditions

(RULE-NAME)
old code — new code

The premise of the rule includes preconditions that must be met
in order for the transformation to take place. These preconditions
represent some facts obtained using static data flow analysis or
analysis of the AST. In formulating the rules, we will rely on auxil-
iary functions such as replaceExpr(4, e, ¢’), which takes some AST
node A and replaces occurrences of expressions e with e¢’. We will
also introduce similar auxiliary functions such as replaceCalls for
call sites, replaceDecl for declarations, and so on.

5.2 Controlled Component

Rule CONTROLLED-COMPONENT is concerned with transforming
controlled components into uncontrolled components and applies
to a set of import statements I and a React component F with a
body B, denoted by I ... function F (...) B. Reading the rule from
top to bottom, the rule states that the body B of the component
contains a declaration D of a state variable v, with associated state
setter sety, that is initialized to e. Moreover, F’s return expression
contains a JSX fragment R; corresponding to either a Form or Input
component, where a function f is passed as a change handler. No-
tably, f calls the state setter sety. As is the case with all subsequent
rules, these facts are all computed using static analysis.

Then, a new declaration D’ is defined for a reference variable
Vref (also initialized to e); a new JSX fragment R;. is obtained from
R; by replacing the onChange attribute with a ref attribute that
refers to vpef. The body is then modified several times, in order: B’
from B where the new fragment R} replaces Rj, B”” from B’ where
the new reference variable declaration D’ replaces the old state
variable declaration D, B’”’ from B’ where references to the state
variable v are replaced with accesses to the “current.value” property
of the new reference variable v qf, and finally B”” from B"”” where
calls to the state setter sety are replaced with assignments to the
new reference variable v .. The set of imports is expanded to
include an import to "useRef’, and thus the transformed code is
given by I’ ... function F (...) B”".

533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610

612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637

638

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

1 function Square({handleClick, value}) { /* ... %/ }

2 function App() {

3 const [squares, setSquares] = useState(Array(9).fill(null));

4 /7 ...

5 return (/* ... */

6 <Square value={squares[0]} handleClick={() => handleClick(@)} />
7 VA Y

8)3} ()

1
2
3
4
5
6
7
8

Anon.

const Square = React.memo(({handleClick, value}) => { /* ... %/ }
function App() {

const [squares, setSquares] = useState(Array(9).fill(null));

/7 ...

return (/x ... */
<Square value={squares[0]} handleClick={() => handleClick(®)} />
/xooo0ox/

B! (b)

Figure 5: pattern Child Component with Object or Array Element Prop example: (a) Non-memoized. (b) Memoized.

B contains declaration D = const [v, sety | = useState(e)
returnExpr(B) contains Rj = <N ..., onChange = f, ...>
NisaFormorInput f calls sety
D’ = const vper = useRef(e)
R} = replaceAttr(R;,onChange = f,ref = ver)
B’ = replaceExpr (B, Rj, R}) B’ =replaceDecl(B’, D, D’")
B’ = replaceVarRefs(B”, v, vi.of.current.value)
B = replaceCalls(B"", sety(e),Vrer = €)
I’ =1V {import {useRef} from’react’}
I...functionF(...) B — I’ ... function F (...) B"””
(CONTROLLED-COMPONENT)

F is a React component
I’ =TV {import {memo} from’react’}

I...functionF () B — I’ ... const F = memo(function() B)

(PROPLESS-COMPONENT)

B contains function declaration D = function f (...) B¢
B contains component definition C = function N (...) By
returnExpr(B) contains <N ..., attr = f,..>
L = all state variables referenced in B¢
D’ = const f = useCallback(function (...) Bf,L)
C’ = const N = memo(function (...) By)
B’ = replaceDecl(B,D,D’) B’ = replaceDecl(B’,C,C")
I’ =1U {import {useCallback,memo} from’react’}
I... functionF(...) B — I’ ... function F (...) B
(FUNCTION-PASSED-As-PROP)

B contains declaration D = const [v, sety] = useState(e)
no data flow from v to returnExpr(B)
D’ = const vpef = useRef(e)
B’ =replaceDecl(B,D,D’)
B’ = replaceVarRefs(B’, v, vpef.current)
B’ = replaceCalls(B", sety (e),Vrer = €)
I’ =1U {import {useRef} from’react’}

I ... functionF(...) B = I’ ... function F (...) B””

(STATE-NOT-AFFECTING-UI)

F is a React component
3 <F...,p=e, ..> | e=v.fore=v[i] for some state variable v
I’ =1U {import {memo} from’react’}
I...functionF(...) B — I’ ... const F = memo(function(...) B)
(MEMOI1ZE-COMPONENT-INDEXES-STATE)

B contains declaration D = const [v, sety] = useState(e)
B contains component definition C = function N (...) By
returnExpr(B) contains <N ..., attr = sety,...>
C’ = const N = memo(function (...) By)

B’ =replaceDecl(B,C,C”")

I’ =1U {import memo from'react’}

I...functionF (...) B — I’ ... function F (...) B/

(SETTER-PASSED-As-PRroP)

Figure 6: Rewrite rules describing the remedial code transformations.

5.3 State Variable not Affecting UI

Many of the code transformation steps for this rule are shared with
the previously discussed rewrite rule, and we will not discuss them
in detail here. The primary difference lies in the second clause: the
code should be transformed if there is no data flow between a state
variable v and the return expression of component F (i.e., the state
variable is not passed as a prop to any returned component).

5.4 Propless Child Component

Rule PropLESs-COMPONENT describes the memoization of propless
React components. Here, F is a React component, and the (function)
component declaration is transformed into an assignment wrapping
the function in a call to memo (as memo cannot be directly called on
function declarations), and as before the imports must be extended
to import memo from ’react’.

