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Remediating Superfluous Re-Rendering in React Applications
Anonymous Author(s)

ABSTRACT
React is an extremely popular framework for constructing user

interfaces (UIs). A React UI is organized as a tree of components,

each of which is defined by a function that returns a literal written

in JSX, a syntactic extension of JavaScript consisting of a combi-

nation of XML tags, executable JavaScript code, and references to

sub-components. React supports incremental re-rendering by main-

taining an in-memory representation of a web page’s Document

Object Model (DOM) and automatically calculating a set of minimal

changes that must be applied to the DOMwhen state changes occur.

However, React’s semantics are complex and subtle, and program-

mers often write code that gives rise to unnecessary re-rendering,

which hurts performance and responsiveness. We identify 5 React

anti-patterns that give rise to unnecessary re-rendering, present a

static analysis for detecting them, and rewrite rules that suggest

how to refactor the code to improve rendering performance. The

static analysis is potentially unsound, so developers should carefully

review the suggested refactorings. A survey of 7,758 React reposito-

ries showed that 92.1% of them exhibit at least one anti-pattern, and

careful experimental evaluation on 23 React projects revealed that

the suggested refactoring reduces the number of rendering opera-

tions by 33.3% on average while preserving application behavior in

all but one case. With a small increase in code complexity, we find

an average reduction in rendering time of 20.54%, and three case

studies reveal that the refactorings can greatly improve application

responsiveness as the number of components scales.

1 INTRODUCTION
Modern-day web applications are complex pieces of software that

aim to provide a rich user experience. One of the most common

forms of web applications is a single-page application (SPA), where

the content of the current page is updated dynamically instead of

navigating to a new page. This approach enhances efficiency by

eliminating the need to reload the foundational assets of the applica-

tion—such as HTML, CSS, and JavaScript files—during navigation,

thereby streamlining user interactions. This helps applications be

responsive, one of the most desirable properties for user experience.

Building dynamic SPAs is nontrivial, and many UI libraries ex-

ist to help users develop them [1, 12, 17, 21, 23]. Typically, these

libraries drastically change how developers use the language, e.g.,

through intricate APIs and syntactic extensions of the language. In

this paper, we focus on React [21], which is the most widely used

framework for creating SPAs in JavaScript. React is currently the

most popular front-end UI framework for JavaScript and is used

by popular websites such as Instagram, Netflix, GitHub, etc., and

w3techs.com reports that, as of January 2025, 4.7% of all websites use

React [31], including 22million GitHub repositories [15]. It has also
garnered the attention of the research community [6, 8, 9, 13, 19, 26];

e.g., Madsen et al. specified the formal semantics of React [19].

In React applications, developers define their UI in a declarative
style. This enables the React engine to compute how much of the UI

needs to be updated, or re-rendered, in response to user interaction.

Unfortunately, the React engine is limited in its ability to detect

situations where re-rendering can be avoided, and, if developers

are not careful, their application may suffer from superfluous re-

rendering, which may reduce responsiveness [9].

Our research aims to reduce the problem of unnecessary re-

rendering in React applications. To this end, we carefully studied

rendering behavior in a corpus of React applications and identified

5 anti-patterns that often give rise to needless re-rendering. We

designed code transformations for each anti-pattern to reduce the

number of rendering operations. We then developed a static anal-

ysis to detect instances of these anti-patterns and rewriting rules

to automate code transformations necessary to eliminate them.

Given the extreme dynamism of JavaScript, the static analysis is

unsound and may potentially suggest transformations that change

program behavior. Therefore, similar to recent work on refactor-

ing for JavaScript [16, 28, 29], the code transformations should be

viewed as suggestions that should be reviewed by a developer. The

technique was implemented in a tool named Reactor that we plan
to make available as open-source software in the near future.

An empirical evaluation of Reactor on 23 subject React applica-

tions revealed that the refactorings proposed by Reactor reduced
the total number of rendering operations by 33.3% on average and

did not introduce any behavioral differences in all but one trans-

formed application. This reduction in renders results in 20.54% less

time spent rendering on average, and an additional set of experi-

ments on three applications with a scalable number of components

shows appreciable improvements in application responsiveness as

the number of components increases. The refactorings also only

contribute to a modest increase in code complexity. In another ex-

periment, the anti-pattern detection queries were run on a corpus

of 7,758 React repositories. This experiment identified instances

of the anti-patterns in 92.1% repositories, providing evidence that

these anti-patterns are prevalent beyond the subject applications

studied in the empirical evaluation.

In summary, the contributions of this paper are:

(1) The identification of a set of anti-patterns that often give

rise to unnecessary re-rendering in React applications,

(2) A static analysis for detecting anti-pattern instances and

rewriting rules describing remedial code transformations,

(3) An implementation of the static analysis and rewriting

rules in an automated tool called Reactor , which we plan to

release as open-source software, and

(4) An empirical evaluation of Reactor on 23 subject appli-

cations, demonstrating that it reduces the total number of

rendering operations in most cases.

This paper is organized as follows. Section 2 provides background

on React. Section 3 presents a motivating example that exhibits su-

perfluous re-rendering and its remediation. Section 4 describes the

identified anti-patterns. Section 5 describes our static analysis and

code transformation techniques. Section 6 presents our evaluation.

We discuss potential limitations in Section 7 and related work in

Section 8. We conclude with a summary of our findings.

1



117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Anon.

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

2 BACKGROUND
React [21] is a powerful JavaScript library for building interactive

User Interfaces (UIs) that has been embraced enthusiastically by

the web development community.

Components. A React application comprises a collection of com-
ponents corresponding to elements of an application’s UI. By struc-

turing UIs in this way, developers can build complex UIs from

simple, modular pieces, facilitating reuse. React components can

be functions or classes. We only consider functional components,

which is currently the preferred mechanism.

React syntax. React applications are typically written in JSX
1
, a

syntactic extension of JavaScript in which XML values may occur

as literals
2
. JSX literals can be turned into template literals that

contain placeholders consisting of a JavaScript expression sur-

rounded by curly braces. At run time, such embedded expressions

are executed to obtain concrete values with which the template

is instantiated, resulting in concrete HTML values that a browser

can render. An embedded expression that evaluates to an array is

turned into a sequence of HTML elements. Syntactically, functional

React components are simply JavaScript functions that return a JSX

literal. Figure 1(a) shows an example React application consisting of

two components, CounterButton and Counter. The CounterButton com-

ponent consists of a header containing a text message followed by a

simple button, which is expressed by the JSX literal on lines Lines 2-

3. A React component may include another React component by

simply referring to the latter’s name between angular brackets,

called a JSX tag. In the example, the Counter component defines a

UI element that contains a text form in which users can enter their

name, followed by a CounterButton’s JSX tag (lines 11-19).

State and Props. React components may have state, i.e., values
that persist until explicitly changed or the component is destroyed.

State elements are declared by invoking React’s useState function,
which takes the initial value as an input and returns the state and

a state-setter function that must be used to change the state. E.g.,

the Counter component maintains counter and name as its state. On

lines 5-6, these are initialized to the values 0 and ’Guest’, and on

lines 8, and 9 the setCount, and setName state-setters are invoked.

Components may pass values—commonly referred to as prop-
erties or props in React parlance—to their sub-components (also

known as their child components) by including them as key-value

pairs when referencing the sub-component. For example, on lines 16–

18, the Counter component passes values to CounterButton bound to

its props message and onClick, so CounterButton is a child of Counter.

Rendering. Rendering a React component involves executing its

code to produce HTML. A component re-renders if its state, or one

of its ancestor’s state, changes. One of the key strengths of React

is its support for incremental re-rendering of an application’s UI.

