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Abstract

Static analysis for vulnerability detection in JavaScript is an exten-
sively studied research area. However, state-of-the-art approaches
ignore bundling, an emerging development practice, akin to com-
pilation, which allows developers to merge code from different
providers, while also applying optimizations to reduce code size.
A typical bundle heavily reuses single-letter identifiers and ex-
tensively relies on dynamic JavaScript features to emulate code
dependencies, thus, hindering static analysis.

In this work, we propose a reverse engineering approach that
relies on domain-specific code transformations to unpack bundles
and replace reidentified libraries with their source code. Our tech-
nique applies lightweight static analysis to dissect bundles into
individual components, machine learning to identify libraries, and
dynamic analysis to verify that libraries were correctly identified.
We implement this approach in a tool called D-Bundlr, and evalu-
ate it by comparing the output of CodeQL (a popular static analysis
tool) before and after debundling.

For a JavaScript code benchmark with known vulnerabilities,
our approach allows CodeQL to recover 89% of the vulnerabilities
and 83% of all alerts that were also detected in the source code, but
were dormant in bundles. Similarly, for real-world bundles where
we can retrieve the source code, D-Bundlr recovered 33% of the
original alerts. When applied to bundles extracted from the 100,000
most popular websites, D-Bundlr identifies 34,445 instances cor-
responding to 63 unique libraries, and causes CodeQL to produce
around 3.2K more security alerts than on packed bundles. We ad-
ditionally illustrate how attackers can exploit some of our zero-day
findings, causing unwanted security effects such as advertisement
space hijacking.

CCS Concepts

• Security and privacy → Web application security; • The-
ory of computation → Program analysis; • Software and its

engineering → Scripting languages.
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1 Introduction

Static analysis is notoriously difficult for JavaScript [5], mainly due
to the multitude of hard-to-analyze dynamic language features, e.g.,
eval, prototype inheritance, monkey patching. Nonetheless, since
JavaScript consistently ranks among the most popular program-
ming languages, offering millions of reusable open-source packages,
there is a pressing need for program analyses tools for bug and
vulnerability detection. Prior work proposes a plethora of sophisti-
cated tools like TAJS [24], SAFE [33], CodeQL 1, ODGen [34], or
Jelly [44], which perform complex, multi-file static analyses.

However, the scale of JavaScript projects has increased signifi-
cantly over the last decade, mainly due to the reliance on bloated
library code [27, 62, 68], which poses significant challenges for
static analysis. While prior work proposes ways to statically ana-
lyze library-heavy JavaScript code [6, 46], they often assume that
such libraries are self-contained and relatively rare [31, 45]. On
the contrary, modern client-side JavaScript code include multiple
libraries at once via bundling [53]. Bundlers are tools that package
JavaScript applications alongside their library code into a single (or
few) file, and also translate the code of the application into a form
that is supported by browsers. Bundlers also optimize the code for
size by removing unnecessary characters and sometimes exclude
code that is unused by the application in a process called tree-
shaking. Rack and Staicu [53] have recently showed that bundling
is prevalent on the web and that a typical bundle mixes multiple
libraries together with first party code into large mixed-origin, self-
contained JavaScript files that appear first-party. From anecdotal
evidence, we suspect that bundles are also used beyond client-side:
in server-side2, mobile3, or cross-platform4 contexts.

In this paper, we argue that bundled JavaScript code is signifi-
cantly harder to statically analyze than the original, manually-written
code. For instance, as opposed to bundled code, manually-written
one often rely on semantics-rich identifiers, which are often refer-
enced in static analysis policies to define security-relevant concepts
such as sinks or sanitizers [15, 50]. Moreover, the original code does
not contain any polyfilled code for browser compatibility (e.g., the
1https://codeql.github.com/
2https://webpack.js.org/api/node/
3https://webpack.js.org/guides/progressive-web-application/
4https://www.electronjs.org/docs/latest/tutorial/application-distribution
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polyfill code for module import/export mechanism, Promise, and
native functions). Bundled code often contains dynamic features
that can lead to inaccuracy in static analysis. Besides, the original
source code is better organized, which is useful when applying
certain heuristics. For example, static analyses often rely on models
for libraries and frameworks [59] that are applied when a library is
encountered during analysis. As discussed in this paper, it is often
difficult to say where one library ends and the next one begins in a
bundle. Considering these difficulties with analyzing bundled code,
one solution it to replace it with its manually-written counterpart
before analysis. Unfortunately, the original code is hard to get in
most scenarios, such as when developers want to test third-party
scripts integrated into their own pages or when security engineers
conduct black-box testing of websites or applications. Even if they
have the source code, it is hard to map lines in the bundled code
back to the source code, unless source mapping files are explicitly
included [53].

Inspired by van Tonder and Le Goues’ work [63] on tailoring
code for program analysis, we propose the first debundling ap-
proach in the literature, with the goal of improving the recall of
downstream static analysis. Our approach uses domain-specific
code transformation to (1) unpack JavaScript bundles into compos-
ing files, (2) detect known libraries for which static analysis poses
models, and (3) replace them with their original, manually-written
version. Concretely, D-Bundlr first identifies the compartments of
a bundle and split it into individual files, while preserving and mak-
ing explicit the import relations. Next, D-Bundlr uses a fine-tuned
machine learning model to predict if a given imported file corre-
sponds to a known library and if so, it replaces it with its source
code version. Debundling has similar goals to deobfuscation [13] or
decompilation [9] and it provides multiple benefits to the analyzer:

(1) Through our decomposition, we aim for the static analysis
of the decomposed code to be as effective as analyzing the
original source code directly.

(2) For black-box and gray-box testing tools operating on bun-
dles, we provide a mapping between the bundled code and
the deconstructed code, enabling them to perform more com-
prehensive testing and security analysis.

(3) After we classify which bundled code belongs to user code
and which belongs to which library, the analyzer can apply
optimizations such as function summarization, mocking, and
modeling that were originally used in source code analysis
on the library code so that they can focus on user code.

We implement our approach in a tool called D-Bundlr and
evaluate it on a set of packageswith known vulnerabilities whichwe
bundle ourselves and on 61,389 real-world bundles collected from
the most popular 100,000 websites. We show that D-Bundlr only
introduces a few new alerts that were not already in the original
source code while enabling static analysis to produce 3.2K more
promising alerts that were dormant in bundles. We discuss concrete
zero-day vulnerabilities discovered by CodeQL when augmented
with D-Bundlr.

In summary, in this paper, we make the following contributions:

• We propose the first debundling approach for improving the
effectiveness of static analysis in the presence of bundles.

• We present extensive empirical evidence to show that state-
of-the-art approaches struggle with analyzing bundles, and
that debundling helps uncover unknown vulnerabilities.

• We provide a reusable prototype (https://anonymous.4open.
science/r/D-Bundlr-5E80/) that can be integrated into exist-
ing static analysis pipelines.

The rest of this paper is organized as follows: Section 2 describes
bundling and its detrimental effect on static analysis, Section 3
introduces our debundling approach, Section 4 presents empirical
results to show the utility of our approach, Section 5 lists threats to
validity, Section 6 discusses related work, and Section 7 concludes.