5.5 Child Component with Object or Array
Element Prop

Rule MEMOI1ZE-COMPONENT-INDEXES-STATE applies to situations
where one of a component’s props receives data from a state vari-
able through property access or array access to that variable. Note
that F is a React component. If there exists an instantiation <F...,p =
e, ...> of this component anywhere in the project where some prop
p is passed either a property access v.f or index into an array v[i]
of some state variable v, then the component should be memoized.
As in the previous rewrite rule, the component is memoized by

transforming the function declaration into an assignment of a func-
tion literal, where the function creation is wrapped in memo. As
before, the imports I are updated to import memo.

5.6 Child Component with Function Prop

For the last anti-pattern, we distinguish two cases: (a) a locally
declared function is passed as a prop to a child component, and (b)
a setter function is passed as a prop to a child component.

Rule FUNCTION-PASSED-As-ProP applies when a function is
passed as a prop to a component. Here, function body B contains
both a function declaration D for a function f and a React com-
ponent declaration C for a component N. The return expression
of B contains a JSX expression that instantiates the component N,
and notably, that instantiation receives f as a prop. To remediate
this anti-pattern, first, the list L of “dependencies” of f is obtained,
consisting of all state variables that are referenced in the body of
f. Then, D’ is a new declaration that wraps the creation of f in
useCallback, and this call to useCallback also takes L as an argu-
ment. Moreover, C’ is a declaration of N that also memoizes N. Two
transformations are then applied: B’ is obtained from B where the
function declaration D is replaced with D’, and B” from B’ where
the component declaration C is replaced with C’. The imports [
are extended with imports to useCallback and memo, giving I’,
and the final code is given by I’ ... function F (...) B”. (Note that
the transformation can span multiple scopes or even files, and this
simplified version is shown for illustrative purposes.)

639
640
641
642
643
644
645
646
647
648
649
650

652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695

696

697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

Remediating Superfluous Re-Rendering in React Applications

Finally, rule SETTER-PASSED-As-Prop applies when a function
passed to a component is a state setter. Remediating this anti-pattern
is similar to the above case, except that the setter does not need to
be wrapped in useCallback. In body B, a state variable is declared
(denoted D, with state setter sety) and a component N is declared
(C). Here, the component is instantiated with set, passed as a
prop (see <N ..., attr = sety,...>). To remediate the pattern, the
declaration of component N is wrapped in a call to memo (C’), and a
new body B’ is obtained from the old B by replacing the declaration
C with C’. I’ is obtained from I by adding an import to memo, and
the transformed code is given by I’ ... function F (...) B'.

5.7 Implementation

These rewrite rules were implemented in a tool called Reactor. The
implementation leverages the CodeQL [14] static analysis frame-
work to detect the anti-patterns and to collect the data flow informa-
tion required for the remedial program transformations, which are
implemented using JavaScript’s Babel parsing and AST infrastruc-
ture. More precisely, CodeQL queries compute all of the precondi-
tions of a rule, and the JavaScript rewrite tool takes this information
to transform the code. Our tool is available at this Zenodo link.

6 EVALUATION

This evaluation aims to answer the following research questions:

e RQ1 How prevalent are the anti-patterns?

¢ RQ2 How often do the automated transformations intro-
duce behavioral differences?

e RQ3 How do the transformations impact the number of
re-rendering operations?

o RQ4 What is the impact of the transformations on perfor-
mance?

e RQ5 What is the impact of the transformations on code
complexity?

e RQ6 What is the cost of the analysis?

In this Section, we start by depicting the experimental methodol-
ogy, clarifying the subject selection process for our analysis in Sec-
tion 6.1. We then attempt to answer each of the research questions
with the dedicated corpus for analysis in the following subsections.

6.1 Experimental Methodology

To answer RQ1, we ran the anti-pattern identification queries we
developed on all 7,758 repositories. RQs 2, 3, 4, and 5 however,
cannot be answered “at scale” like RQ1. Although applying the
analysis and transformations requires no manual effort, confirming
that no behavioral differences were introduced and checking if
the number of needless re-renders decreased is a manual effort.
Therefore, we attempted to select a subset of that corpus whose
results could be representative of the overall results.

Our evaluation set began with the 14 repositories described in
Section 4, which we had previously analyzed and manually fixed.
These projects provided a basis for evaluating the effect of Reactor
on repositories that we had already verified to be fixable manu-
ally. To assess generalizability, we then augmented this set with
repositories that had not been seen during manual exploration.

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

We returned to the full list of 10,000 repositories and identified 75
that had published at least one release containing a downloadable
asset, indicating some level of real-world usage.

Reactor detects at least one anti-pattern in 57 of these projects.
From these, we randomly sampled repositories until we found 9
(that did not use class components) that we could install, build, set
up, and run locally. We used the Chrome Dev Tools React toolkit (the
Components and Profiler tabs) and our own React Dynamic Profiler
to observe and understand an application’s rendering behavior.

In total, we evaluated 23 repositories: the original 14 manually
analyzed projects, and an additional 9 previously unseen reposito-
ries selected through the process above.