The virtual DOM (VDOM) is central to this efficiency. The VDOM

is a simplified, in-memory representation of the actual Document

ObjectModel (DOM). Unlike the DOM, a complex, live structure ren-

dered by the browser, the VDOM is a lightweight abstraction that

allows React to perform updates efficiently. When a state change oc-

curs, React creates a new version of the VDOM. This new version is

1
JSX is an acronym for “JavaScript XML”.

2
React applications can also use TSX, an equivalent extension of the TypeScript.

then compared to the last snapshot of the VDOM, a process known

as diffing. During diffing, React identifies the exact differences

between the old and new VDOMs and computes the minimal set

of changes needed to update the actual DOM in a process referred

to as reconciliation. This selective update process ensures the

browser re-renders only the changed parts of the DOM rather than

the entire DOM. This targeted updating enhances performance sig-

nificantly by reducing the amount of DOM manipulation required,

as browser re-rendering is time-consuming.

State Management. React applications adopt a centralized state

management approach where the nearest common ancestor compo-

nent maintains the state needed by several sub-components. This

ancestor makes the state accessible to its children, passing it as

props in their JSX tags. This may include event handlers, allowing

child components to update the state also accessed by its parent

and/or sibling sub-components. Consequently, any change in the

ancestor’s state prompts re-rendering of the ancestor and its descen-

dants, ensuring UI consistency across the component hierarchy.

This is demonstrated in the example snippet, where Counter com-

ponent passes handleClick, a function that uses setCount to update its

state, as the onClick prop to its child (Figure 1(a), line 18). When the

button is clicked, onClick handler of the <button> element invokes the

handleClick function from the Counter component. Inside handleClick,

the setCount state-setter is called, causing the Counter component to

be re-rendered. As a descendant, the CounterButton component also

re-renders, ensuring the UI reflects the updated state.

Hooks. React’s diffing and reconciliation mechanisms aim to en-

sure efficient updates to the DOM. However, as we shall see in

Section 4, React may occasionally re-render components unnec-

essarily, i.e., without causing changes in the DOM. Fortunately,

React provides a number of mechanisms for functional components

that provide more fine-grained control over the rendering process.

These are known as hooks because they enable one to “hook into”

React’s state and life-cycle management. The useState function we

saw previously is an example of React hooks and provides access

to a component’s state. We now discuss a number of other hooks.

• useRef enables value persistence across rendering operations

without triggering a re-render when the stored mutable value

is updated. This hook is commonly used to keep a reference

to a DOM element or to keep track of mutable data whose

change does not require a re-render of the component. It

returns a reference object with a .current property where the

stored value can be accessed or modified.

• Memoization is a performance optimization technique for

preventing unnecessary re-rendering by performing a shallow

comparison between the current and new props and only re-

rendering the component if there is a difference. A functional

component can be memoized by wrapping it inReact.memo3.
React maintains a copy of the VDOM for comparison, so

memoization does not incur a significant overhead.

3
React.memo is a higher-order component that enhances a functional component

by wrapping it. Wrapping in this context means that React.memo takes the original

component as an argument and returns a new component with added functionality.

2
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1 function CounterButton({ message, onClick }) {
2 return (<div><h1>{message}</h1>

3 <button onClick={onClick}>Click me!</button> </div>);}
4 function Counter() {
5 const [count, setCount] = useState(0);
6 const [name, setName] = useState('Guest');
7 const handleClick = () => {
8 setCount(count + 1); };
9 const handleNameChange = (e) => { setName(e.target.value); };
10 return (
11 <div>
12 <input type="text"
13 value={name}
14 onChange={handleNameChange}
15 placeholder="Enter your name" />
16 <CounterButton
17 message={`Hi ${name}, you clicked ${count} times.`}
18 onClick={handleClick} />
19 </div>);}

1 const CounterButton=React.memo(({message, onClick})=>{

2 return (<div><h1>{message}</h1>

3 <button onClick={onClick}>Click me!</button></div>);}
4 function Counter() {
5 const [count, setCount] = useState(0);
6 const nameRef = useRef('Guest');

7 const handleClick = useCallback(() => {

8 setCount((prevCount) => prevCount + 1);}, []);

9

10 return (
11 <div>
12 <input type="text"
13 ref={nameRef}

14

15 placeholder="Enter your name" />
16 <CounterButton
17 message={`Hi ${nameRef.current.value}, you clicked ${count} times.`}
18 onClick={handleClick} />
19 </div>);}(a) (b)

Figure 1: (a) Example React application. (b) Optimized version where components are re-rendered less often.

• React’suseCallback hookmemoizes functionswithin compo-

nents: it returns a version of a callback function that only up-

dates when its dependencies (specific states or props that, if al-

tered, necessitate an update) change. This is useful when pass-

ing callbacks to child components, specifically those wrapped

in React.memo, which compares props by reference. By keeping

the function reference unchanged across re-renders, useCallback

helps prevent child components from redundant re-rendering.

Figure 1(b) shows a variation of the example of 1(a) that uses

these useRef, useCallback, and React.memo functions. On line 6,

useRef is used to initialize a variable nameRef to “Guest”. This ref-

erence tracks the user’s name from the input element (line 13),

updating as the input value changes. These updates do not trigger a

component re-render on every key press. Instead, the updated value

becomes visible only after the Counter component re-renders, which

occurs upon a button click. Figure 1(b) also illustrates memoization:

the child CounterButton is wrapped in React.memo (line 1), signaling

React to bypass re-rendering it if the current and new props are

the same. Also, the handleClick function is wrapped in useCallback

(line 7) to ensure that the reference to the onClick prop remains the

same when its parent component Counter re-renders.

Having these memoization steps applied, the CounterButton com-

ponent will not re-render if Counter updates without altering message

or handleClick. This example highlights the two different ways of

handling form data in React. Figure 1(a) presents an example of a

controlled component, where the React component’s state handles

form data. On the other hand, Figure 1(b) presents an instance of

an uncontrolled component where the DOM handles form data.

3 MOTIVATING EXAMPLE
Figure 2(a) shows a screenshot of Calculadora [2], a basic open-

source calculator built using React in which needless re-rendering

occurs. We developed a profiling tool that highlights re-rendered

components by drawing a red box around them. The screenshot

shows the UI while running it with our re-rendering profiler after

the user has entered a formula 2*2. In Figure 2(a), each button is

surrounded by a red box, indicating that it was re-rendered. Intu-

itively, one would expect only the display to be re-rendered when

a button is pressed and the buttons’ UI could remain unchanged.

(a) Before transformation (b) After transformation

Figure 2: Re-render comparison before vs. after memoization when a
button is clicked, red indicating components that were re-rendered.

To understand why the buttons re-render, we review the rel-

evant code in Figure 3(a). Each button is represented by a Button

component, and the calculator’s display is modeled by a Screen

component, all of which are children of a top-level App component.

App maintains an input state, representing Screen’s content, used for

performing calculations. On lines 4-5, function addInput is declared

that concatenates a value to the input. This function is passed as

the handleClick prop to each Button. Hence, clicking a button will

invoke addInput, causing App’s state-setter setInput to be invoked. As

we discussed in Section 2, any update to the App component’s state

triggers re-rendering of all its child components.

Inspecting the code reveals that Button does not have mutable

state of its own and that the same function, addInput, is always passed

as a property. In such cases, React’s memoization mechanism can

be employed to prevent unnecessary re-rendering. This requires

the two transformations shown in Figure 3(b):

• The Button component is memoized using React.memo (line 11).

This instructs React not to re-render it when its parent App

does, provided that the same props are passed.
• The addInput function passed as a prop from App to Button is

memoized using useCallback (line 4). Without memoization,

App recreates the addInput function on each re-render, thereby

creating a new reference for the same function.Wrapping the

function in useCallback and passing in an empty dependency

list circumvents this, thus avoiding unnecessary re-renders.