2 Background

In this section, we discuss how bundling works and why it is detri-
mental to static analysis. We present concrete examples using web-
pack, which according to Rack and Staicu [53] is both representative
for existing bundlers and the most prevalent bundler on the web.

2.1 Bundling process

At a high level, bundlers merge multi-file applications into single-
or-few file distributions. They also perform optimizations such as
dead-code elimination via tree-shaking and code minification to
reduce the size of bundles. A typical bundling process follows the
following steps:

Step 1: Load. Given an entry file, the bundler will parse the
content, supporting various input formats like JSX and TypeScript.

Step 2: Build Dependencies Graph. The bundler checks if the
file from the previous step imports other files by checking the
require or import expressions through syntactic analysis. If there
are dependencies, the bundler will put them in a queue and return
to Step 1; thus, all files (we will call these modules from now on)
will be loaded. Through this process, the bundler builds a module
dependency graph and collects modules into chunks so that the
bundle can be loaded on demand or in parallel5.

Step 3: Compile. In many cases, developers program in a super-
set of JavaScript, e.g., using JSX or TSX (JavaScript + HTML-like
syntax) or TypeScript, so, these are transpiled in this step into
standard JavaScript. This step naturally causes a loss of information,
e.g., the type hints present in the TypeScript code are disposed after
compilation and variables are renamed to single-letter identifiers.

Step 4: Seal. The bundler organizes all modules in each chunk
into one big JavaScript file. This step looks like the “link” step in tra-
ditional compilation of C/C++. The bundler replaces native modules
with polyfills, i.e., JavaScript implementing the native functionality,
and perform additional optimizations6, which make reverse engi-
neering a challenge. For example, given a module dependencies
graph, the bundler merges multiple modules into an abstract mod-
ule, in case the two modules have a dependency edge and they both
belong to ESM7. Additional optimizations are carried out at the
end of this stage, like control-flow flattening. Once again, this step

5E.g., for webpack: https://webpack.js.org/guides/code-splitting/
6For details on how webpack does this, see https://github.com/webpack/webpack/
blob/v5.95.0/lib/optimize/ModuleConcatenationPlugin.js.
7https://webpack.js.org/guides/ecma-script-modules/
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alters significantly the structure of the original code in modules,
making perfect reverse engineering impossible.

Step 5: Output. The bundler writes the code of each chunk into
different files, we will describe the structure in Section 2.2.

1 import {useEffect} from 'react';

2 import {useLocation, useNavigate} from 'react-router-dom';

3 import queryString from 'query-string';

4 const Home = () => {

5 const location = useLocation();

6 const navigate = useNavigate();

7 useEffect(() => {

8 const url = queryString.parse(location.search).u;

9 if (url) {

10 window.location.href = url;

11 }

12 }, [location, navigate]);

13 };

14 export default Home;

(a) Original source code.

15 (() => {

16 var e = {

17 43: (e, t, n) => { t.render =... /*react code*/ }

18 },

19 /*webpack runtime functions*/

20 var l = n(43);

21 function te() { /* ... */ }

22 function re() { /* ... */ }

23 var Ke = {}

24 var Be = (s) => { /* ... */ };

25 n.d(Ke, { parse: ()=>Be });

26 const Xe = () => {

27 const e = te(),

28 t = re();

29 return (0, l.useEffect)((() => {

30 const t = Ke.parse(e.search).url;

31 t && (window.location.href = t)

32 }), [e, t])

33 };

34 })();

(b) Compiled code.

Figure 1: Original and bundled code from a simple React

application with an open redirect vulnerability. The webpack

runtime functions omitted in Figure 1b are listed in Figure 2.

To illustrate this process, consider the code in Figure 1a and its
bundled version in Figure 1b. The example shows a small web appli-
cation written in JavaScript, using React. The code declares a func-
tion Home (a React component), which will render a web page when
running in the browser. In the body of Home, function useLocation
from library react-router-dom and queryString.parse from li-
brary query-string get the parameter u from the URL, which will
be ultimately assigned to window.location.href.

To bundle this application, webpack first loads the file in Fig-
ure 1a (Step 1), and identifies modules 'react' , 'query-string' ,
and 'react-router-dom' as dependencies, also loading and analyz-
ing them and their transitive dependencies (Step 2). In this example
there is no special syntax so nothing needs to be converted (Step 3),

35 t={};

36 function n(r) {

37 var a = t[r];

38 if (void 0 !== a) return a.exports;

39 var l = t[r] = {exports: {}};

40 return e[r](l, l.exports, n), l.exports.

41 }

42 n.d = (e, t) => {

43 for (var r in t)

44 Object.defineProperty(e,r,{ enumerable: !0, get: t[r] });

45 }

Figure 2: Webpack runtime functions.

but if there was JSX in the Home component it would be converted
now. Also, the bundler only creates a single chunk, because there
are no dynamic imports. Next, since the project module and 'query

-string' use ESM modules (see the import statements), webpack
will perform module concatenation (Step 4). All three of the afore-
mentioned modules are merged into this chunk: the entire 'react'

library is placed in the module map on line 17, the queryString

library is placed together with the application code on lines 23-25,
and useLocation and useNavigate functions from 'react-router

-dom' are placed on line 21 and 22, respectively. Interestingly, since
queryString is an ESM module, the bundler first creates an empty
object (line 23), translates the parse function from queryString

(line 24), and uses the special n.d method to add the translated
parse method to the object, which emulates the export keyword
in ESM.

2.2 Structure of a bundle

Most modules in the main chunk are bundled into a map object
(moduleObj) (line 16) indexed by a unique module ID. The map
contains a wrapper function for each module, and each wrapper
function takes three arguments: the first represents the module, the
second is the exports object, and the third is the require function.
If the bundle contains chunks that are loaded asynchronously, the
code consists of a list of push statements: the pushed element is a
number array that represents the module’s identifier, mapped to a
wrapper function that encompasses the module’s code.

The bundler inserts its own require function, which can be found
in Figure 2. To load a module, it first looks at a cache (𝑡 ); on a
hit, it returns its exports field directly, otherwise it prepares the
module and exports (line 39) and stores that in the cache. Then it
gets the wrapper function from moduleObj, and calls that function
(line 40). Bundlers also offer helper functions8 to emulate other
Node.js module require mechanisms. One such function is n.d

(line 42) which simulates the export keyword. Here, given an
object 𝑒 and object 𝑡 , n.d merges all properties in 𝑡 onto 𝑒 .

2.3 Challenges for static analysis

An important question we pose is: what makes bundles so difficult
to analyze? Consider again the code in Figure 1a. With sufficient
modeling of React and other libraries, static analysis can make
sense of the application. Importantly, these models can also define

8https://github.com/webpack/webpack/blob/main/lib/RuntimeGlobals.js
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taint sources and sinks, and static taint analysis can be used to
find vulnerabilities in the application. In point of fact, there is an
open redirect vulnerability in this code, since user-supplied data is
assigned directly to window.location.href , which static analyses
like CodeQL can detect thanks to library models. The high-level
problem is that identifiers lose their semantics in the bundling
process. They often get renamed to single-letter identifiers that
are frequently reused across different scopes. This might lead to
potential confusion for static analysis; in particular, name-based
analyses [16, 17, 51] might become very imprecise in this context.