We took the following steps to answer each research question:

e For RQ1, we developed CodeQL [14] queries to identify each
of the anti-patterns specified in Section 5. This large-scale
analysis was done on the corpus of 7,758 repositories. (These
CodeQL queries are available in the appendix.)

e RQ2 and RQ3 require non-trivial manual effort; RQ2 requires
manual inspection of projects pre- and post-refactoring. For
RQ3, we instrumented the code to count how often a compo-
nent renders before and after refactoring. Since many React
projects lack tests, we created one “scenario” per studied appli-
cation interacting with at least one component exhibiting an
anti-pattern. We then carefully compared the application’s be-
havior and the number of renders before and after refactoring
for 23 subject repositories.

o For RQ4, we used the Chrome Dev Tools React Profiler tab to
compute the amount of time taken to render when following
the aforementioned scenarios for the 23 subject applications.
In addition, we collected three additional applications with a
scalable number of components to investigate the impact of
re-rendering on performance as applications scale.

e For RQ5, we used escomplex [3] to measure different code
complexity metrics such as SLOC, Cyclomatic complexity, and
Halstead Complexity, both before and after transformation for
the 23 subject repositories.

o Finally, for RQ6, we measured the time to run Reactor on the
smaller set of 23 applications using the Unix time utility. We
also timed the most time-consuming step of the analysis in a
larger-scale study over the full set of 7,758 databases.

All the CodeQL queries were run, using npm version v9.6.6,
Node.js version v18.16.0, and CodeQL version v2.17.2.

6.2 RQ1: How prevalent are the anti-patterns?

We ran the anti-pattern detection queries on the corpus of 7,758
projects, and we found at least one instance of an anti-pattern in
92.1% of projects. The anti-patterns appeared as follows: Controlled
Component in 30.4% of applications, State Variable not Affecting UI
in 42.7%, Propless Child Component in 91.2%, Child Component with
Object or Array Element Prop in 6.3%, and Child Component with
Function Prop in 36.7%. These results indicate that the anti-patterns
occur frequently in real-world React applications.

A project needs at least one release (made up of one or more assets, e.g., a zip file of
source code) with at least one downloaded asset. This is quite restrictive, as it indicates
the project has at least one official release that has garnered some attention; in our
experience, the vast majority of React projects on GitHub do not meet this standard.

760
761
762
763

764

766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811

812

https://doi.org/10.5281/zenodo.16129074

814
815
816

817

832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851

852

859
860
861
862
863
864
865
866
867
868

869

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

Anon.

Table 1: Overview of results. The first row of the table reads: in 16-feb-react-grupo-1, 0 instances of anti-pattern P1, 1 of P2, 11 of P3, 0 of P4,
and 1 of P5 were detected. The number of component renders in the scenario we studied was reduced by 16% after refactoring. Rendering
operations took on average 4.83ms before, and 4.45ms after refactoring; an improvement of 7.9%. It took 6s to build the CodeQL database, and
688s to run all queries for this application. The cyclomatic complexity changed from 325 to 338 after refactoring. Bold numbers in % Time
Saved indicate a statistically significant difference between performance before and after refactoring. We omit render reductions and time
spend rendering for TwitchKillMe as behavioral differences were observed in this application.

Anti-pattern Detected Render || Avg. Time Rendering (ms) | % Time Cyclomatic Analysis time (s)

Subject Repository Name P1 | P2 | P3 | P4 | P5 || Red. % || Before After Saved || Before | After || DB Build | Query
16-feb-react-grupo-1 0 1 11 0 1 16% 4.83 4.45 7.9% 325 338 6 688
26-react-star-wars-hooks 0 0 8 0 1 20% 7.72 7.43 3.8% 205 271 5 852
30days-30projects 9 12 | 38 1 1 50% 51.61 27.87 46% 1107 1131 7 852
age-react 0 0 3 0 2 50% 30.68 22.38 27.1% 164 164 5 672
Al-chat-powered-by-open-ai-api-react-node 1 0 1 0 0 71% 9.06 1.54 83% 82 82 5 688
API-Search 1 0 2 0 2 12% 13.04 13.14 -0.8% 196 207 6 852
Calculadora 0 0 1 0 2 66% 20.37 13.99 31.3% 52 50 5 800
CashTrackr 0 0 1 0 3 00% 14.15 14.94 -5.6% 153 164 5 852
CRUD-Context-React 0 0 4 0 2 22% 48.67 46.78 3.9% 235 235 6 792
hackaton-euraz-2023 0 3 4 0 0 12% 83.22 38.38 53.9% 765 740 8 831
hacker-news-app-2023 1 1 2 0 0 15% 12.98 9.45 27.2% 79 79 5 852
healthCare 13 14 | 39 0 0 23% 155.7 122.4 21.4% 919 964 5 672
honey-rae-repairs 10 4 22 0 3 93% 24.85 5.58 77.5% 416 284 6 835
hooksMixed-1 0 0 2 0 0 67% 5.81 4.21 27.5% 78 78 5 826
TypeWriter 0 1 37 0 4 22% 24.82 24.63 0.8% 616 730 13 703
farm-ng-core 0 0 3 0 0 68% 95.42 97.14 -1.8% 6 28 7 604
css-fx-layout 0 1 5 0 0 47% 24.65 24.93 -1.1% 50 65 6 1164
chicken-coop 2 3 7 0 0 54% 6.74 5.53 18% 172 164 7 605
Fokasu 0 0 1 0 1 57% 17.9 18.02 -0.7% 85 85 8 687
laser-shooting 0 0 3 0 0 00% 207.14 219.13 -5.8% 444 444 10 1098
csi-conference-frontend 0 2 13 0 0 01% 57.89 57.13 1.3% 230 351 7 623
baklava 0 0 1 0 0 00% 0.52 0.46 11.5% 3 3 11 700
TwitchKillMe 0 1 2 0 0 - - - - 85 67 7 688

\ Average [16]18]91]00[09] 333% [4025 | 34.08 [2054% | 281.17 [29235 [67 [7798 |

This paper presents five anti-patterns that were identified by
manually inspecting 40 repositories. This paper is the first work to
characterize anti-patterns leading to needless re-rendering. In the
absence of ground truth, it is difficult to gauge the exhaustiveness
of the anti-patterns presented in this paper. However, we observed
that these five anti-patterns are extremely prevalent, as 92.1% of
the 7,760 repositories we studied exhibited at least one.