3
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1 import { useState } from 'react';
2 function App() {
3 const [input, setInput] = useState('');
4 const addInput = val => {
5 setInput(input + val); };
6 // ...
7 return ( /* ... */
8 <Screen input={input}/>
9 <Button handleClick={addInput}>1</Button>
10 /* ... */ );}
11 function Button(props) { /* ... */ }

1 import { useState, useCallback } from 'react';
2 function App() {
3 const [input, setInput] = useState('');
4 const addInput = useCallback((val) => {

5 setInput((currentInput) => currentInput + val); }, []);
6 // ...
7 return ( /* ... */
8 <Screen input={input}/>
9 <Button handleClick={addInput}>1</Button>
10 /* ... */ );}
11 const Button = React.memo(function Button(props) { /* ... */ }

(a) (b)
Figure 3: Example: unnecessary re-rendering in Calculadora. (a) Non-memoized. (b) Memoized.

We tested the optimized code and confirmed that extra re-renders

were eliminated while preserving application behavior, evidenced

by the absence of red borders around buttons in Figure 2(b). Elimi-

nating these re-renders results in 31.3% less time spent on average

rendering the application when a button is pressed.

4 ANTI-PATTERNS
The example laid out in the last section is an example of a broader

anti-pattern that leads to re-rendering, and this section describes

our methodology for identifying other such common anti-patterns

that give rise to needless rerendering in React applications.

4.1 Anti-pattern detection Methodology
To identify anti-patterns, we randomly sampled 10,000 GitHub

repositories that listed React as a dependency. We attempted to

build the CodeQL [14] databases for these repositories, which suc-

ceeded for 7,758 repositories. Repositories for which we could not

build a CodeQL database were excluded from further analysis, as a

database is required to run our analysis queries. We wrote a static

analysis using CodeQL to identify React components where at least

one child component did not depend on all of its parent’s state,

representing likely scenarios with needless re-rendering. We ran

this static analysis on the 7,758 repositories, which identified 2,047

repositories for further analysis.

To construct a set of repositories for manual investigation, we

iteratively sampled from the 2,047 candidates and applied a series

of filtering criteria. A repository was retained only if it (1) was

still available on GitHub, (2) could be built and installed locally, (3)

could be executed and interacted with, (4) exhibited visual indica-

tions of unnecessary re-rendering (as indicated by the profiler tool)

despite no visible change in its appearance, and (5) did not require

significant structural changes due to excessive code complexity or

deep reliance on external libraries. This process continued until

we observed the same anti-patterns emerging repeatedly, at which

point we considered the search saturated.

In cases where remediating re-rendering did not require such

significant changes, we studied and attempted to remediate the

observed re-rendering manually. This filtering process yielded 40

repositories suitable for detailed analysis, of which we found and

fixed unnecessary re-rendering issues in 14.

4.2 Anti-Pattern 1: Controlled Component
Figure 1(a) shows an example of a controlled component (Counter)

declaring a state variable name and an associated setter setName (line 6).

In the JSX returned by this component, name is referenced on line 13

and setName is invoked through handleNameChange on line 14. Here,

each update to the input element will cause the component to re-

render because one of its state-setters is called. E.g., in Figure 1(a),

each keystroke triggers a re-render, which is unnecessary.

To avoid unnecessary re-rendering in this type of scenario, one

can rewrite the application so that the DOM handles the form data.

This approach, commonly referred to as an uncontrolled component,
is illustrated in Figure 1(b), and involves using React’s useRef hook

to create a reference object with a “.current” property, allowing val-

ues to persist across re-renders without triggering new re-renders

when modified. Now, changing the controlled component of Fig-

ure 1(a) into an uncontrolled component of Figure 1(b) involves

the following changes: (i) importing the useRef hook, (ii) creating a

reference nameRef for the input element (line 6), (iii) extending the

form with a reference ref attribute bound to the reference nameRef

(line 13), and (iv) getting/setting the value of the input element by

accessing it via the reference object (line 17).

4.3 Anti-Pattern 2: State Var. not Affecting UI
Developers may use state variables for internal logic rather than

updates to the UI, which may cause components to re-render un-

necessarily. Figure 4(a) shows a component CompFuncCicloVida, taken

from one of the 14 repositories under study (16-feb-react-grupo-1).
Here, the miVariable state variable does not impact the UI, but it is

updated by a state-setter in the updateVar function (line 6), which is

bound to the button’s onClick handler (line 9), the CompFuncCicloVida

component is re-rendered after each button click.

In such cases, the problem can be remediated by using React’s

useRef hook to introduce a reference object so that changes to the

variable’s value no longer cause re-rendering. Figure 4(b) shows

how the code of Figure 4(a) can be transformed to prevent the un-

necessary re-rendering by: (i) importing the useRef hook (line 1), (ii)

replacing the declaration of the target state variable with a reference

object (line 3), and (iii) replacing any access to (or modification of)

that state variable with access to (or modification of) the “.current”

property of the reference variable (lines 6, 7, 8).

4.4 Anti-Pattern 3: Propless Child Component
As outlined in Section 2, re-rendering a React component causes all

its descendent components to re-render to guarantee UI consistency.

In cases where components do not receive props, they inherently

exhibit no change in their rendered output upon parent component

re-rendering. Memoizing a prop-less component means that the

shallow comparison of props trivially succeeds (given that there

are none), enabling React to bypass the re-rendering process.

4
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1 import { useState, useEffect } from "react"
2 const CompFuncCicloVida = () => {
3 const [miVariable, setMiVariable] = useState<boolean | undefined>()
4 // ...
5 const updateVar = () => {
6 setMiVariable((val) => {
7 if (typeof val === "undefined") return true
8 return !val });}
9 return (<div><button onClick={updateVar}> Actualiza </button></div>)}

1 import {useState,useEffect,useRef} from "react"
2 const CompFuncCicloVida = () => {
3 const miVariableRef = useRef<boolean | undefined>()
4 // ...
5 const updateVar = () => {
6 miVariableRef.current =

7 typeof miVariableRef.current==="undefined"

8 ? true : !miVariableRef.current }

9 return (<div><button onClick={updateVar}> Actualiza </button></div>)}

(a) (b)

Figure 4: pattern State Variable not Affecting UI example: (a) Uses state. (b) Uses reference.

4.5 Anti-Pattern 4: Child Component with
Object or Array Element Prop

Figure 5(a) shows a Tic-Tac-Toe game implementation exhibiting

this anti-pattern. Here, the App component defines the game’s grid

structure, with a Square component for each grid square which

receives a value prop that is either “X”, “O”, or empty. Each Square’s

value comes from the squares array (a state variable in App) and

changes only once, even though squares is updated with each action.

Each time a player clicks a Square in the game grid, the onClick

handler, bound to the handleClick prop received from the App com-

ponent, is called, which calls the setSquares state-setter in turn and

triggers App to re-render. Hence, in accordance with React’s strategy

of re-rendering all child components when a parent component

re-renders, all Squares re-render when their parent App re-renders.

Figure 5(b) shows how re-rendering can be prevented. Here,

Square is wrapped in React.memo (line 1), signaling React to bypass

re-rendering of Square components with unchanged props. Since

each Square’s value prop only changes when it is first clicked, this

prevents re-rendering of the non-clicked squares as long as the

value passed to handleClick also remains unchanged.

4.6 Anti-Pattern 5: Child Component with
Function Prop

Figure 3 shows an example where a parent component App passes the

addInput function as handleClick prop to its child component Button

(line 9). When a button is clicked, the handleClick handler invokes

addInput, which in turn calls App’s setInput, triggering a re-render

of App. However, functions defined in a component are re-defined
each time it is rendered. Consequently, all buttons re-render, even if

Button is memoized, because addInput is recreated on each re-render

of App, passing new references to the Button instances.