Now, let’s look at this piece of code after it has been processed
with webpack, in Figure 1b. As discussed in the previous section,
webpack placesmost of themodule code in themodulemap (line 16),
and hoists some library functions, e.g., useLocation and useNavigate

on line 21 and 22, respectively. Already, this process clearly obfus-
cates which libraries are in use, making the application of library
models extremely difficult. Moreover, the way webpack emulates
module loading as seen in Figure 2 makes extensive use of highly
dynamic JavaScript features like dynamic read and write operations,
and so context-sensitive analysis of functions like n (lines 36-41 in
Fig. 2) is prone to path explosion as n will typically be called in
several places. Even if we take the most advanced program analysis
techniques, such as hybrid dynamic-static analysis [32], the anal-
ysis still faces challenges. The dynamic analysis can not cover all
the libraries, and to the best of our knowledge, there is no general-
purpose, usable demand-driven analyzer for JavaScript. And indeed,
CodeQL, one of the most powerful industrial static analysis finds
no vulnerabilities in scanning the bundled application of Figure 1b.

All this said, there is a straight-forward bundling process outlined
in Section 2 which we aim to partially reverse. The general idea
is to take bundles like the one in Figure 1b and dissect them into
composing parts to reduce the detrimental effect of bundling, and
at the same time preserve the semantics of the transformed code.

3 Approach

Our novel debundling technique consists of three parts:

(1) Predictor: given a function, predict, if possible, if it belongs
to library code or to the bundler runtime;

(2) Analyzer: outputs information about every function, e.g., lo-
cation or free variables, lightweight pointer analysis results,
and the structure of each file;

(3) Transformer: based on the previous information, separates
the bundle into individual files, potentially replacing some
transformed code with its source code equivalent.

3.1 Predictor

First, we predict the provenance of each exported or wrapper func-
tion in the bundle. The predictor Predict (𝑓 ) takes a function 𝑓 and
outputs a function prototype proto with extra information if the
function belongs to a known package, or Unknown. proto takes the
form ⟨𝑃𝑎𝑐𝑘𝑎𝑔𝑒,𝑀𝑜𝑑𝑢𝑙𝑒, 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛⟩, where Package is the package
name that the function belongs to, Module is the relative path of
the module where the function is being exported, and Function is
the exported name of this function. If the 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 is a wrapper for
a module, the 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 part of proto is WRAPPER; if the module

is the entry file of a package (defined in its package.json under
“main”9 or “export”10 fields), the𝑀𝑜𝑑𝑢𝑙𝑒 is simply main.

Our approach uses three different prediction schemes:
(1) AST-pattern matching, AstPredict (𝑓 )
(2) Code similarity with testing, SimPredict (𝑓 )
(3) Machine learning with testing. MLPredict (𝑓 )
We try each of these prediction schemes in turn until one pro-

duces a result; otherwise, the prediction is Unknown.

3.1.1 AST-Based Pattern Matching. The AST-based approach will
predict ⟨proto, p⟩ for 𝑓 if there exists (pattern, proto) ∈ Patterns
such that match(pattern, 𝑓 ) = (true, 𝑝). Here, pattern ∈ Patterns
is a tuple (proto, astPattern), where astPattern ∈ AstPattern is an
abstraction over AST nodes with placeholders for each type of node,
like 𝐼𝐷 for identifiers or 𝐴𝑁𝑌 matching anything. For example, an
astPattern called 𝑝𝑚 could look like 𝑝𝑚 = function ID1 (ID2){. . .}.
Then, match(pattern, 𝑓 ) is a function that returns a tuple (𝑏, 𝑝),
with 𝑏 ∈ {𝑡𝑟𝑢𝑒, 𝑓 𝑎𝑙𝑠𝑒} indicating if 𝑓 matches pattern, and 𝑝 is a
tuple of the pattern and a map of all concrete values associated
with any placeholders in the pattern. For example, say we had a
concrete AST node 𝑓 = function foo(𝑥){}, then match(𝑝𝑚, 𝑓 ) =
(𝑡𝑟𝑢𝑒, (𝑝𝑚, {ID1 ↦→ foo, ID2 ↦→ 𝑥})).

This lightweight scheme is mainly used for finding bundler re-
quire functions. We will also use𝑚𝑎𝑡𝑐ℎ(pattern, 𝑓 ) in Section 3.2
to find bundler boilerplate functions.

3.1.2 Code Similarity (with Validation). The code similarity-based
prediction consists of two steps, a search step followed by a valida-
tion step. For a function 𝑓 , we perform a similarity search over a
predefined mapping simmap : Code → Proto, which stores known
code-to-prototype associations. We compute the similarity score
Sim(𝑓 , 𝑐) for each entry 𝑐 in simmap and select the code snippet 𝑐∗
that has the highest similarity. The corresponding prototype proto∗
and similarity score s∗ are retrieved. If the best similarity score
is below a predefined threshold, the search step returns Unknown.
𝑆𝑖𝑚(𝑐𝑜𝑑𝑒1, 𝑐𝑜𝑑𝑒2) first tokenizes the code: variables are tokenized
as Var:value , strings and numbers as const[value] , all of other
tokens are preserved as they are.Then, we compute the LCS sim-
ilarity of two tokenized strings as the code’s similarity. Next, we
validate whether 𝑓 and proto∗ are semantically consistent using
the function Valid (𝑓 , proto∗). (We will illustrate the implementa-
tion details of Valid in Section 3.1.4.) If the validation succeeds,
we return ⟨proto∗, trace⟩, where trace is the function running trace
we get from Valid; otherwise, we return Unknown. This two-stage
process ensures that the final predicted prototype is not only the
most similar one but also satisfies necessary validity constraints.

3.1.3 Machine learning approach (with validation). Mirroring code
similarity, this approach also has a search and validation step. First,
it uses a pretrained model to get the top-𝑘 candidate function pro-
totypes predicted by the model. The model not only returns 𝑘 can-
didates but also returns the corresponding probabilities 𝑝0, ..., 𝑝𝑘 .
Only probabilities above a predefined threshold are considered,
and then candidates are sorted in descending order based on their
probability score 𝑝𝑖 . Then, the approach iterates through the can-
didates and finds the first prototype that passes the validity check
9https://nodejs.org/api/packages.html#main
10https://nodejs.org/api/packages.html#exports
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valid (𝑓 , proto𝑖 ) (discussed shortly in Section 3.1.4). If no valid pro-
totype is found, the function returns Unknown.

3.1.4 Validation. The approach aims to validate that a predicted
prototype proto for a function 𝑓 is consistent with the dynamic
behavior by ensuring that the interface and/or behavior of the pre-
dicted prototype matches what we can observe in the bundle. As-
suming proto = ⟨𝑝,𝑚,WRAPPER⟩, i.e., a module wrapper function,
we first executed the compiled function with dummy arguments
and check if the properties of the exports object(the third dummy
argument we given) are a subset of the actual properties exported
by the module𝑚 of package 𝑝 . Otherwise, for high-frequency func-
tion prototypes, we manually specify more specific arguments,
compile the prototype function, and run it in a special environ-
ment where we record its return value, as well as crucial reads
(⟨′𝑅′, 𝑏𝑎𝑠𝑒, 𝑓 𝑖𝑒𝑙𝑑⟩), writes (⟨′𝑊 ′, 𝑏𝑎𝑠𝑒, 𝑓 𝑖𝑒𝑙𝑑, 𝑣𝑎𝑙𝑢𝑒⟩), and function
calls (⟨′𝐶′, 𝑐𝑎𝑙𝑙𝑒𝑟 (𝑎𝑟𝑔𝑠)⟩, where 𝑎𝑟𝑔𝑠 is a list of 𝑎𝑟𝑔) made. Then,
we use the same argument to call the function 𝑓 and compare if
the function in bundles matches the similar return value and has
similar crucial read/write/call operations that proto has.