92.1% of the 7,758 studied React applications under consideration
exhibit at least one anti-pattern.

6.3 RQ2: How often do the transformations
cause behavioral differences?

We manually examined each application’s behavior before and after
refactoring to ensure the transformations did not introduce differ-
ences. We opted for a manual approach since Ul-based applications
are generally not well-tested, given the complexity of simulating
human interaction in tests. The goal of our manual interaction is
to simulate a simple interaction to exercise code affected by our
transformations and not to emulate the full use of an application.
To do so, we explored every page of the application, interacting
with every interactive element, exercising all transformed code. A
step-by-step account of these interactions appears in the appendix.

After careful analysis of all applications, we only observed one
behavioral difference in the TwitchKillMe project. Upon inspection
of the code, we observed the implementation was not aligned with

React’s development philosophy, having a nested component defi-
nition [27] and did not use props for parent-child communication.
This is not self-contained and violates the locality of behavior.

We observed only one situation where Reactor caused behavioral
differences in our 23 carefully studied subject applications.

6.4 RQ3: How do the transformations impact
the number of re-rendering operations?

We instrumented each React component to log rendering oper-
ations as they were being performed, using the same scenarios
that we used to answer RQ2, noting the total number of rendering
operations before and after transformation.

Table 1 summarizes the results of this experiment. The Red.
% column indicates the % reduction in total rendering operations
during our manual analysis and the Cyclomatic columns show
the cyclomatic complexity before and after transformation. We see
significant reductions in the number of rendering operations in the
majority of cases. In honey-rae-repairs, there is a large reduction as
most of the application’s functionality is related to forms that are
transformed into uncontrolled components. age-react and Fokasu
contain a timer causing some of the components and prop-less child
components to re-render every second. Memoizing these prop-less
child components ensures they are rendered only once.

Notably, for CashTrackr, we see no change in the number of
rendering operations performed. There are two major reasons for
this. First, the prop-less components are only rendered once. Second,
one component in the application takes functions as props (which

871

873

874

876
877

879
880
881
882
883
884

886
887
888
889
890
891
892
893

894

896
897
898
899
900
901
902
903

904

906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923

924

926
927

928

929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985

986

Remediating Superfluous Re-Rendering in React Applications

can be wrapped in usecallback) but also takes an array of “expenses”.
Due to JavaScript’s highly dynamic nature, Reactor only performs
intra-procedural analysis and cannot fully refactor this anti-pattern.
In applications with at least one downloaded asset, we do not see
any differences in the number of rendering operations for baklava
and laser-shooting, as the propless component is either a top-level
component or relies on an external routing library, which prevents
local optimization.

In the 23 applications under consideration, the number of render-
ing operations is reduced by 33.3% on average after applying the
transformations suggested by Reactor.

6.5 RQ4: What is the impact of the
transformations on performance?

We used the Chrome Developer React Profiling Tools to collect the
time spent rendering all components during each of the scenarios
discussed in RQ3, reported in Avg. Time Rendering columns in
Table 1. We also computed the % difference in time before and after
refactoring, shown in column % Time Saved in the same table; bold
entries in this column indicate statistically significant differences in
render times before and after refactoring at 95% confidence using
Welch’s t-test (this test does not assume equal variance). Overall, we
see improvements in render times in most cases, and no statistically
significant negative impact to performance.

The performance impact of superfluous re-rendering becomes
evident as an application scales. To illustrate, we collected an ad-
ditional three applications that had a number of components that
could vary dynamically: a spreadsheet, a drawing application, and
a JSON editor. We configured these applications at small, medium,
and large scales, and conducted experiments where we investigated
the performance before and after refactoring at each scale using
the Chrome Dev Tools React Profiler tab. These experiments were
conducted on a 2023 MacBook Pro with an M2 Max chip and 64GB
RAM. We manually confirmed that application behavior was pre-
served after refactoring, and these are all available in the artifact.

6.5.1 Spreadsheet. In this application [18], every cell of the spread-
sheet was re-rendering any time a user either clicked on or entered
data in any cell; one would expect rendering performance to become
progressively worse as the sheet’s size increases. Reactor refactors
this application to avoid re-rendering unmodified cell. We prepared
three configurations for this application: a small 20x20 spreadsheet,
a medium 60x60 spreadsheet, and a large 100x100 spreadsheet.

In the small spreadsheet, typing one character into one cell
incurred, on average, a 6.89ms re-render before refactoring, and
a 2.07ms re-render after refactoring (3.3x improvement). In the
medium spreadsheet, these re-renders took 43.4ms and 7.74ms on
average, resp. (5.6x improvement). In the large spreadsheet, these
re-renders took 125.35ms and 19.37ms on average, resp. (6.5x im-
provement). Before refactoring, we observed a noticeable lag in the
medium scale experiment, and a significant lag in the large scale
experiment. After refactoring, we noticed no lag in any case.

In terms of code complexity, the main code transformation was
memoization of the component responsible for cells in the spread-
sheet, and wrapping two functions passed to the cells with use-
Callback; together, these simple code changes result in up to a

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

100ms improvement in render time while typing in a cell in this
spreadsheet, which we found to be noticeable.

6.5.2 Drawing App. In this application [11], users draw on a grid,
and interacting with any pixel causes all other pixels to re-render;
Reactor refactors this application to avoid re-rendering pixels that
were not interacted with. We prepared three configurations for this
application: a small drawing area of 32x32 pixels, a medium area of
64x64 pixels, and a large area of 128x128 pixels.

