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Abstract

In this paper, we take another look at unit bar-visibility
representations, that is bar-visibility representations
where every bar has the same width. Motivated by
some applications in textile construction, we restrict the
graphs further to integral unit bar-visibility represen-
tations (IUBVR), that is a bar-visibility representation
where the bar of every vertex is a horizontal line segment
[i−1, i], for some positive integer i, at some real-value y
position.

We study which graph classes do/don’t have an
IUBVR, both in the weak model and in the strong
model. In the weak model, we show that it is NP-hard
to test whether a graph has an IUBVR. We also present
recursive algorithms to create IUBVRs for some graph
classes, such as 2-connected outerplanar graphs with
maximum degree 4. In the strong model, we provide
a polynomial-time algorithm to test for the existence of
a strong IUBVR. In the event of a positive answer, the
algorithm also generates such a strong IUBVR.

1 Introduction

The topic of bar-visibility representations is well-studied
in the graph drawing community. We want to represent
a graph by assigning a horizontal line segment (bar) to
every vertex in such a way that no two bars share a point
and for every edge (a, b), the two bars assigned to a and b
are visible to each other in the sense that some vertical
segment drawn from a reaches b without crossing any
other vertices—we call this vertical segment a line-of-
sight. There are some variations of this idea. Sometimes
a line-of-sight is required to exist along a positive-width
strip (ε-visibility) [11, 3]. Also, in the strong model, if
a line-of-sight exists between two intervals, then there
must be a corresponding edge in the graph, whereas in
the weak model such edges may or may not exist.

It is well-understood which graphs have a bar-
visibility representation (we give a detailed review be-
low). Researchers have therefore turned their attention
to versions where the bars are further restricted. Of
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particular interest to us are unit bar-visibility represen-
tations, where every bar has unit width. Motivated by
some applications in textile construction, we take this
one step further and study in this paper an integral unit
bar-visibility representation (IUBVR), which is a bar-
visibility representation where the bar of every vertex
has the form [iv−1, iv]×yv for some iv ∈ N and yv ∈ R.
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Figure 1: A strong IUBVR of a tree, and six edge-
directions at a vertex.

Motivation: We first came across the idea of IUBVR
in a problem we studied related to bobbin lace. In bob-
bin lace, and other methods of creating textiles such
as macramé or friendship bracelets, the standard setup
is several strings hanging down in parallel. The artist
picks up a few (typically in multiples of two) consecutive
strings and first braids (or knots) them together, then
releases the strings and creates another braid elsewhere.
A braid can only be executed if the strings involved hang
freely, i.e., the braid must be below all previously exe-
cuted braids involving any of the strings in this subset.
This can be modeled as a graph as follows: Define the
vertical line with x-coordinate i ∈ N to represent one of
the strings. Now draw a horizontal bar [i−1, i] to rep-
resent a braid that involves the strings at i − 1 and i;
the y-coordinate of the bar represents the relative order
of the braid.

Notice that the strong bar-visibility representation
induced by these bars is an IUBVR. If we direct all
edges in the resulting graph downward, then the pos-
sible topological orders of the resulting digraph corre-
spond exactly to the orders in which we can execute
the braids. Because we want to maximize the number
of crossings that can be made using the threads (or a
subset of the threads) already in the artist’s hand, a
function of braiding-order, we became interested in the
types of graphs that could be represented in such a fash-
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Figure 2: Bobbin lace motivation: (a) Drawing of
one repeat, (b) sIUBVR of pattern, (c) several repeats
worked in cotton thread

ion.

Our contributions: In this paper, we study which
graph classes do/don’t have an IUBVR, both in the
weak model and in the strong model. In the weak model,
we show that it is NP-hard to test whether a plane graph
has an IUBVR; we denote a weak IUBVR by wIUBVR.
We also present recursive algorithms to create IUBVRs
for some graph classes, such as 2-connected outerplanar
graphs with maximum degree 4.

We then turn to the strong model. As a warm-up,
we argue exactly which trees have a strong IUBVR, de-
noted by sIUBVR. Then, we turn to the most intricate
result of this paper and provide a polynomial-time al-
gorithm to test for the existence of an sIUBVR. In the
event of a positive answer, the algorithm also generates
such an sIUBVR.

1.1 Related work

The primary application of bar-visibility graphs is to
generate a compact layout for a printed VLSI circuit
board. The research in this area covers two main topics:
1) characterizing all graphs that have a bar-visibility
representation and 2) determining whether a specific
graph supports a bar-visibility representation.

Every planar graph has a weak bar-visibility represen-
tation [4] and that representation can be found in linear
time [8, 9, 11]. Determining whether a 3-connected pla-
nar graph has a strong bar-visibility representation was
shown to be NP-complete by Andreae [1]. However, for
maximal planar and 4-connected planar graphs, there
exist O(|V |) and O(|V |3) algorithms, respectively, for
computing a strong visibility representation [11].