In such cases, wrapping a function in useCallback ensures that

its identity remains unchanged across re-renders unless its depen-

dencies, specified in the dependency array, change. As a result,

utilizing the useCallback React hook can prevent these redundant re-

renders by preserving the reference of the handler function across

re-renders. Figure 3(b) shows how the code can be rewritten using

a memoized handler(line 4) to avoid the unnecessary re-rendering.

In particular, by memoizing both the Button component (line 11) and

its handleClick prop ensures that only the clicked button re-renders,

preventing unnecessary re-renders of the other buttons.

5 DETECTING AND REMEDIATING
ANTI-PATTERNS

The previous section used code examples to illustrate a number of

anti-patterns that give rise to needless re-rendering along with the

code changes required to remediate them. This section defines the

anti-patterns and changes more formally through a set of declara-

tive rewrite rules. Our tool (Reactor) implements the static analyses

and code transformations required to realize these rewrite rules.

5.1 Rewrite Rule Syntax
The general format for a rewrite rule is as follows:

𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠

old code → new code
(Rule-Name)

The premise of the rule includes 𝑝𝑟𝑒𝑐𝑜𝑛𝑑𝑖𝑡𝑖𝑜𝑛𝑠 that must be met

in order for the transformation to take place. These preconditions

represent some facts obtained using static data flow analysis or

analysis of the AST. In formulating the rules, we will rely on auxil-

iary functions such as replaceExpr(𝐴, 𝑒, 𝑒′), which takes some AST

node 𝐴 and replaces occurrences of expressions 𝑒 with 𝑒′. We will

also introduce similar auxiliary functions such as replaceCalls for
call sites, replaceDecl for declarations, and so on.

5.2 Controlled Component
Rule Controlled-Component is concerned with transforming

controlled components into uncontrolled components and applies

to a set of import statements 𝐼 and a React component F with a

body 𝐵, denoted by 𝐼 ... function F (...) 𝐵. Reading the rule from
top to bottom, the rule states that the body 𝐵 of the component

contains a declaration 𝐷 of a state variable v, with associated state

setter setv, that is initialized to e. Moreover, 𝐹 ’s return expression

contains a JSX fragment 𝑅 𝑗 corresponding to either a Form or Input

component, where a function 𝑓 is passed as a change handler. No-

tably, 𝑓 calls the state setter setv. As is the case with all subsequent

rules, these facts are all computed using static analysis.

Then, a new declaration 𝐷′
is defined for a reference variable

vref (also initialized to e); a new JSX fragment 𝑅′
𝑗
is obtained from

𝑅 𝑗 by replacing the onChange attribute with a ref attribute that

refers to vref. The body is then modified several times, in order: 𝐵′

from 𝐵 where the new fragment 𝑅′
𝑗
replaces 𝑅 𝑗 , 𝐵

′′
from 𝐵′ where

the new reference variable declaration 𝐷′
replaces the old state

variable declaration 𝐷 , 𝐵′′′ from 𝐵′′ where references to the state

variable v are replaced with accesses to the “current.value” property
of the new reference variable vref, and finally 𝐵

′′′′
from 𝐵′′′ where

calls to the state setter setv are replaced with assignments to the

new reference variable vref. The set of imports is expanded to

include an import to
′useRef′, and thus the transformed code is

given by 𝐼 ′ ... function F (...) 𝐵′′′′.
5
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1 function Square({handleClick, value}) { /* ... */ }
2 function App() {
3 const [squares, setSquares] = useState(Array(9).fill(null));
4 // ...
5 return ( /* ... */
6 <Square value={squares[0]} handleClick={() => handleClick(0)} />
7 /* ... */
8 );}

1 const Square = React.memo(({handleClick, value}) => { /* ... */ }
2 function App() {
3 const [squares, setSquares] = useState(Array(9).fill(null));
4 // ...
5 return ( /* ... */
6 <Square value={squares[0]} handleClick={() => handleClick(0)} />
7 /* ... */
8 );}(a) (b)

Figure 5: pattern Child Component with Object or Array Element Prop example: (a) Non-memoized. (b) Memoized.

𝐵 contains declaration 𝐷 = const [v, setv ] = useState(e)
returnExpr(𝐵) contains 𝑅 𝑗 = <𝑁 ..., onChange = 𝑓 , ...>

𝑁 is a Form or Input 𝑓 calls 𝑠𝑒𝑡𝑣
𝐷′ = const vref = useRef(e)

𝑅′
𝑗
= replaceAttr(𝑅 𝑗 , onChange = 𝑓 , ref = vref )

𝐵′ = replaceExpr(𝐵, 𝑅 𝑗 , 𝑅
′
𝑗
) 𝐵′′ = replaceDecl(𝐵′, 𝐷, 𝐷′ )

𝐵′′′ = replaceVarRefs(𝐵′′, v, vref .current.value)
𝐵′′′′ = replaceCalls(𝐵′′′, setv (e), vref = e)
𝐼 ′ = 𝐼 ∪ {import {useRef} from ′react′ }

𝐼 ... function F (...) 𝐵 → 𝐼 ′ ... function F (...) 𝐵′′′′
(Controlled-Component)

𝐵 contains declaration 𝐷 = const [v, setv ] = useState(e)
no data flow from v to returnExpr(𝐵)

𝐷′ = const vref = useRef(e)
𝐵′ = replaceDecl(𝐵,𝐷,𝐷′ )

𝐵′′ = replaceVarRefs(𝐵′, v, vref .current)
𝐵′′′ = replaceCalls(𝐵′′, setv (e), vref = e)
𝐼 ′ = 𝐼 ∪ {import {useRef} from ′react′ }

𝐼 ... function F (...) 𝐵 → 𝐼 ′ ... function F (...) 𝐵′′′′ (State-Not-Affecting-UI)

F is a React component

𝐼 ′ = 𝐼 ∪ {import {memo} from ′react′ }
𝐼 ... function F ( ) 𝐵 → 𝐼 ′ ... const F = memo(function( ) 𝐵) (Propless-Component)

F is a React component

∃ <𝐹 ..., 𝑝 = 𝑒, ...> | e = v.f or e = v[i] for some state variable v
𝐼 ′ = 𝐼 ∪ {import {memo} from ′react′ }

𝐼 ... function F (...) 𝐵 → 𝐼 ′ ... const F = memo(function(...) 𝐵)
(Memoize-Component-Indexes-State)

𝐵 contains function declaration 𝐷 = function f (...) Bf
𝐵 contains component definition 𝐶 = function N (...) BN

returnExpr(𝐵) contains <𝑁 ..., attr = 𝑓 , ...>
𝐿 = all state variables referenced in Bf

𝐷′ = const f = useCallback(function (...) Bf, L)
𝐶′ = const N = memo(function (...) BN )

𝐵′ = replaceDecl(𝐵,𝐷,𝐷′ ) 𝐵′′ = replaceDecl(𝐵′,𝐶,𝐶′ )
𝐼 ′ = 𝐼 ∪ {import {useCallback, memo} from ′react′ }
𝐼 ... function F (...) 𝐵 → 𝐼 ′ ... function F (...) 𝐵′′

(Function-Passed-As-Prop)

𝐵 contains declaration 𝐷 = const [v, setv ] = useState(e)
𝐵 contains component definition 𝐶 = function N (...) BN

returnExpr(𝐵) contains <𝑁 ..., attr = setv, ...>
𝐶′ = const N = memo(function (...) BN )

𝐵′ = replaceDecl(𝐵,𝐶,𝐶′ )
𝐼 ′ = 𝐼 ∪ {import memo from ′react′ }

𝐼 ... function F (...) 𝐵 → 𝐼 ′ ... function F (...) 𝐵′ (Setter-Passed-As-Prop)

Figure 6: Rewrite rules describing the remedial code transformations.