In the small configuration, drawing a single pixel caused a re-
rendering operation lasting 14.51ms on average before refactoring,
and 2.76ms on average after, an improvement of 5.3x. In the medium
configuration, these re-renders took 51.83ms and 7.67ms on average,
resp., an improvement of 6.8x. Finally, in the large configuration,
these re-renders took 197.43ms and 26.49ms on average, resp., an
improvement of 7.5x. We observed noticeable lag before refactoring
in the large configuration, and no lag in any case after refactoring.

In terms of code complexity, the main code transformation was
the memoization of the component responsible for pixels, and wrap-
ping the function passed into the pixel components with useCall-
back. These are again very simple code transformations that result
in significant improvements in application performance, in particu-
lar as the drawing grid becomes larger.

6.5.3 JSON Editor. In this application [5], users load a JSON and
edit in in-browser, and save it to disk. A Form component from the
react-bootstrap library is created for each element in the JSON.
Before refactoring, the underlying JSON object was represented
with a React state variable and a new JSON object was created each
time any form was modified, causing all forms to re-render. Reactor
refactored the application to manage the JSON with a ref instead,
and the only component that changes when editing a form after
refactoring is the form itself. We created small, medium, and large
JSONSs with 100, 1000, and 10000 elements resp. for this experiment.

Application performance is greatly improved by Reactor. Before
refactoring, writing a single character into one field incurred a
17.05ms render on average with the small JSON, a 106.74ms render
on average with the medium JSON, and a 1,035.88ms render on aver-
age with the large JSON; lag was noticeable with the medium JSON,
and prohibitive with the large JSON. After refactoring, editing a
form is seamless in all cases as no other components on the page re-
render. In fact, HTML forms (which underlie the react-bootstrap
form component) are managed a bit differently than other compo-
nents as they maintain limited internal state®, and modifying the
contents of a form does not cause a change in the VDOM unless
other components depend on the contents. In a sense, these forms
render their own content without going through React. After refac-
toring, the only component on the page that changes when a form
is edited is the form itself, and the React profiling tools register
no other component renders; this results in React spending Oms
re-rendering components after refactoring.

The main change in this application was managing the JSON
object with a ref, which required Reactor to change how this ob-
ject was referenced in 8 code locations (refactoring references to

5See https://legacy.reactjs.org/docs/forms.html, and https://react-bootstrap.netlify.app/
docs/forms/overview/ for more information.

987

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043

1044

https://legacy.reactjs.org/docs/forms.html
https://react-bootstrap.netlify.app/docs/forms/overview/
https://react-bootstrap.netlify.app/docs/forms/overview/

1045
1046
1047
1048

1049

1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101

1102

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

currentJson into currentJson.current). These changes were all local-
ized to a single file, and had a dramatic effect on performance.

The impact of needless re-renders manifests itself particularly as ap-
plications scale, and small, simple code changes reduces rendering
time and can make applications more responsive.

6.6 RQ5: What is the impact of the
transformations on code complexity?

We measured code complexity metrics such as sloc, cyclomatic
complexity, and Halstead complexity. For brevity, we only present
cyclomatic complexity in Table 1 but all metrics show a similar
trend and are available in the Appendix. On average, we observe a
slight increase in the Cyclomatic complexity of the programs from
281.17 to 292.35. Some projects such as 16-feb-react-grupo-1and css-
fx-layout show a small increase in cyclomatic complexity, whereas
projects such as honey-rae-repairs and chicken-coop show a slight
reduction in code complexity. Cyclomatic complexity can decrease,
e.g., if the refactoring eliminates state setters (which eliminates
function calls and callbacks being passed), or if components are
made into uncontrolled components (which eliminates at least one
change handler). Overall, the code transformations do not result in
a significant increase in code complexity.

In the 23 applications, we observe only a slight increase in code
complexity after applying the transformations suggested by Reactor.

6.7 RQ6: What is the cost of the analysis?

There are three components to Reactor ’s cost: (i) building the
CodeQL database, (ii) executing all queries, and (iii) applying the
transformations. Table 1 reports (i) and (ii) under DB Build Time
and Total Query Time, respectively. Transformation time is negli-
gible (milliseconds), and DB build time is under 15 seconds in all
cases. The most expensive step is query execution, averaging 13
minutes per application on a local machine with 16GB RAM, and
never exceeding 20 minutes. We also ran the query step across all
7,758 repositories on a CentOS7 server with 128GB RAM to handle
the larger workload, where it averaged 97 seconds per repository.

On average, it takes less than 13 minutes to transform one project.

7 THREATS TO VALIDITY

It is possible that our set of repositories do not represent all React
applications, and the anti-patterns we identified may not cover all
forms of re-rendering inefficiencies. To mitigate this, we randomly
sampled 10,000 GitHub projects declaring React as a dependency,
and selected subject applications from this pool. We further en-
riched our sample with repositories containing downloadable re-
lease assets to better capture real-world usage. Regarding the latter,
our anti-patterns were derived from repeated manual investiga-
tions of components exhibiting superfluous re-rendering without
visible UI changes. While this process may have missed rarer or
more subtle inefficiencies, the patterns we identified were prevalent
across the broader 7,758-project corpus, suggesting they capture
important and recurring problems. Future work could uncover ad-
ditional inefficiencies; Reactor’s design supports extending it with
new detection and transformation rules as needed.

10

Anon.