Melnikov introduced the idea of ε-visibility [7] as the
model most germane to VLSI layout. Duchet showed
that every maximal planar graph has an ε-visibility
representation [4] which Thomassen extended to all 3-
connected planar graphs [12]. Wismath [14] as well
as Tamassia and Tollis [11] independently characterized
bar-visibility graphs under the ε-model as planar graphs
having all cutpoints on a single face. This can be tested,
and the representation constructed, in linear time [11].

In addition to bars, axis-aligned rectangles which ad-
mit a horizontal as well as a vertical line-of-sight have

been explored [2].

Unit bar-visibility representations The concept of
bar-visibility graphs with uniform length bars was first
studied by Dean and Veytsel [3] under the ε-model.
They characterized the existence of such representa-
tions for several graph classes including trees, com-
plete bipartite, outerplanar and triangulated graphs.
Wiglesworth [13] characterized graphs with a bar-
visibility representation with reach (maximum distance
between the left and right bar coordinates) less than 2.

Layered drawings IUBVRs turn out to be closely
related to so-called layered drawings, see e.g. Suder-
man [10] and the references therein. A layered drawing
in the most general sense is a planar straight-line draw-
ing where every vertex is assigned to a layer or level, i.e.,
a vertical line with integer x-coordinate.1 There are a
number of different models, depending on what types
of edges are allowed. In this paper, we consider short
layered drawings: every edge (v, w) must satisfy that its
ends are either in the same layer or in adjacent layers.
Any IUBVR naturally gives rise to a short layered draw-
ing, see below. The second type of layered drawing that
we will need is called proper layered drawing in [10] but
we use the term leveled-planar drawing from [6]; here,
for every edge (v, w) the two vertices must be on ad-
jacent layers. Heath and Rosenberg [6] showed that it
is NP-hard to determine whether a planar graph has a
leveled-planar drawing. Suderman [10] studied various
models of layered drawings with the objective of obtain-
ing such drawings with few layers for trees. It is also
known that for various models of layered drawings mini-
mizing the number of layers is fixed-parameter tractable
in the number of layers [5].

2 Preliminaries

Since a bar visibility representation can only exist for a
planar graph, we assume throughout the paper that G
is a planar graph, i.e., can be drawn without crossings
in the plane. We usually assume that G is plane, i.e., we
have fixed the clockwise order of edges at every vertex
(which determines the faces) and the outer-face of G.

Fix an IUBVR D of G where, as before, vertex v has
bar [iv−1, iv] × yv. We can created a drawing Γ from
D by placing vertex v at point (iv − 1

2 , yv) and drawing
edges as straight-line segments. It is straightforward to
verify that Γ is a planar short layered drawing; we call
this the associated layered drawing of D. (Not all short
layered drawings come from an IUBVR.) Based on the
associated layered drawing, the following terminology is
natural: Vertex v is said to reside in layer i of D if iv=i.

1Some references use horizontal lines instead; this is the same
after a rotation.
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An edge e spans slab i of D if the ends of e are in layers
i and i+1. We furthermore need the following crucial
observation (see also Fig. 1):

Observation 1 In an IUBVR D, every vertex v has at
most 6 incident edges which can be classified as follows:
• There can be at most one N-edge connecting v to a

neighbour w with iw=iv and yw>yv.
• There can be at most one NE-edge connecting v to

a neighbour w with iw=iv+1 and yw>yv.
• There can be at most one NW-edge connecting v to

a neighbour w with iw=iv−1 and yw>yv.
• Symmetrically there can be at most one S-edge, SE-

edge and SW-edge in which the condition “yw>yv”
is replaced by “yw<yv”.

Proof. Assume that there are two NE-edges, say (v, w)
and (v, x). So iw = ix = iv + 1 and (say) yv < yw < yx.
But then the bar of w blocks all lines of sight from v
to x. So there is at most one NE-edge. �

Fix some α ∈ {NW,N,NE,SE,S,SW}. In an
IUBVR, we say that a directed edge v → w has orienta-
tion α if it is the α-edge at v. We use the term also for
an undirected edge, meaning that it becomes an α-edge
when directed suitably. We also call edges vertical, di-
agonal, upward-diagonal and downward-diagonal in the
obvious way. A vertex v may or may not have an α-
edge. When creating drawings, we sometimes use the
term α-port for the possibility of adding an edge at v in
that orientation.

We say that two IUBVRs, D and D′, are equivalent
if (possibly after a translation) the layers contain the
same vertices in the same top-to-bottom order, and (af-
ter imposing arbitrary directions) the edges have the
same orientations in D and D′. We say that a graph
has a unique IUBVR if all its IUBVRs are equivalent up
to a rotation by π.

3 Graph classes that admit weak IUBVRs

In this section, we show that all trees and 2-
connected outerplanar graphs of maximum degree 4 ad-
mit wIUBVR.

Theorem 1 Every tree T of maximum degree 4 has a
wIUBVR.