5.3 State Variable not Affecting UI
Many of the code transformation steps for this rule are shared with

the previously discussed rewrite rule, and we will not discuss them

in detail here. The primary difference lies in the second clause: the

code should be transformed if there is no data flow between a state

variable 𝑣 and the return expression of component F (i.e., the state

variable is not passed as a prop to any returned component).

5.4 Propless Child Component
Rule Propless-Component describes the memoization of propless

React components. Here, F is a React component, and the (function)

component declaration is transformed into an assignment wrapping

the function in a call to memo (as memo cannot be directly called on

function declarations), and as before the imports must be extended

to import memo from
′react′.

5.5 Child Component with Object or Array
Element Prop

Rule Memoize-Component-Indexes-State applies to situations

where one of a component’s props receives data from a state vari-

able through property access or array access to that variable. Note

that F is a React component. If there exists an instantiation <𝐹 ..., 𝑝 =

𝑒, ...> of this component anywhere in the project where some prop

𝑝 is passed either a property access v.f or index into an array v[i]
of some state variable 𝑣 , then the component should be memoized.

As in the previous rewrite rule, the component is memoized by

transforming the function declaration into an assignment of a func-

tion literal, where the function creation is wrapped in memo. As
before, the imports 𝐼 are updated to import memo.

5.6 Child Component with Function Prop
For the last anti-pattern, we distinguish two cases: (a) a locally

declared function is passed as a prop to a child component, and (b)

a setter function is passed as a prop to a child component.

Rule Function-Passed-As-Prop applies when a function is

passed as a prop to a component. Here, function body 𝐵 contains

both a function declaration 𝐷 for a function f and a React com-

ponent declaration 𝐶 for a component N. The return expression

of 𝐵 contains a JSX expression that instantiates the component N,
and notably, that instantiation receives f as a prop. To remediate

this anti-pattern, first, the list 𝐿 of “dependencies” of f is obtained,

consisting of all state variables that are referenced in the body of

f. Then, 𝐷′
is a new declaration that wraps the creation of f in

useCallback, and this call to useCallback also takes 𝐿 as an argu-

ment. Moreover, 𝐶′
is a declaration of N that also memoizes N. Two

transformations are then applied: 𝐵′ is obtained from 𝐵 where the

function declaration 𝐷 is replaced with 𝐷′
, and 𝐵′′ from 𝐵′ where

the component declaration 𝐶 is replaced with 𝐶′
. The imports 𝐼

are extended with imports to useCallback and memo, giving 𝐼 ′,
and the final code is given by 𝐼 ′ ... function F (...) 𝐵′′. (Note that
the transformation can span multiple scopes or even files, and this

simplified version is shown for illustrative purposes.)

6
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Finally, rule Setter-Passed-As-Prop applies when a function

passed to a component is a state setter. Remediating this anti-pattern

is similar to the above case, except that the setter does not need to

be wrapped in useCallback. In body 𝐵, a state variable is declared

(denoted 𝐷 , with state setter setv) and a component N is declared
(𝐶). Here, the component is instantiated with setv passed as a

prop (see <𝑁 ..., attr = setv, ...>). To remediate the pattern, the

declaration of component N is wrapped in a call to memo (𝐶′
), and a

new body 𝐵′ is obtained from the old 𝐵 by replacing the declaration

𝐶 with 𝐶′
. 𝐼 ′ is obtained from 𝐼 by adding an import to memo, and

the transformed code is given by 𝐼 ′ ... function F (...) 𝐵′.

5.7 Implementation
These rewrite rules were implemented in a tool called Reactor . The
implementation leverages the CodeQL [14] static analysis frame-

work to detect the anti-patterns and to collect the data flow informa-

tion required for the remedial program transformations, which are

implemented using JavaScript’s Babel parsing and AST infrastruc-

ture. More precisely, CodeQL queries compute all of the precondi-

tions of a rule, and the JavaScript rewrite tool takes this information

to transform the code. Our tool is available at this Zenodo link.

6 EVALUATION
This evaluation aims to answer the following research questions:

• RQ1 How prevalent are the anti-patterns?

• RQ2 How often do the automated transformations intro-

duce behavioral differences?

• RQ3 How do the transformations impact the number of

re-rendering operations?

• RQ4What is the impact of the transformations on perfor-

mance?

• RQ5 What is the impact of the transformations on code

complexity?

• RQ6 What is the cost of the analysis?

In this Section, we start by depicting the experimental methodol-

ogy, clarifying the subject selection process for our analysis in Sec-

tion 6.1. We then attempt to answer each of the research questions

with the dedicated corpus for analysis in the following subsections.

6.1 Experimental Methodology
To answer RQ1, we ran the anti-pattern identification queries we

developed on all 7,758 repositories. RQs 2, 3, 4, and 5 however,

cannot be answered “at scale” like RQ1. Although applying the

analysis and transformations requires no manual effort, confirming

that no behavioral differences were introduced and checking if

the number of needless re-renders decreased is a manual effort.

Therefore, we attempted to select a subset of that corpus whose

results could be representative of the overall results.

Our evaluation set began with the 14 repositories described in

Section 4, which we had previously analyzed and manually fixed.

These projects provided a basis for evaluating the effect of Reactor
on repositories that we had already verified to be fixable manu-

ally. To assess generalizability, we then augmented this set with

repositories that had not been seen during manual exploration.

We returned to the full list of 10,000 repositories and identified 75

that had published at least one release containing a downloadable

asset, indicating some level of real-world usage.
4

Reactor detects at least one anti-pattern in 57 of these projects.

From these, we randomly sampled repositories until we found 9

(that did not use class components) that we could install, build, set

up, and run locally.We used the ChromeDev Tools React toolkit (the

Components and Profiler tabs) and our own React Dynamic Profiler

to observe and understand an application’s rendering behavior.

In total, we evaluated 23 repositories: the original 14 manually

analyzed projects, and an additional 9 previously unseen reposito-

ries selected through the process above.

We took the following steps to answer each research question:

• For RQ1, we developed CodeQL [14] queries to identify each

of the anti-patterns specified in Section 5. This large-scale

analysis was done on the corpus of 7,758 repositories. (These

CodeQL queries are available in the appendix.)

• RQ2 and RQ3 require non-trivial manual effort; RQ2 requires
manual inspection of projects pre- and post-refactoring. For

RQ3, we instrumented the code to count how often a compo-

nent renders before and after refactoring. Since many React

projects lack tests, we created one “scenario” per studied appli-

cation interacting with at least one component exhibiting an

anti-pattern. We then carefully compared the application’s be-

havior and the number of renders before and after refactoring

for 23 subject repositories.

• For RQ4, we used the Chrome Dev Tools React Profiler tab to

compute the amount of time taken to render when following

the aforementioned scenarios for the 23 subject applications.

In addition, we collected three additional applications with a

scalable number of components to investigate the impact of

re-rendering on performance as applications scale.

• For RQ5, we used escomplex [3] to measure different code

complexity metrics such as SLOC, Cyclomatic complexity, and

Halstead Complexity, both before and after transformation for

the 23 subject repositories.

• Finally, for RQ6, we measured the time to run Reactor on the

smaller set of 23 applications using the Unix time utility. We

also timed the most time-consuming step of the analysis in a

larger-scale study over the full set of 7,758 databases.

All the CodeQL queries were run, using npm version v9.6.6,

Node.js version v18.16.0, and CodeQL version v2.17.2.