To assess the impact of the transformations on the number of
rendering operations, we needed to observe the dynamic execution
behavior of the subject applications. Testing React applications is
difficult, and many React applications lack test suites, which was
also the case for all of our subject applications. Therefore, we manu-
ally interacted with the applications by entering text in form fields,
clicking buttons, etc. These interaction scenarios may not repre-
sent how actual users interact with the applications, which may
introduce bias in our results. To mitigate this threat, we carefully
documented the interactions and included them in supplemental
material to enable reproducibility. Furthermore, we ensured that
the interactions exercised as much of the application as possible,
visiting every reachable page of each application.

The code transformation technique presented in this paper draws
inspiration from Turcotte et al. [29] and Gokhale et al. [16] and suf-
fers from similar threats to validity. Concretely, the proposed code
transformations are not guaranteed to preserve program behavior
and are unsound. This unsoundness can primarily be attributed to
unsoundness in the static analysis, which is inevitable due to the
dynamic nature of JavaScript. Therefore, the proposed code trans-
formations should be treated as suggestions and carefully reviewed
by developers before application. In spite of this unsoundness, we
found that Reactor proposed behavior-altering transformations in
only one situation in our evaluation.

8 RELATED WORK

Related work can be grouped into four categories: Analyzing React
and its semantics, optimizing Uls, general JavaScript performance
optimizations, and work in progress on Meta’s new React compiler.

Analyzing React and its Semantics. Anastasia et al. studied vulner-
ability reports from React.js, focusing on how third-party dependen-
cies impact security, finding that that managing updates effectively
can mitigate common vulnerabilities [6]. Ferreira et al. present an
empirical study of refactoring in React applications, identifying
a catalog of 25 refactoring operations tailored to React alongside
17 adapted traditional refactoring operations, providing actionable
insights for enhancing the design and maintainability of React
applications [9]. In [26], the authors explored the development
principles and architecture of React, highlighting its component-
based structure, one-way data flow, and functional programming
principles that enhance performance and developer usability. Mad-
sen et al. presented a formal semantics for a core subset of React,
capturing the essence of its component life-cycle, state changes,
and reconciliation [19].

UI Optimization. Optimizing Ul frameworks is critical for in-
teractive applications to ensure responsiveness and enhance user
experience. Diniz-Junior et al. conducted a comparative study of
three Java-Script Ul frameworks: React, Vue, and Angular. They
found that Vue had the fastest DOM manipulation, React had the
best interaction time, and Angular had the largest bundle size [10].
Similarly, Siahaan et al. [25] conducted an analysis on the render-
ing performance of React, Vue, Next.js, and Nuxt.js. They found
that Vue had the fastest initial rendering times, while React ex-
celled in speed, index and user interactions. Next.js was best in
server-side rendering. Additionally, Ollila et al. [22] compared ren-
dering strategies of modern web frameworks, including Angular,

1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144

1145

1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217

1218

Remediating Superfluous Re-Rendering in React Applications

React, Vue, Svelte, and Blazor. They noted frameworks like Vue
and Svelte, which automatically track dirty components and only
process data bindings on updates, perform significantly better than
those like React and Blazor, which re-render entire subtrees and do
not differentiate between static and dynamic content. These studies
compare rendering performance of various JavaScript UI frame-
works, whereas we focused on improving React’s responsiveness.

JavaScript Performance Optimization. Addressing performance
issues in JavaScript is crucial for optimizing web applications. Se-
lakovic et al. [24] demonstrated that inefficient API usage falls
among JavaScript’s most important performance issues. They found
that most optimizations require minimal code changes. Gokhale et
al. [16] introduced Desynchronizer, a tool that optimizes JavaScript
by automatically refactoring synchronous API calls to asynchro-
nous ones using static analysis. Turcotte et al. [30] identified anti-
patterns in JavaScript’s promises and async/await, leading to in-
efficiencies and developed DrAsync, a tool to detect and visualize
these issues. Arteca et al. [7] demonstrated that sub-optimal sched-
uling of asynchronous I/O operations in JavaScript can be improved
by reordering them using static side-effect analysis, resulting in
significant performance gains. Ferreira et al. [9] provided a compre-
hensive catalog of React-specific refactoring by studying top GitHub
projects, offering insights into best practices for maintaining and
improving the quality and performance of React applications.

The React Compiler. Meta’s React team recently announced the
React Compiler [20], an experimental extension to React that aims
to render React applications more efficiently. However, the com-
piler does not aim to provide perfectly optimal re-rendering with
zero unnecessary computation. Their method introduces a new
compilation layer, which inherently limits the range of optimiza-
tions due to the need to guarantee correctness at the compiler level.
Furthermore, to leverage the complete set of features, the React
Compiler requires users to use React version 19. Our approach only
requires using functional components, the preferred paradigm since
the introduction of life-cycle hooks in React 16.8.

We attempted to compare their approach with ours. However,
React 19 introduces backward-incompatible changes that cause
compilation failures in our subject applications. This suggests that,
unlike our technique, it will require developers of existing React
applications to manually upgrade their applications. Additionally,
we encountered issues after migrating to React 19, where the Re-
act Profiling Dev Tools either broke or failed to display memo-
ization badges, making performance comparison infeasible. This
highlights the practical challenges of adopting their approach, while
our method remains accessible across all React versions.

9 CONCLUSION

We have identified 5 anti-patterns that commonly give rise to un-
necessary re-rendering in React applications. For each anti-pattern,
a set of code transformations was proposed to reduce how often
React components are re-rendered. To detect cases where needless
re-rendering may occur, we have defined static analyses for detect-
ing instances of the anti-patterns, which are used in a set of rewrite
rules that produce suggestions on how affected code fragments
can be transformed. The static analyses are potentially unsound,

11

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

so these suggestions must be reviewed carefully by a developer to
ensure that behavior is preserved. These analysis and rewrite rules
were implemented in a tool named Reactor.