In validation, the behavior of functions needs to closely approxi-
mate their behavior in a real runtime environment. However, due
to factors such as the use of dummy values and differences between
the execution environment (we run all the code in Node.js runtime,
not in browser), directly running the program may lead to issues
such as raising errors, infinite loops, or infinite recursion. To get
around this, we run the code in a sandbox that intercepts calls to the
bundler’s require function, and also mocks the document, window,
and DOM. We also use code transformations as follows.

• For any Loop expression, change it to If expression to prevent
the infinite loop, for example, for(init;test;update){body} be-
comes{init; if(test){body; update;}} . Similar transformations
are also applied to forWhile and Do-while.

• Break and Continue expression are removed.
• Call expressions are translated to prevent infinite recursion.

Please notice that these transformations are only used for validation,
and we apply the same transformation both on the function in
bundle and proto. Although this way, our function execution will
not have 100% of the original function’s semantics, considering that
the functions to be identified are very simple (usually source or sink
functions), such execution and comparison are already sufficient.

3.2 Analyzer

Once we have predictions for each exported or module wrapper
function, we can begin analyzing the bundle to find invocations of
the bundler’s require function and build the module map. Given a
JavaScript bundled file, the approach first uses pattern matching
to distinguish whether the file is the main chunk or a sub-chunk.
We classify the main chunk using signatures from the bundler’s
inserted “runtime” functions, e.g., boilerplate functions used for
emulating import relationships. For sub-chunks, modules are often
in a global module map or array [53] which we use for identification.

Then, we performed a lightweight pointer analysis. The boot-
strap rules are the same as the traditional one. When pointer anal-
ysis reaches a fixpoint, we consult the predictions made by the
previous step in order to find the bundler require function and
through this we can find the module map. There are two cases: if 𝑟

was predicted usingAstPredict, then the prediction contains enough
information to find the module map directly in the AST. If 𝑟 was
predicted by SimPredict or MLPredict, we call it in a sandbox with
a dummy value 𝑣 and trace any calls made by the function; one of
those traces will take the form ⟨′𝐶′,𝑚𝑎𝑝𝑉𝑎𝑟 [𝑣] (∗)⟩, and𝑚𝑎𝑝𝑉𝑎𝑟

is the variable pointing to the moduleObj object. We then build
the modules map Modules as follows: ∀𝑖𝑑 ∈ Props(moduleObj) :
Modules[𝑖𝑑] = pt1 (moduleObj.𝑖𝑑). Here, pt1 (𝑣) is a function that
first asserts the 𝑠𝑖𝑧𝑒𝑂 𝑓 (pts(𝑣)) = 1 and returns that single token (if
assertion failed then we say D-Bundlr doesn’t support this bundle).

For each call site, if the callee’s point-to set contains the bundler’s
require function or a dummy require, and the argument is string or
integer 𝑐 , we create a special variable with the constant to resolve
exactly what in the module map was required because the bundler
will use these to index the module map. E.g., on line 20 in Fig. 1b,
we see the bundler require function uses an integer literal to access
the module map n(43) .

Then, for each module in the module map Modules, we create
three dummy objects module, exports, and require, place them into
the points-to set of their respective parameters according to the
structure we discussed in Section 2.2, and continue pointer analysis
to reach a new fix point for later use. The handling of sub-chunks
is simpler than for the main chunk, as we only need to use AST
pattern matching to get moduleObj and Modules.

3.3 Transformer

Once we have the 𝑀𝑜𝑑𝑢𝑙𝑒𝑠 map, we can begin transforming the
code. For each entry ⟨𝑖𝑑, 𝑓 𝑢𝑛𝑐⟩ in the𝑀𝑜𝑑𝑢𝑙𝑒𝑠 map, we move the
𝑓 𝑢𝑛𝑐 code into a separate file from the main chunk. We applied
serval transformations to the code of these files and discuss a select
few in this section (the rest are described in the artifact). In the end,
our approach outputs module files that contain the transformed
module code and a transformed main chunk.

The anatomy of these transformation rules is 𝑐𝑜𝑛𝑑
ori𝑙→debundled ,

which denotes that if cond holds, the original code ori at line 𝑙

is transformed into debundled. If one ori has multiple transforms,
like 𝑐1

ori𝑙→𝑑1
and 𝑐2

𝑜𝑟𝑖𝑙→𝑑2
and 𝑐1 and 𝑐2 both hold, we will trans-

form 𝑜𝑟𝑖𝑙 to 𝑑1;𝑑2. The order of 𝑑𝑥 in the debundled code does not
matter. Throughout, pts(𝑣) denotes the points-to set of variable 𝑣 ,
ConstantVar [𝑎] is a variable that always has value 𝑎, and Props(𝑜)
contains all the properties of objects 𝑜 .

3.3.1 Transform bundler runtime functions. There aremany bundler-
specific runtime functions to transform, and we show two rules
here for illustrative purposes, replacing the require function:

⟨𝑟, [𝑖], 𝑙⟩ ∈ 𝐶𝑎𝑙𝑙𝑠𝑖𝑡𝑒𝑠 require ∈ pts(𝑟 ) 𝑖 = 𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡𝑉𝑎𝑟 [𝑖𝑑]
r(i)𝑙 → require('./id.js')

(require)
We also must transform bundler export functions. For instance,

webpack has two implementations, and we discuss one: require.

export( export, "exportField", ()=>{ return fieldFunction}) ,
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which is by the following rule:

⟨𝑟 .𝑑, [𝑒, field, func], 𝑙⟩ ∈ Callsites require ∈ pts(𝑟 )
export ∈ pts(𝑒) field = ConstantVar [𝑖𝑑]
get ∈ pts(func) exportFunc ∈ pts(Return[get])

r.d(e, field, func)𝑙 → exports.f=exportFunc

(export)

3.3.2 Transform predicted function or module. If module𝑚 is rec-
ognized as the index file of package 𝑝 , i.e., 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 [𝑚] = ⟨𝑝,𝑚𝑎𝑖𝑛,

𝑤𝑟𝑎𝑝𝑝𝑒𝑟 ⟩, we replace the require:
𝑚 ∈ valuesOf (Modules) 𝑃𝑟𝑒𝑑𝑖𝑐𝑡 [𝑚] = ⟨𝑝,𝑚𝑎𝑖𝑛,𝑤𝑟𝑎𝑝𝑝𝑒𝑟 ⟩

require('./id.js') → require('p')
(replace-wrapper-index)

If the function 𝑓 is recognized, we replace the call site of that
function to require('p').func .