6.2 RQ1: How prevalent are the anti-patterns?
We ran the anti-pattern detection queries on the corpus of 7,758

projects, and we found at least one instance of an anti-pattern in

92.1% of projects. The anti-patterns appeared as follows: Controlled
Component in 30.4% of applications, State Variable not Affecting UI
in 42.7%, Propless Child Component in 91.2%, Child Component with
Object or Array Element Prop in 6.3%, and Child Component with
Function Prop in 36.7%. These results indicate that the anti-patterns

occur frequently in real-world React applications.

4
A project needs at least one release (made up of one or more assets, e.g., a zip file of

source code) with at least one downloaded asset. This is quite restrictive, as it indicates

the project has at least one official release that has garnered some attention; in our

experience, the vast majority of React projects on GitHub do not meet this standard.

7
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Table 1: Overview of results. The first row of the table reads: in 16-feb-react-grupo-1, 0 instances of anti-pattern P1, 1 of P2, 11 of P3, 0 of P4,
and 1 of P5 were detected. The number of component renders in the scenario we studied was reduced by 16% after refactoring. Rendering
operations took on average 4.83ms before, and 4.45ms after refactoring; an improvement of 7.9%. It took 6s to build the CodeQL database, and
688s to run all queries for this application. The cyclomatic complexity changed from 325 to 338 after refactoring. Bold numbers in % Time
Saved indicate a statistically significant difference between performance before and after refactoring. We omit render reductions and time
spend rendering for TwitchKillMe as behavioral differences were observed in this application.

Anti-pattern Detected Render Avg. Time Rendering (ms) % Time Cyclomatic Analysis time (s)
Subject Repository Name P1 P2 P3 P4 P5 Red. % Before After Saved Before After DB Build Query

16-feb-react-grupo-1 0 1 11 0 1 16% 4.83 4.45 7.9% 325 338 6 688

26-react-star-wars-hooks 0 0 8 0 1 20% 7.72 7.43 3.8% 205 271 5 852

30days-30projects 9 12 38 1 1 50% 51.61 27.87 46% 1107 1131 7 852

age-react 0 0 3 0 2 50% 30.68 22.38 27.1% 164 164 5 672

AI-chat-powered-by-open-ai-api-react-node 1 0 1 0 0 71% 9.06 1.54 83% 82 82 5 688

API-Search 1 0 2 0 2 12% 13.04 13.14 -0.8% 196 207 6 852

Calculadora 0 0 1 0 2 66% 20.37 13.99 31.3% 52 50 5 800

CashTrackr 0 0 1 0 3 00% 14.15 14.94 -5.6% 153 164 5 852

CRUD-Context-React 0 0 4 0 2 22% 48.67 46.78 3.9% 235 235 6 792

hackaton-euraz-2023 0 3 4 0 0 12% 83.22 38.38 53.9% 765 740 8 831

hacker-news-app-2023 1 1 2 0 0 15% 12.98 9.45 27.2% 79 79 5 852

healthCare 13 14 39 0 0 23% 155.7 122.4 21.4% 919 964 5 672

honey-rae-repairs 10 4 22 0 3 93% 24.85 5.58 77.5% 416 284 6 835

hooksMixed-1 0 0 2 0 0 67% 5.81 4.21 27.5% 78 78 5 826

TypeWriter 0 1 37 0 4 22% 24.82 24.63 0.8% 616 730 13 703

farm-ng-core 0 0 3 0 0 68% 95.42 97.14 -1.8% 6 28 7 604

css-fx-layout 0 1 5 0 0 47% 24.65 24.93 -1.1% 50 65 6 1164

chicken-coop 2 3 7 0 0 54% 6.74 5.53 18% 172 164 7 605

Fokasu 0 0 1 0 1 57% 17.9 18.02 -0.7% 85 85 8 687

laser-shooting 0 0 3 0 0 00% 207.14 219.13 -5.8% 444 444 10 1098

csi-conference-frontend 0 2 13 0 0 01% 57.89 57.13 1.3% 230 351 7 623

baklava 0 0 1 0 0 00% 0.52 0.46 11.5% 3 3 11 700

TwitchKillMe 0 1 2 0 0 – – – – 85 67 7 688

Average 1.6 1.8 9.1 0.0 0.9 33.3% 40.25 34.08 20.54% 281.17 292.35 6.7 779.8

This paper presents five anti-patterns that were identified by

manually inspecting 40 repositories. This paper is the first work to

characterize anti-patterns leading to needless re-rendering. In the

absence of ground truth, it is difficult to gauge the exhaustiveness

of the anti-patterns presented in this paper. However, we observed

that these five anti-patterns are extremely prevalent, as 92.1% of

the 7,760 repositories we studied exhibited at least one.

92.1% of the 7,758 studied React applications under consideration

exhibit at least one anti-pattern.

6.3 RQ2: How often do the transformations
cause behavioral differences?

Wemanually examined each application’s behavior before and after

refactoring to ensure the transformations did not introduce differ-

ences. We opted for a manual approach since UI-based applications

are generally not well-tested, given the complexity of simulating

human interaction in tests. The goal of our manual interaction is

to simulate a simple interaction to exercise code affected by our

transformations and not to emulate the full use of an application.

To do so, we explored every page of the application, interacting

with every interactive element, exercising all transformed code. A

step-by-step account of these interactions appears in the appendix.

After careful analysis of all applications, we only observed one

behavioral difference in the TwitchKillMe project. Upon inspection

of the code, we observed the implementation was not aligned with

React’s development philosophy, having a nested component defi-

nition [27] and did not use props for parent-child communication.

This is not self-contained and violates the locality of behavior.

We observed only one situation where Reactor caused behavioral

differences in our 23 carefully studied subject applications.

6.4 RQ3: How do the transformations impact
the number of re-rendering operations?

We instrumented each React component to log rendering oper-

ations as they were being performed, using the same scenarios

that we used to answer RQ2, noting the total number of rendering

operations before and after transformation.

Table 1 summarizes the results of this experiment. The Red.
% column indicates the % reduction in total rendering operations

during our manual analysis and the Cyclomatic columns show

the cyclomatic complexity before and after transformation. We see

significant reductions in the number of rendering operations in the

majority of cases. In honey-rae-repairs, there is a large reduction as

most of the application’s functionality is related to forms that are

transformed into uncontrolled components. age-react and Fokasu
contain a timer causing some of the components and prop-less child

components to re-render every second. Memoizing these prop-less

child components ensures they are rendered only once.

Notably, for CashTrackr, we see no change in the number of

rendering operations performed. There are two major reasons for

this. First, the prop-less components are only rendered once. Second,

one component in the application takes functions as props (which

8
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can be wrapped in useCallback) but also takes an array of “expenses”.

Due to JavaScript’s highly dynamic nature, Reactor only performs

intra-procedural analysis and cannot fully refactor this anti-pattern.

In applications with at least one downloaded asset, we do not see

any differences in the number of rendering operations for baklava
and laser-shooting, as the propless component is either a top-level

component or relies on an external routing library, which prevents

local optimization.

In the 23 applications under consideration, the number of render-

ing operations is reduced by 33.3% on average after applying the

transformations suggested by Reactor .

6.5 RQ4: What is the impact of the
transformations on performance?

We used the Chrome Developer React Profiling Tools to collect the

time spent rendering all components during each of the scenarios

discussed in RQ3, reported in Avg. Time Rendering columns in

Table 1. We also computed the % difference in time before and after

refactoring, shown in column % Time Saved in the same table; bold

entries in this column indicate statistically significant differences in

render times before and after refactoring at 95% confidence using

Welch’s t-test (this test does not assume equal variance). Overall, we

see improvements in render times in most cases, and no statistically

significant negative impact to performance.