In a large-scale evaluation of 7,758 projects, we detected at least
one instance of our defined anti-pattern in 92.1% of projects, indi-
cating their prevalence in real-world applications. In an empirical
evaluation of Reactor on 23 subject React applications, a total of 313
instances of the anti-patterns were transformed, and the number
of rendering operations was reduced by 33.3% on average. We also
observed that transformations result in a small increase in cyclo-
matic complexity from 281.17 to 292.35 on average. This relatively
small increase in complexity leads to an average decrease of 20.54%
in time spent rendering, and additional case studies show that ap-
plication responsiveness improves significantly as the number of
components scales up. Moreover, we observed only one instance of
unsoundness in our experiments.

10 FUTURE WORK & GENERALIZABILITY

In two cases, Reactor could not automatically eliminate the anti-
pattern. In CashTrackr, this is due to the intra-procedural nature
of Reactor’s analysis. On the day20 page of 30days-30projects, two
state variables are highly entangled, requiring more significant
refactoring. In both cases, Reactor could be applied successfully
after a modest amount of manual transformation. In future work,
we plan to extend our analysis inter-procedurally and revise the
rewrite rules to handle these cases automatically.

While our research contributions center on formalizing and re-
mediating re-rendering anti-patterns using CodeQL and declarative
rewrite rules, we note that simpler syntactic rules could potentially
be adapted into ESLint plugins. Such extensions could help devel-
opers adopt our findings directly into existing everyday workflows.

Reactor is currently tailored to React, but the problem of superflu-
ous re-rendering is not unique to it. Other popular front-end frame-
works such as Vue and Angular also follow unidirectional data flow
models and exhibit similar rendering behaviors. However, there
are several fundamental differences between these frameworks. For
example, React and Vue both use a Virtual DOM for change detec-
tion but have different implementations of it, whereas Angular uses
Zone.js [4]. Both Angular and Vue use HTML templates and prefer
to extend HTML with directives and pipes, whereas React extends
JavaScript with HTML instead. As a result of these differences, the
solutions to the same problem are different in each framework. As
a concrete example, consider the case where a component should
re-render only if some of its arguments change. To achieve this,
React wraps the component in a call to memo, Angular uses the
component configuration to set the ChangeDetectionStrategy to
OnPush, and Vue would use the v-memo directive with the argu-
ments as invalidation conditions. As such, it would be extremely
difficult to develop a single solution that extends beyond a single
framework, but the underlying ideas carry over. As future work, we
plan to explore how our anti-pattern abstractions might be adapted
to other popular frameworks, and whether automated transforma-
tions analogous to those in Reactor can be systematically derived.

11 DATA AVAILABILITY STATEMENT

We have made an artifact available at this Zenodo link.

1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275

1276

https://doi.org/10.5281/zenodo.16129074

1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334

Conference acronym 'XX, June 03-05, 2018, Woodstock, NY

REFERENCES

[23]
[24]
[25]
[26]

[27

[28]

[29]

[30]

(31

. 2024. Build interactive web Uls using C#. . See https://dotnet.microsoft.c/..
2024. Calculadora. See https://github.com/Contimp/Calculadora/blob/master/
src/App.js.

2025. escomplex. See https://github.com/escomplex/escomplex.

2025. Zone.js. See https://github.com/angular/angular/tree/main/packages/zone.
js.

AccessiTech. 2025. local-json-editor. See https://github.com/AccessiTech/local-
json-editor..

Terzi Anastasia and Bibi Stamatia. 2024. Managing Security Vulnerabilities Intro-
duced by Dependencies in React.JS JavaScript Framework. In 2024 IEEE Interna-
tional Conference on Software Analysis, Evolution and Reengineering-Companion
(SANER-C). IEEE, 126-133.

Ellen Arteca, Frank Tip, and Max Schifer. 2021. Enabling Additional Parallelism
in Asynchronous JavaScript Applications. In 35th European Conference on Object-
Oriented Programming (ECOOP 2021). Schloss-Dagstuhl-Leibniz Zentrum fur
Informatik.

Citrusbug. 2024. React Statistics — An In-Depth Look at the Trends. See
https://citrusbug.com/blog/react-statistics/#:~:text=In%202024%2C%20there%
20are%20about,for%20their%20front-end%20framework..

Fabio da Silva Ferreira, Hudson Silva Borges, and Marco Tulio Valente. [n.d.].
Refactoring React-Based Web Apps. Marco Tulio, Refactoring React-Based Web
Apps ([n.d.]).

Raimundo NV Diniz-Junior, Caio César L Figueiredo, Gilson De S Russo, Marcos
Roberto G Bahiense-Junior, Mateus VL Arbex, Lanier M Dos Santos, Raimundo F
Da Rocha, Renan R Bezerra, and Felipe T Giuntini. 2022. Evaluating the perfor-
mance of web rendering technologies based on JavaScript: Angular, React, and
Vue. In 2022 XVLII Latin American Computer Conference (CLEI). IEEE, 1-9.
Emily Doherty. 2025. Pixelsketch. See https://github.com/emilydoh/Pixelsketch.
Evan You, Vue.js developers. 2024. cybernetically enhanced web apps. See
https://vuejs.org/..

Fabio Ferreira and Marco Tulio Valente. 2023. Detecting code smells in React-
based Web apps. Information and Software Technology 155 (2023), 107111.
GitHub. 2024. See https://github.com/github/codeq]l..

GitHub. 2024. Prevalence of React. See https://github.com/facebook/react/
network/dependents. Accessed Jun 07 2024..

Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic migration
from synchronous to asynchronous JavaScript APIs. Proceedings of the ACM on
Programming Languages 5, OOPSLA (2021), 1-27.

Google. 2024. See https://angular.io/..

Agnieszka Goralczyk. 2025. react_spreadsheet. See https://github.com/
ajgoralczyk/react_spreadsheet.

Magnus Madsen, Ondrej Lhotak, and Frank Tip. 2020. A Semantics for the
Essence of React. In European Conference on Object-Oriented Programming.
Meta Platforms, Inc. 2024. React Compiler. See https://github.com/facebook/
react/tree/main/compiler..

Meta Platforms, Inc. 2024. React: The library for web and native user interfaces.
See https://react.dev/..

Risto Ollila, Niko Mikitalo, and Tommi Mikkonen. 2022. Modern web frame-
works: A comparison of rendering performance. journal of Web Engineering 21,
3 (2022), 789-813.

Rich Harris. 2024. See https://svelte.dev/.

Marija Selakovic and Michael Pradel. 2016. Performance issues and optimiza-
tions in JavaScript: an empirical study. In Proceedings of the 38th International
Conference on Software Engineering. 61-72.

Mangapul Siahaan and Ryan Kenidy. 2023. Rendering performance comparison
of react, vue, next, and nuxt. Jurnal Mantik 7, 3 (2023), 1851-1860.

CACM Staff. 2016. React: Facebook’s functional turn on writing Javascript.
Commun. ACM 59, 12 (dec 2016), 56-62. https://doi.org/10.1145/2980991
React Dev Team. 2024. Nesting and organizing components. See https://react.dev/
learn/your-first-component#nesting-and-organizing-components. Accessed Oct
15 2024..

Alexi Turcotte, Mark W Aldrich, and Frank Tip. 2022. Reformulator: Automated
refactoring of the n+ 1 problem in database-backed applications. In Proceedings of
the 37th IEEE/ACM International Conference on Automated Software Engineering.
1-12.

Alexi Turcotte, Satyajit Gokhale, and Frank Tip. 2023. Increasing the Responsive-
ness of Web Applications by Introducing Lazy Loading. In 2023 38th IEEE/ACM
International Conference on Automated Software Engineering (ASE). IEEE, 459—
470.

Alexi Turcotte, Michael D Shah, Mark W Aldrich, and Frank Tip. 2022. DrAsync:
identifying and visualizing anti-patterns in asynchronous JavaScript. In Proceed-
ings of the 44th International Conference on Software Engineering. 774-785.
W3Techs. 2024. Comparison of the usage statistics of React vs. Vue.js vs. Angular
for websites. See https://w3techs.com/technologies/comparison/js-angularjs, js-
react,js-vuejs..

12

Anon.

1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391

1392

https://dotnet.microsoft.c/
https://github.com/Contimp/Calculadora/blob/master/src/App.js
https://github.com/Contimp/Calculadora/blob/master/src/App.js
https://github.com/escomplex/escomplex
https://github.com/angular/angular/tree/main/packages/zone.js
https://github.com/angular/angular/tree/main/packages/zone.js
https://github.com/AccessiTech/local-json-editor
https://github.com/AccessiTech/local-json-editor
https://citrusbug.com/blog/react-statistics/#:~:text=In%202024%2C%20there%20are%20about,for%20their%20front-end%20framework.
https://citrusbug.com/blog/react-statistics/#:~:text=In%202024%2C%20there%20are%20about,for%20their%20front-end%20framework.
https://github.com/emilydoh/Pixelsketch
https://vuejs.org/
https://github.com/github/codeql
https://github.com/facebook/react/network/dependents
https://github.com/facebook/react/network/dependents
https://angular.io/
https://github.com/ajgoralczyk/react_spreadsheet
https://github.com/ajgoralczyk/react_spreadsheet
https://github.com/facebook/react/tree/main/compiler
https://github.com/facebook/react/tree/main/compiler
https://react.dev/
https://svelte.dev/
https://doi.org/10.1145/2980991
https://react.dev/learn/your-first-component#nesting-and-organizing-components
https://react.dev/learn/your-first-component#nesting-and-organizing-components
https://w3techs.com/technologies/comparison/js-angularjs,js-react,js-vuejs
https://w3techs.com/technologies/comparison/js-angularjs,js-react,js-vuejs

	Abstract
	1 Introduction
	2 Background
	3 Motivating Example
	4 Anti-Patterns
	4.1 Anti-pattern detection Methodology
	4.2 Anti-Pattern 1: Controlled Component
	4.3 Anti-Pattern 2: State Var. not Affecting UI
	4.4 Anti-Pattern 3: Propless Child Component
	4.5 Anti-Pattern 4: Child Component with Object or Array Element Prop
	4.6 Anti-Pattern 5: Child Component with Function Prop

	5 Detecting and Remediating Anti-Patterns
	5.1 Rewrite Rule Syntax
	5.2 Controlled Component
	5.3 State Variable not Affecting UI
	5.4 Propless Child Component
	5.5 Child Component with Object or Array Element Prop
	5.6 Child Component with Function Prop
	5.7 Implementation

	6 Evaluation
	6.1 Experimental Methodology
	6.2 RQ1: How prevalent are the anti-patterns?
	6.3 RQ2: How often do the transformations cause behavioral differences?
	6.4 RQ3: How do the transformations impact the number of re-rendering operations?
	6.5 RQ4: What is the impact of the transformations on performance?
	6.6 RQ5: What is the impact of the transformations on code complexity?
	6.7 RQ6: What is the cost of the analysis?

	7 Threats to Validity
	8 Related Work
	9 Conclusion
	10 Future Work & Generalizability
	11 Data Availability Statement
	References