3.3.3 Transform react jsx and createElement function. For React,
a developer can write JavaScript combined with HTML syntax like
const e = <h1>hello</h1> . Bundlers will translate this to const e

= React.jsx('h1', children: 'hello') or React.createElement

('h1', null, 'hello') . Recovering JSX literals is important as
many encode sinks, e.g., <a href=`sink'␣/> , which would not be
identified in the bundle.

For themethod call 𝑐𝑟𝑒𝑎𝑡𝑒𝐸𝑙𝑒𝑚𝑒𝑛𝑡 , we use AST patternmatching
to get and replace that call site (similar for a call to 𝑗𝑠𝑥 ):

ANY.createElement(string, {p1:v1, p2: v2, ...},𝑐𝑙𝑠𝑡 )𝑙

ANY.createElement(...𝑐𝑙𝑠𝑡 )𝑙 → <string p1=v1 p2=v2 ...>𝑐𝑙𝑠𝑡</string>
(replace-createElement)

3.4 Training

The purpose of the model used by MLPredict is to recover the orig-
inal function or module from bundled functions, so we prepare a
dataset of (source, bundled) code pairs. Concretely, for a specified
list of packages we prepare a dataset 𝐷𝑆 = {⟨𝑓 , 𝑝𝑟𝑜𝑡𝑜⟩} as follows:

(1) For each package, we make a project whose entry file re-
quires it and try to output all its exported fields (to make sure
no functions are removed by bundler tree-shaking). Then
we bundle that project with source mapping enabled.

(2) We apply the lightweight static analysis introduced on Sec-
tion 3.2, and get the Modules map.

(3) For all wrapfunc ∈ valuesOf (Modules), we use the source
mapping file to get the original module code and the module
location, including the package name package and relative
module path module. So we have:

⟨wrapfunc, ⟨package,module,WRAPPER⟩⟩ ∈ 𝐷𝑆,

⟨modulecode, ⟨package,module,WRAPPER⟩⟩ ∈ 𝐷𝑆.

(4) For all hoisted functions 𝑓h, we get the original function 𝑓o
via source map as well as the package and module of that
function. Then we have:

⟨𝑓h, ⟨package,module, nameof (𝑓o)⟩⟩ ∈ 𝐷𝑆,

⟨𝑓o, ⟨package,module, nameof (𝑓o)⟩⟩ ∈ 𝐷𝑆.

where nameof (𝑓 ) return function’s exported name, or defi-
nition name. We ignore anonymous functions.

For all labels (the RHS of each tuple) in 𝐷𝑆 , we perform one-hot
encoding when training, so that when it is used for prediction, it
also returns a vector which can be decoded as a map, proto → 𝑝 .

3.5 Semantics of Debundled Code

Even if pointer analysis is unsound, dividing module functions
into different files and using the require function to link them
together does not disrupt semantics. If we miss some pointer infor-
mation, we will just not transform the code. Recovering JSX from
bundles is also semantics-preserving if we assume that no other
functions are named “jsx” or “createElement”. We do risk changing
semantics via library prediction, which is why we introduce the
verification step to minimize the number of incorrect predictions.

3.6 Implementation

We implemented our approach in a tool called D-Bundlr, available
at https://github.com/Anemone95/D-Bundlr.

Predictor. We chose GraphCodeBERTwith a classification header
as our prediction model, as it is lightweight and works well for the
dataset size we consider [20]. While the training process can handle
any library, our prototype currently supports all frontend packages
for which CodeQL has models (we list all 250 such packages in
the artifact). These packages are often security relevant, e.g., they
contain sources required for taint analysis, as in query-string11.
For the verification step, we manually modeled 25 functions by
providing specific inputs, the expected operations in the trace and
the return value (in the artifact). We provide a semi-automated
script to do the extraction, and in total, it took one of the authors
10 hours to complete the modeling.

Analyzer. For the AST patterns used to detect main and sub
chunks we reuse and extend the patterns proposed by Rack and
Staicu [53], focusing on the webpack bundler in this prototype.
We implement our static pointer analysis based on Jelly (https:
//github.com/cs-au-dk/jelly), a state-of-the-art static analysis tool
for JavaScript. To balance scalability and precision, we use the
Madhurima et al. [10] approach and limit the maximum wave to 10
and the maximum indirection round for each wave to 1.

Transformer. For the transformations recovering JSX, we adapted
transformations from the webcrack project12. The other transfor-
mations were implemented in Babel13.

4 Evaluation

D-Bundlr pre-processes and transforms bundles to bemore amenable
to static analysis, so we pose the following research questions:
(RQ1) How many alerts/vulnerabilities detected by static analysis

are lost when analyzing bundles instead of source code?
(RQ2) How many such alerts/vulnerabilities are recovered when

analyzing applications debundled by D-Bundlr?
(RQ3) How many false positives are introduced by D-Bundlr’s

debundling process?

11https://www.npmjs.com/package/query-string#api
12https://webcrack.netlify.app/
13https://www.npmjs.com/package/@babel/core

https://github.com/Anemone95/D-Bundlr
https://github.com/cs-au-dk/jelly
https://github.com/cs-au-dk/jelly
https://www.npmjs.com/package/query-string#api
https://webcrack.netlify.app/
https://www.npmjs.com/package/@babel/core


D-Bundlr: Destructing JavaScript Bundles for Effective Static Analysis ICSE ’26, April 12–18, 2026, Rio de Janeiro, Brazil

(RQ4) How many additional vulnerabilities are detected in bundles
processed by D-Bundlr “in the wild”?

(RQ5) What is the contribution of the various components of D-
Bundlr in its success?

Subject Application Selection and Basic Settings

In general, the source code corresponding to bundles is not available,
and few bundles have source maps, which complicates answering
RQ1-3 as we ideally would have a set of “ground truth” confirmed
vulnerabilities, or else the source code of the bundle on which we
can run CodeQL. To this end, we use the 218 packages from the
work of Brito et al. [8], which perform a study of the effectiveness of
static vulnerability detection tools on NPMmodules as the first part
of our dataset; we refer to this as “ground truth dataset”. We pre-
pared a special webpack config for these to bundle them ourselves.
We also use a dataset of 251 bundle scripts from the Tranco [49]
top 100,000 websites14 which contain source maps so that we can
recover the original code (we check if a source map exists by check-
ing for the following comment on the last line: //sourcemap=... );
we refer to this as “source map dataset”. This dataset contains more
client-side code, but does not have a ground truth.

To answerRQ4 andRQ5, we use all bundles from the Tranco top
100,000 as our dataset (“tranco top 100,000 dataset”). Each website
includes multiple scripts with different origins; we assume that all
scripts from the same domain belong to the same bundle and input
them together into D-Bundlr, and we consider such scripts as a
single script when counting scripts in Table 3.

We ran our experiment on four Dell R6525 2x AMD Epyc 7773x
servers. Model training is done on one NVIDIA DGX A100 server.
We gave D-Bundlr 1 hour, 10 GB of memory for analyzing each
bundle. It takes ∼3 days to collect all results in Table 3.