The performance impact of superfluous re-rendering becomes

evident as an application scales. To illustrate, we collected an ad-

ditional three applications that had a number of components that

could vary dynamically: a spreadsheet, a drawing application, and

a JSON editor. We configured these applications at small, medium,

and large scales, and conducted experiments where we investigated

the performance before and after refactoring at each scale using

the Chrome Dev Tools React Profiler tab. These experiments were

conducted on a 2023 MacBook Pro with an M2 Max chip and 64GB

RAM. We manually confirmed that application behavior was pre-

served after refactoring, and these are all available in the artifact.

6.5.1 Spreadsheet. In this application [18], every cell of the spread-
sheet was re-rendering any time a user either clicked on or entered

data in any cell; one would expect rendering performance to become

progressively worse as the sheet’s size increases. Reactor refactors
this application to avoid re-rendering unmodified cell. We prepared

three configurations for this application: a small 20x20 spreadsheet,

a medium 60x60 spreadsheet, and a large 100x100 spreadsheet.

In the small spreadsheet, typing one character into one cell

incurred, on average, a 6.89ms re-render before refactoring, and

a 2.07ms re-render after refactoring (3.3x improvement). In the

medium spreadsheet, these re-renders took 43.4ms and 7.74ms on

average, resp. (5.6x improvement). In the large spreadsheet, these

re-renders took 125.35ms and 19.37ms on average, resp. (6.5x im-

provement). Before refactoring, we observed a noticeable lag in the

medium scale experiment, and a significant lag in the large scale

experiment. After refactoring, we noticed no lag in any case.

In terms of code complexity, the main code transformation was

memoization of the component responsible for cells in the spread-

sheet, and wrapping two functions passed to the cells with use-

Callback; together, these simple code changes result in up to a

100ms improvement in render time while typing in a cell in this

spreadsheet, which we found to be noticeable.

6.5.2 Drawing App. In this application [11], users draw on a grid,

and interacting with any pixel causes all other pixels to re-render;

Reactor refactors this application to avoid re-rendering pixels that

were not interacted with. We prepared three configurations for this

application: a small drawing area of 32x32 pixels, a medium area of

64x64 pixels, and a large area of 128x128 pixels.

In the small configuration, drawing a single pixel caused a re-

rendering operation lasting 14.51ms on average before refactoring,

and 2.76ms on average after, an improvement of 5.3x. In the medium

configuration, these re-renders took 51.83ms and 7.67ms on average,

resp., an improvement of 6.8x. Finally, in the large configuration,

these re-renders took 197.43ms and 26.49ms on average, resp., an

improvement of 7.5x. We observed noticeable lag before refactoring

in the large configuration, and no lag in any case after refactoring.

In terms of code complexity, the main code transformation was

the memoization of the component responsible for pixels, and wrap-

ping the function passed into the pixel components with useCall-

back. These are again very simple code transformations that result

in significant improvements in application performance, in particu-

lar as the drawing grid becomes larger.

6.5.3 JSON Editor. In this application [5], users load a JSON and

edit in in-browser, and save it to disk. A Form component from the

react-bootstrap library is created for each element in the JSON.

Before refactoring, the underlying JSON object was represented

with a React state variable and a new JSON object was created each

time any form was modified, causing all forms to re-render. Reactor
refactored the application to manage the JSON with a ref instead,

and the only component that changes when editing a form after

refactoring is the form itself. We created small, medium, and large

JSONs with 100, 1000, and 10000 elements resp. for this experiment.

Application performance is greatly improved by Reactor . Before
refactoring, writing a single character into one field incurred a

17.05ms render on average with the small JSON, a 106.74ms render

on average with the medium JSON, and a 1,035.88ms render on aver-

age with the large JSON; lag was noticeable with the medium JSON,

and prohibitive with the large JSON. After refactoring, editing a

form is seamless in all cases as no other components on the page re-

render. In fact, HTML forms (which underlie the react-bootstrap
form component) are managed a bit differently than other compo-

nents as they maintain limited internal state
5
, and modifying the

contents of a form does not cause a change in the VDOM unless

other components depend on the contents. In a sense, these forms

render their own content without going through React. After refac-

toring, the only component on the page that changes when a form

is edited is the form itself, and the React profiling tools register

no other component renders; this results in React spending 0ms

re-rendering components after refactoring.

The main change in this application was managing the JSON

object with a ref, which required Reactor to change how this ob-

ject was referenced in 8 code locations (refactoring references to

5
See https://legacy.reactjs.org/docs/forms.html, and https://react-bootstrap.netlify.app/

docs/forms/overview/ for more information.
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currentJson into currentJson.current). These changes were all local-

ized to a single file, and had a dramatic effect on performance.

The impact of needless re-renders manifests itself particularly as ap-

plications scale, and small, simple code changes reduces rendering

time and can make applications more responsive.

6.6 RQ5: What is the impact of the
transformations on code complexity?

We measured code complexity metrics such as sloc, cyclomatic

complexity, and Halstead complexity. For brevity, we only present

cyclomatic complexity in Table 1 but all metrics show a similar

trend and are available in the Appendix. On average, we observe a

slight increase in the Cyclomatic complexity of the programs from

281.17 to 292.35. Some projects such as 16-feb-react-grupo-1 and css-
fx-layout show a small increase in cyclomatic complexity, whereas

projects such as honey-rae-repairs and chicken-coop show a slight

reduction in code complexity. Cyclomatic complexity can decrease,

e.g., if the refactoring eliminates state setters (which eliminates

function calls and callbacks being passed), or if components are

made into uncontrolled components (which eliminates at least one

change handler). Overall, the code transformations do not result in

a significant increase in code complexity.

In the 23 applications, we observe only a slight increase in code

complexity after applying the transformations suggested by Reactor .

6.7 RQ6: What is the cost of the analysis?
There are three components to Reactor ’s cost: (i) building the

CodeQL database, (ii) executing all queries, and (iii) applying the

transformations. Table 1 reports (i) and (ii) under DB Build Time
and Total Query Time, respectively. Transformation time is negli-

gible (milliseconds), and DB build time is under 15 seconds in all

cases. The most expensive step is query execution, averaging 13

minutes per application on a local machine with 16GB RAM, and

never exceeding 20 minutes. We also ran the query step across all

7,758 repositories on a CentOS7 server with 128GB RAM to handle

the larger workload, where it averaged 97 seconds per repository.

On average, it takes less than 13 minutes to transform one project.

7 THREATS TO VALIDITY
It is possible that our set of repositories do not represent all React

applications, and the anti-patterns we identified may not cover all

forms of re-rendering inefficiencies. To mitigate this, we randomly

sampled 10,000 GitHub projects declaring React as a dependency,

and selected subject applications from this pool. We further en-

riched our sample with repositories containing downloadable re-

lease assets to better capture real-world usage. Regarding the latter,

our anti-patterns were derived from repeated manual investiga-

tions of components exhibiting superfluous re-rendering without

visible UI changes. While this process may have missed rarer or

more subtle inefficiencies, the patterns we identified were prevalent

across the broader 7,758-project corpus, suggesting they capture

important and recurring problems. Future work could uncover ad-

ditional inefficiencies; Reactor’s design supports extending it with

new detection and transformation rules as needed.

To assess the impact of the transformations on the number of

rendering operations, we needed to observe the dynamic execution

behavior of the subject applications. Testing React applications is

difficult, and many React applications lack test suites, which was

also the case for all of our subject applications. Therefore, we manu-

ally interacted with the applications by entering text in form fields,

clicking buttons, etc. These interaction scenarios may not repre-

sent how actual users interact with the applications, which may

introduce bias in our results. To mitigate this threat, we carefully

documented the interactions and included them in supplemental

material to enable reproducibility. Furthermore, we ensured that

the interactions exercised as much of the application as possible,

visiting every reachable page of each application.