We use CodeQL (v2.20.6) to discover vulnerabilities, and config-
ured it to also analyze library code. We used all error level severities,
path-problem kinds, and security-related rules (we exclude "Hard-
coded data interpreted as code" for the website datasets because
this rules assume a library-level threat model, and we are not aware
of how attackers can exploit this in websites). To match alerts be-
tween source code and bundle, we use the source map to link the
alerts’ sink locations. If two alerts’ vulnerability types and sink
locations match, we say they are the same. Similarly, to compare
alerts between source and debundled code, we first use source map
to link the alerts’ sink locations from the source code to the bundle,
and then test if the alert’s vulnerability type is the same and if the
code similarity of the sink in the bundle and in the debundled code
is greater than 70%; if both are true, we say these are the same alert.

RQ1 How many alerts are lost when analyzing

bundles instead of source code?

For this question, we run CodeQL on both source and bundled code
in the ground truth dataset and the source map dataset. Columns
Source Code, Bundle, and Bundle in Tables 1 and 2 show the

14we use their list made in 2025/01/23 and we made a snapshot for all websites at the
same date

results, where Source Code shows the number of vulnerabili-
ties/alerts15 that CodeQL detects in source code, Bundle is the
number that CodeQL can get from the compiled bundle, and Bundle
shows how many are missing when only analyzing bundles.

Overall, of 218 packages and 251 websites, CodeQL failed to
detect all vulnerabilities and only preserved 5 alerts in ground
truth dataset, while in the source map dataset, CodeQL finds 4
alerts. The main reason is that CodeQL cannot precisely analyze
the webpack runtime function, which is crucial to establish cross-
module dataflow to detect vulnerabilities. All of the 9 preserved
alerts follow a similar pattern, namely, all of the taint sources and
sinks relevant to the alerts are globally defined, rather than defined
in some library model, and moreover all of the flows relevant to
the alert are confined to a single module. E.g., taint sources include
process.env, and sinks include regular expression constructors.

Takeaway. CodeQL detects few alerts in bundled applications.

RQ2: How many vulnerabilities are recovered

when analyzing debundled code?

We ran D-Bundlr to debundle all the bundles analyzed in RQ1,
and then ran CodeQL to check if the vulnerability reported in
analyzing the source code was also present in the debundled code.
In Tables 1 and 2 consider columns D-Bundlr, which shows all
vulnerabilities and alerts that CodeQL detected from debundled
code, and Src ∩D-Bundlr, which shows the overlap of alerts from
the source code and from debundled code. In all, CodeQL recovered
89% vulnerabilities and 83% alerts in the ground truth dataset and
33% in the source map dataset. The main reason is that D-Bundlr
reverts the module dependence relationship to use native require
and export mechanism, which is easier to analyze.

We manually checked the alerts that CodeQL still failed to detect
when used with D-Bundlr. Many are due to missed library predic-
tions: e.g., if the source or sink is located in unmodeled libraries,
the alert will be missed. This particularly affects the ground truth
dataset because D-Bundlr does not attempt to predict backend
libraries like “express” or “koa”. The others are due to aggressive
optimizations applied by bundlers at the end of their sealing pro-
cess (Step 4 in Section 2); these can be extremely challenging to
reverse, but future work should explore the use of deobfuscation
techniques [13]. E.g., in Figure 3, webpack significantly changes
the code by flattening the control flow in the try-catch block.

Takeaway. By using D-Bundlr before analysis, CodeQL recovers
89% of vulnerabilities and 83% of alerts present in the ground truth
data set, and 33% of alerts in the source map dataset.

RQ3: How many false positives are introduced by

D-Bundlr’s debundling process?

For this research question, we again examine the same dataset as
in RQ1 and RQ2, and here we look at D-Bundlr \ src columns
which reports the cases where there are more alerts detected in the
debundled application as compared with the source application.

We can see that D-Bundlr doesn’t generate many “new” alerts.
On source map dataset, D-Bundlr include 4 new alerts that do not
15In this paper, alerts refer to any alerts reported by CodeQL, while vulnerabilities
refer to alerts that are confirmed to be exploitable.
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Table 1: CodeQL results on source code, bundle, and debundled code from ground truth dataset

VulnType

Source Code Bundle Bundle D-Bundlr Src ∩ D-Bundlr D-Bundlr \ Src
Vulns Alerts Vulns Alerts Vulns Alerts Vulns Alerts Vulns Alerts Vulns Alerts

Stored cross-site scripting 0 5 0 0 0 5 0 4 0 4 0 0
Reflected cross-site scripting 0 11 0 1 0 10 0 8 0 8 0 0
Regular expression injection 0 40 0 4 0 36 0 20 0 20 0 0
Uncontrolled command line 1 1 0 0 1 1 0 0 0 0 0 0

Uncontrolled data used in path expression 86 219 0 0 86 219 78 198 78 196 0 2
Server-side request forgery 0 1 0 0 0 1 0 1 0 1 0 0

Download of sensitive file through insecure connection 0 1 0 0 0 1 0 1 0 1 0 0
User-controlled bypass of security check 0 3 0 0 0 3 0 0 0 0 0 0
Clear-text logging of sensitive information 0 1 0 0 0 1 0 0 0 0 0 0

Log injection 0 92 0 0 0 92 0 79 0 79 0 0

Total 87 374 0 5 87 369 78 311 78 309 0 2

Table 2: CodeQL results on source code, bundle, and debundled code from source map dataset

VulnType Source Code Bundle Bundle D-Bundlr Src ∩ D-Bundlr D-Bundlr \ Src
Unsafe HTML constructed from library input 13 0 13 5 5 0

Cross-window communication with unrestricted target origin 15 1 14 2 1 1
Client-side cross-site scripting 69 1 68 36 36 0

Clear text storage of sensitive information 1 0 1 0 0 0
Regular expression injection 31 0 31 0 0 0

User-controlled bypass of security check 3 0 3 0 0 0
Improper code sanitization 2 0 2 2 0 2

Log injection 1 0 1 0 0 0
Code injection 1 0 1 1 1 0

Client-side request forgery 5 0 5 3 2 1
Client-side URL redirect 16 2 14 7 7 0

Total 157 4 153 56 52 4

belong to the source code, while in ground truth dataset, it has two
which we manually investigate. We found that in both cases the
debundled code looks much different from the original source code
because the control flow looks similar to the bundled code because
D-Bundlr could not reverse some bundler optimizations.

Takeaway. By using D-Bundlr before analysis, CodeQL only
reports 6 false positives across both studied datasets.
RQ4: How many additional vulnerabilities are

detected “in the wild” due to D-Bundlr?

Nowwe report on a large-scale experiment wherewe use D-Bundlr
to debundle all 61,389 bundle scripts we get from tranco top 100,000
dataset, 64,262 of which have bundles; this is summarized in Table 3.

First consider columns Bundle, Prediction Approach and
New

Prediction
: For each column, we calculate the number of alerts,

as well as the number of scripts and sites with alerts. When we
compute the NewX columns, we count the number of unique bun-
dles and sites that contain new alerts, and for alerts we count and
sum the number of new alerts for each bundle individually.

In general, with D-Bundlr, CodeQL can detect 3,214 new alerts,
which are related to 1,529 bundles and 7445 websites. The benefits
of D-Bundlr are two-fold: first, all of the transformations from
Section 3.3 remove a lot of dynamic indirection introduced by the
bundling process (e.g., wrappers, optimizations) which makes the
code much easier to analyze. Additionally, D-Bundlr understands
the bundler’s require mechanism and reverses it to make inter-
module relationships more clear for static analysis. Also note that
the number of websites is 4.8X greater than scripts, which supports

our claim that there are many third-party scripts commonly reused
by different websites, and these scripts are not secure.

We see that there are some alerts missed after debundling, e.g.,
for VulnTypes Improper code sanitization and Code injection.
We investigated these, and found that a major source of missed
alerts are some issues in CodeQL that it failed to track some kinds
of dataflow between modules16. Checking these missed alerts is an
arduous task since bundles are not designed to be human-readable,
but we manually checked 10 missed alerts and did not find any
cases that were not caused by CodeQL bugs. To avoid missing any
true alerts, one could scan both the bundle and unbundled code.

Takeaway. By using D-Bundlr before analysis, CodeQL detects
3,214 new alerts in 1,529 bundles across 7445 websites.

RQ5: What is the contribution of the various

components of D-Bundlr in its success?

We run D-Bundlr with prediction and without prediction for each
bundle in the tranco top 100,000 dataset and columns Basic Ap-
proach (without prediction) and Prediction Approach (with pre-
diction) show the results. Note that the Basic Approach can still
use SimPredict to recognize the require function.

In most of cases, prediction performs better since we recognized
crucial libraries and functions that CodeQL needs. Figure 4 shows
an example, where React.useMemo(component, dependencies) is

16We raised the issue-18979 with the CodeQL team, and they confirmed.

https://github.com/github/codeql/issues/18979
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Table 3: Results for the tranco top 100,000 websites. Bundle indicates alerts found in the bundles, Basic Approach alerts found by using D-Bundlr

without prediction, and NewBasic indicates the new alerts relative to the bundle. Similarly, Prediction Approach indicates alerts found by D-Bundlr with

prediction, and NewPrediction indicates new alerts found with D-Bundlr with prediction relative to the bundle.

Vuln Type
Bundle Basic Approach NewBasic Prediction Approach New

Prediction

Alerts Scripts Sites Alerts Scripts Sites Alerts Scripts Sites Alerts Scripts Sites Alerts Scripts Sites

User-controlled bypass of security check 1050 470 660 1278 664 870 278 233 255 1322 690 897 278 233 255
Client-side request forgery 556 439 746 644 512 5997 96 91 5355 651 519 6004 101 96 5360

Clear-text logging of sensitive information 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
Clear text storage of sensitive information 644 344 1047 692 382 1094 76 55 65 722 398 1110 91 66 76

Log injection 11 4 4 12 5 5 1 1 1 12 5 5 1 1 1
Client-side URL redirect 1333 920 1905 2058 1464 2595 745 576 750 2087 1480 2612 762 585 760

Unsafe dynamic method access 29 28 51 28 27 46 0 0 0 28 27 46 0 0 0
Cross-window communication with unrestricted target origin 808 513 1568 1024 728 2401 237 234 983 1025 729 2401 238 235 983

Regular expression injection 283 241 796 276 237 792 1 1 1 282 242 797 1 1 1
Code injection 246 187 406 234 171 386 22 17 22 244 181 397 22 17 22

Database query built from user-controlled sources 4 1 1 4 1 1 0 0 0 4 1 1 0 0 0
Download of sensitive file through insecure connection 2 2 2 2 2 2 0 0 0 2 2 2 0 0 0

Client-side cross-site scripting 2384 1605 2595 3828 2608 3805 1482 1063 1305 3862 2627 3824 1504 1076 1319
Unsafe HTML constructed from library input 6219 1087 1161 6202 1071 1144 194 21 22 6232 1074 1148 194 21 22

Improper code sanitization 1060 470 674 930 455 652 21 12 12 983 479 683 21 12 12

Total 14629 4974 8953 17213 6171 14733 3154 1500 7416 17457 6272 14828 3214 1529 7445

46 async change(method, url, as, options,

forcedScroll) { // `as` is tainted

47 try {

48 [pages, { __rewrites: rewrites }] = await

Promise.all([...]);

49 } catch (err) {

50 window.location.href = as; // sink

51 return false;

52 }

53 }

(a) A relative source code about an alert report in https:

//cux.io/_next/static/chunks/*.js.

54 return o.default.wrap(function(o) {

55 for (;;) switch (o.prev = o.next) {

56 case 36:

57 //...

58 o.prev = 39; o.t0 = f; o.next = 44;

59 return Promise.all([...]);

60 case 51:

61 o.prev = 51;

62 o.t2 = o.catch(39);

63 window.location.href = n;

64 return o.abrupt("return", !1);

65 //...

66 }

67 }

(b) The corresponding debundled code.

Figure 3: A missed alert due to flattened control flow.

a React function that re-runs component only if dependencies

changes17. In this code, the sensitive data t.userId will flow to g

and be send out by postMessage. Recognizing React is crucial for
this alert because the alert relies on a model of React.useMemo18.

This being said, the difference between the basic approach and
the approach with prediction is not too big. To shed light on this,
let’s look at the 5 most often predicted packages or functions in
Table 4. Four of those packages (across > 6.1scripts) are related to
React (scheduler is one of the libraries of React). These packages are

17https://react.dev/reference/react/useMemo
18https://github.com/github/codeql/blob/d1876251ee2b58d4c35c97e5f78817dbf44b4769/
javascript/ql/lib/semmle/javascript/frameworks/React.qll

68 var Me = require('react');

69 const g = Me.useMemo(() => {

70 let e = { /* ... */ };

71 u && (e = {

72 ...e,

73 mirId: t.userId, // sensitive data

74 hashSum: h.value

75 });

76 return e;

77 }, [u, c, h.value, l, t]); // if [u,c,h.value,l,t] change

78 const jr = e => {

79 if (window.parent) {

80 window.parent.postMessage(JSON.stringify(e), "*"); //sink

81 }

82 };

83 Me.useEffect(() => {

84 return jr(g)

85 }

Figure 4: The debundled code in https://privetmir.ru.

Table 4: Top 5Most Frequently Predicted Packages/Functions

Packages/Functions Number of Scripts

react 13402
react-dom 9018
scheduler 7476
crypto-js 640
react-is 497

designed with security in mind, so using their APIs as intended is
generally safe, e.g., it is more difficult to write XSS-vulnerable code
using React. Guo et al. [21] report that their state-of-the-art tool
only find 96 alerts among 5753 scanned repositories, and CodeQL
reports even less than their scanner. In other words, in the wild,
around 1.6% of repositories using React have alerts, so it is not too
shocking that library predictions does not find many more alerts.

We found two major reasons for missed alerts using predictions:
(1) some alerts are in the recognized packages, and once we recognize
them with prediction we replace the corresponding require with

https://cux.io/_next/static/chunks/*.js
https://cux.io/_next/static/chunks/*.js
https://react.dev/reference/react/useMemo
https://github.com/github/codeql/blob/d1876251ee2b58d4c35c97e5f78817dbf44b4769/javascript/ql/lib/semmle/javascript/frameworks/React.qll
https://github.com/github/codeql/blob/d1876251ee2b58d4c35c97e5f78817dbf44b4769/javascript/ql/lib/semmle/javascript/frameworks/React.qll
https://privetmir.ru
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87 f = i(57835)

88 m = i(25617)

89 h = i(87756)

90 r = (0,m.I0)()

91 g = (0,f.NE)()

92 // Set event handler

93 let e = e => {

94 e.data.bannerEmail && (r((0, h.NC)()),

95 c(e.data, g || ""))

96 }

97 return window.addEventListener("message", e)

98 // Post processing of the event data

99 var c = (e, t) => {

100 var g = document.createElement("a"

101 var v = document.createElement("img");

102 v.setAttribute("src", r.brandingPlachta.img)

103 g.appendChild(v)

104 }

Figure 5: Complex flow in the bundle _app-bfe264cc03dbbb8d

from www1.pluska.sk, detected by D-Bundlr.