The code transformation technique presented in this paper draws

inspiration from Turcotte et al. [29] and Gokhale et al. [16] and suf-

fers from similar threats to validity. Concretely, the proposed code

transformations are not guaranteed to preserve program behavior

and are unsound. This unsoundness can primarily be attributed to

unsoundness in the static analysis, which is inevitable due to the

dynamic nature of JavaScript. Therefore, the proposed code trans-

formations should be treated as suggestions and carefully reviewed

by developers before application. In spite of this unsoundness, we

found that Reactor proposed behavior-altering transformations in

only one situation in our evaluation.

8 RELATEDWORK
Related work can be grouped into four categories: Analyzing React

and its semantics, optimizing UIs, general JavaScript performance

optimizations, and work in progress on Meta’s new React compiler.

Analyzing React and its Semantics. Anastasia et al. studied vulner-
ability reports from React.js, focusing on how third-party dependen-

cies impact security, finding that that managing updates effectively

can mitigate common vulnerabilities [6]. Ferreira et al. present an

empirical study of refactoring in React applications, identifying

a catalog of 25 refactoring operations tailored to React alongside

17 adapted traditional refactoring operations, providing actionable

insights for enhancing the design and maintainability of React

applications [9]. In [26], the authors explored the development

principles and architecture of React, highlighting its component-

based structure, one-way data flow, and functional programming

principles that enhance performance and developer usability. Mad-

sen et al. presented a formal semantics for a core subset of React,

capturing the essence of its component life-cycle, state changes,

and reconciliation [19].

UI Optimization. Optimizing UI frameworks is critical for in-

teractive applications to ensure responsiveness and enhance user

experience. Diniz-Junior et al. conducted a comparative study of

three Java-Script UI frameworks: React, Vue, and Angular. They

found that Vue had the fastest DOM manipulation, React had the

best interaction time, and Angular had the largest bundle size [10].

Similarly, Siahaan et al. [25] conducted an analysis on the render-

ing performance of React, Vue, Next.js, and Nuxt.js. They found

that Vue had the fastest initial rendering times, while React ex-

celled in speed, index and user interactions. Next.js was best in

server-side rendering. Additionally, Ollila et al. [22] compared ren-

dering strategies of modern web frameworks, including Angular,

10
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React, Vue, Svelte, and Blazor. They noted frameworks like Vue

and Svelte, which automatically track dirty components and only

process data bindings on updates, perform significantly better than

those like React and Blazor, which re-render entire subtrees and do

not differentiate between static and dynamic content. These studies

compare rendering performance of various JavaScript UI frame-

works, whereas we focused on improving React’s responsiveness.

JavaScript Performance Optimization. Addressing performance

issues in JavaScript is crucial for optimizing web applications. Se-

lakovic et al. [24] demonstrated that inefficient API usage falls

among JavaScript’s most important performance issues. They found

that most optimizations require minimal code changes. Gokhale et

al. [16] introduced Desynchronizer, a tool that optimizes JavaScript

by automatically refactoring synchronous API calls to asynchro-

nous ones using static analysis. Turcotte et al. [30] identified anti-

patterns in JavaScript’s promises and async/await, leading to in-

efficiencies and developed DrAsync, a tool to detect and visualize

these issues. Arteca et al. [7] demonstrated that sub-optimal sched-

uling of asynchronous I/O operations in JavaScript can be improved

by reordering them using static side-effect analysis, resulting in

significant performance gains. Ferreira et al. [9] provided a compre-

hensive catalog of React-specific refactoring by studying topGitHub

projects, offering insights into best practices for maintaining and

improving the quality and performance of React applications.

The React Compiler. Meta’s React team recently announced the

React Compiler [20], an experimental extension to React that aims

to render React applications more efficiently. However, the com-

piler does not aim to provide perfectly optimal re-rendering with

zero unnecessary computation. Their method introduces a new

compilation layer, which inherently limits the range of optimiza-

tions due to the need to guarantee correctness at the compiler level.

Furthermore, to leverage the complete set of features, the React

Compiler requires users to use React version 19. Our approach only

requires using functional components, the preferred paradigm since

the introduction of life-cycle hooks in React 16.8.

We attempted to compare their approach with ours. However,

React 19 introduces backward-incompatible changes that cause

compilation failures in our subject applications. This suggests that,

unlike our technique, it will require developers of existing React

applications to manually upgrade their applications. Additionally,

we encountered issues after migrating to React 19, where the Re-

act Profiling Dev Tools either broke or failed to display memo-

ization badges, making performance comparison infeasible. This

highlights the practical challenges of adopting their approach, while

our method remains accessible across all React versions.

9 CONCLUSION
We have identified 5 anti-patterns that commonly give rise to un-

necessary re-rendering in React applications. For each anti-pattern,

a set of code transformations was proposed to reduce how often

React components are re-rendered. To detect cases where needless

re-rendering may occur, we have defined static analyses for detect-

ing instances of the anti-patterns, which are used in a set of rewrite

rules that produce suggestions on how affected code fragments

can be transformed. The static analyses are potentially unsound,

so these suggestions must be reviewed carefully by a developer to

ensure that behavior is preserved. These analysis and rewrite rules

were implemented in a tool named Reactor .
In a large-scale evaluation of 7,758 projects, we detected at least

one instance of our defined anti-pattern in 92.1% of projects, indi-

cating their prevalence in real-world applications. In an empirical

evaluation of Reactor on 23 subject React applications, a total of 313

instances of the anti-patterns were transformed, and the number

of rendering operations was reduced by 33.3% on average. We also

observed that transformations result in a small increase in cyclo-

matic complexity from 281.17 to 292.35 on average. This relatively

small increase in complexity leads to an average decrease of 20.54%

in time spent rendering, and additional case studies show that ap-

plication responsiveness improves significantly as the number of

components scales up. Moreover, we observed only one instance of

unsoundness in our experiments.

10 FUTUREWORK & GENERALIZABILITY
In two cases, Reactor could not automatically eliminate the anti-

pattern. In CashTrackr, this is due to the intra-procedural nature

of Reactor’s analysis. On the day20 page of 30days-30projects, two

state variables are highly entangled, requiring more significant

refactoring. In both cases, Reactor could be applied successfully

after a modest amount of manual transformation. In future work,

we plan to extend our analysis inter-procedurally and revise the

rewrite rules to handle these cases automatically.

While our research contributions center on formalizing and re-

mediating re-rendering anti-patterns using CodeQL and declarative

rewrite rules, we note that simpler syntactic rules could potentially

be adapted into ESLint plugins. Such extensions could help devel-

opers adopt our findings directly into existing everyday workflows.

Reactor is currently tailored to React, but the problem of superflu-

ous re-rendering is not unique to it. Other popular front-end frame-

works such as Vue and Angular also follow unidirectional data flow

models and exhibit similar rendering behaviors. However, there

are several fundamental differences between these frameworks. For

example, React and Vue both use a Virtual DOM for change detec-

tion but have different implementations of it, whereas Angular uses

Zone.js [4]. Both Angular and Vue use HTML templates and prefer

to extend HTML with directives and pipes, whereas React extends

JavaScript with HTML instead. As a result of these differences, the

solutions to the same problem are different in each framework. As

a concrete example, consider the case where a component should

re-render only if some of its arguments change. To achieve this,

React wraps the component in a call to memo, Angular uses the
component configuration to set the ChangeDetectionStrategy to
OnPush, and Vue would use the v-memo directive with the argu-

ments as invalidation conditions. As such, it would be extremely

difficult to develop a single solution that extends beyond a single

framework, but the underlying ideas carry over. As future work, we

plan to explore how our anti-pattern abstractions might be adapted

to other popular frameworks, and whether automated transforma-

tions analogous to those in Reactor can be systematically derived.

11 DATA AVAILABILITY STATEMENT
We have made an artifact available at this Zenodo link.
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