Figure 6: Hijacked advertisement space.

the predicted module (as in Section 3.3.2), and (2) the others are
again related to the aforementioned CodeQL bugs.

Takeaway. D-Bundlr’s library prediction detects many pack-
ages and allows CodeQL to detect more alerts.

Case Study. Let us consider https://www1.pluska.sk/, a pop-
ular Slovakian news website that was flagged by our approach.
The bundle contains 326 assignments to the identifier c and more
than 52 re-declarations, which can confuse CodeQL’s function call
resolution, but by pre-processing with D-Bundlr CodeQL could
identify a flow from a post message to the img.src sink. This allows
adversaries to steal advertisement space in the vulnerable page by
sending well-crafted POST messages, and ads already included on
the page might attempt such attacks to maximize their product
exposure. Concretely, by sending the post message below:

86 postMessage({ bannerEmail: "bundle", plachta: "

attackerImgLink", brandingPlachta: { img: "

attackerImgLink" }, bannerClickUrl: "

attackerControlledURL"}, "*")

Attackers can inject their own advertisements into the affected
website. To do so, they can frame the site in an iframe to allow
POST messages, due to a lax content security policy. An attacker,
can hijack their ad space as shown in Fig. 6.

5 Threats to Validity

It is tricky to accurately map alerts from source code to debundled
code since the source first needs to be bundled before it can be
debundled and both bundling and debundling complicate the map-
ping. In the evaluation, we compare alert kind and code similarity
of the sinks, and if both match we report the alert as the same. To
mitigate potential bias, we manually checked 10 of the matches
in the ground truth dataset and 10 in the source map dataset and
found this approach to be accurate.

It is possible that the datasets we used for RQ1-3 are not repre-
sentative of all JavaScript. To mitigate this and balance our need to
validate D-Bundlr, we selected a mix of datasets. As discussed in
the introduction, bundlers are also used on server-side, and ground
truth dataset contains mostly vulnerable server-side packages from
npm. We augmented this with source map dataset to also validate
D-Bundlr on client-side code, and finally we believe that in the
larger-scale evaluation on the tranco top 100,000 dataset contains a
wide variety of representative client-side JavaScript.

Finally, we present our approach as bundler-agnostic but our
prototype is focused on webpack. This decision was made for prac-
ticality, as webpack is by far the most widely used bundler and
is also representative of typical bundlers according to Rack and
Staicu [53]. There is always an exception: the rollup bundler links
modules by hoisting every module into the same level and resolves
the require relationships during bundle preparation.We believe that
static analysis should be more successful in analyzing these bundles
since the bundles do not need a dynamic require mechanism, but
would still benefit from the prediction phase of our approach.

6 Related Work

Transforming code to facilitate static analysis has garnered the
attention of researchers. Some studies have examined the impact of
transformations and compilation on static analysis results [39, 43],
there is work exploring testing static analyses using semantics-
preserving transformations [67], and others have explored trans-
forming programs to make them more amenable to analysis [63].
Some work in this area perform evaluations similar to us [16, 59].

Bundles are understudied, but recently there has been an empiri-
cal study of bundles and their security implications [53], and other
recent work proposed an approach to automatically rewrite privacy-
harming portions of bundles at runtime [1]. Also related is debloat-
ing, e.g., by replacing unused code with “stubs” that can dynami-
cally load the code if needed [38, 62], classify and remove JavaScript
from the front-end [11], emulating usage while a page is running
and debloating accordingly [29], learning-based approaches [22],
configuration-based approaches [28], and using custom runtime en-
vironments [27]. Debloating makes applications more secure, and
these benefits have been studied in the web domain as well [7].
The prevalence of minification and obfuscation has been stud-
ied [58], and there are approaches which attempt to de-obfuscate
minified code [13], detect the applied obfuscation technique stat-
ically [42], and learning-based approaches to detect obfuscated
malicious code [52]. Ren et al. [54] study the impact of obfuscation
on learning-based approaches to detect malicious JavaScript, and
detecting such malicious code is well-studied [23, 25, 26, 37].

https://www1.pluska.sk/_next/static/chunks/pages/_app-bfe264cc03dbbb8d.js
www1.pluska.sk
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Library detection has also been studied extensively. On the front-
end, Liu and Ziarek [35] propose a novel data structure which helps
in the detection of libraries in bundled applications, and further
extend this work to accurately detect library versions [36]. Inferring
libraries correctly can enable analysis to take advantage of previ-
ously computed/known summaries of analysis results and make
analysis more compositional, e.g., function summaries [48, 55, 66],
and importantly library summaries [40, 56, 60]. Chow et al. [16]
leverage library API names to suppress taint analysis false pos-
itives, Chibotaru et al. [14] infer taint specifications from large
software repositories, and Tileria et al. [61] extract taint specifica-
tion from software documentation. Detecting React is also quite
valuable, React itself has garnered the attention of the research
community [18, 41], and specifically on the effect of client-side
third-party applications on application vulnerability [4].

Studying how applications interact with their dependencies in a
software supply chain has gained attention in recent years. Lauinger
et al. [31] study library usage patterns and Nikiforakis et al. [45]
the trust relationship in front-end JavaScript applications. Shen et
al. [57] study how sources of taint are propagated along software
supply chains. Williams et al. [65] present a survey of software sup-
ply chain vulnerability literature, and Ladisa et al. [30] a taxonomy
of attacks. Vasilakis et al. [64] propose a technique to circumvent
the need for third-party libraries by learning library behavior and
replacing libraries with models. Within the supply chain, Patra et
al. [47] studied conflicts between libraries, and Ferreira et al. [19]
propose an approach that distills library execution to state evolution
of objects in the library to detect vulnerabilities.

Given the security concerns alluded to in this paper, some users
prefer to block JavaScript from running at all (e.g., through a learning-
based approach [2] or runtime behavior [12]), but this has negative
consequences, e.g., Amjad et al. [3] study if such blocking can be
achieved without sacrificing legitimate website functionality.

7 Conclusion

In this paper, we propose D-Bundlr, the first debundling tech-
nique for improving the recall of static analysis when analyzing
bundles. D-Bundlr combines static, dynamic, and machine learn-
ing to unpack bundles, identify known libraries, and replace them
with their original source code. We show that our debundling ap-
proach helps state-of-the-art static analysis produce more security
warnings, and discuss how attackers can exploit some of these
previously-unknown findings. We believe that both academics and
practitioners should better support emerging trends in JavaScript
development, e.g., bundling, by tailoring program analyses to ac-
commodate these realities. Moreover, future work on debundling
should explore the similarities to decompilation and reuse the vast
body of knowledge in this adjacent field.
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