Proof. Created a rooted tree from T by selecting any
leaf of T as the root. We prove the result for any rooted
subtree Tx of T , by induction on the height of Tx. We
created two wIUBVRs for Tx, one where the drawing
resides within Rq(x) and one that resides within Ry(x)
(see Fig. 3a for the definition of these shapes; they are
meant to extend rightward to infinity). We only explain
how to construct the wIUBVR in Rq(x); the other con-
struction is symmetric. If x has no children then the
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Figure 3: Illustration of the proof of Theorem 1: (a)
Regions Rq(x) and Ry(x), (b) a rooted tree Tx, and (c)
a wIUBVR of Tx in Rq(x).

bar of x alone gives the representation, so assume that x
has children. Since T has maximum degree 4 and T is
a rooted tree, every vertex has at most 3 children; we
assume here that x has exactly three children a, b, c (we
can pad the tree with some dummy-children if it has
fewer). If the given bar for x is in layer i, then place
unit bars for a and b in layer i+1, with ya<yx<yb. Place
a unit bar for c in layer i with yx<yc. By the inductive
hypothesis we can obtain representations of Ta, Tb, and
Tc in Ry(a), Rq(b), and Rq(c), respectively. Putting
these representations together, we obtain a representa-
tion of Tx in Rq(x) as depicted in Fig. 3c. �

Theorem 2 There are trees of maximum degree 5 with-
out a wIUBVR.

i i+1

v

c

a

b

Proof. Consider a tree T with a
degree-5 vertex v that is adjacent to
five degree-5 vertices. Assume for con-
tradiction that T has a wIUBVR. Of
the 6 ports at v (cf. Observation 1), ex-
actly one is unused. Up to symmetry
we may assume that the unused port is
either the SW-port or the S-port. Let
the NE-edge, SE-edge and N-edge be
(v, a), (v, b) and (v, c). Observe that a
cannot have a NW-edge, because any such neighbour
would need to be below c and hence block the line-of-
sight for (v, c). It also cannot have an S-edge because
such a neighbour, regardless of its position, would either
block the line-of-sight for (v, b) or for (v, a). Therefore
deg(a) ≤ 4, a contradiction. �

The following will be useful later:

Corollary 3 Let G be a graph with an IUBVR D and
an edge (v, a) where deg(v)=6 and deg(a) ≥ 5 and a, v
have no common neighbor. Then (v, a) is vertical in D.

Proof. Assume for contradiction that (v, a) is diagonal,
say it is the NE-edge of v. By deg(v) = 6 it has a SE-
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Figure 4: Creating a representation for max degree 3.

edge (v, b) and a N-edge (v, c). As in the previous proof
then deg(a) ≤ 4, a contradiction. �

Now we turn to 2-connected outer-planar graphs, i.e.,
planar graphs whose outer-face is a simple cycle that
contains all vertices. The weak dual G∗ of such a graph
is obtained by creating a vertex f∗ for every inner face f
and connecting two such vertices (f∗, g∗) with an edge
in G∗ if they share an edge (which is necessarily a chord
of the outer-face cycle). It is well-known that the weak
dual of a 2-connected outer-planar graph is a tree.

Theorem 4 Every 2-connected outerplanar graph of
maximum degree 4 has a wIUBVR.

Proof. For brevity, we prove the case when the max-
imum degree is 3; the proof for maximum degree 4 is
significantly more involved and is given in the appendix.
Root the weak dual tree G∗ at a face r∗ that is a leaf.
We now add the faces of G following their pre-order
in the dual tree. We maintain the invariant that any
chord e is drawn vertically and, as long as only one of
the faces incident to e has been drawn, nothing is drawn
to the right of e.

We start with the root r∗ and let (v, w) be the unique
chord of r (recall that r∗ is a leaf of G∗). Draw r
as a rotated trapezoid, with (v, w) on the long side in
the right layer. Clearly the invariant holds. Now con-
sider some face f and assume that the parent p∗ of f∗

has already been drawn, with the common chord (v, w)
of p and f drawn vertically and without anything to
its right. Draw f as a rotated trapezoid, with (v, w) as
a unique edge on its left and all other vertices in the
layer to the right of (v, w). The created SE-edge of v
cannot be a chord because v already has three incident
edges and therefore no other inner face can be incident
here. Likewise the NE-edge of w cannot be a chord. So
the invariant holds, and repeating for all faces gives a
wIUBVR. �

4 Recognition in the weak model

In this section, we show that testing whether a plane
graph admits a wIUBVR is NP-hard, by reducing from
the NP-hard problem [6] of testing whether a given
plane graph has a leveled-planar drawing.

In this reduction we will represent edges by a rigid
structure. Consider the rigid block B depicted in
Fig. 5a. One can easily show that B has a unique
wIUBVR. Namely, since deg(a) = deg(b) = 6, by Corol-
lary 3, (a, b) must be drawn vertically, say a above b.
All other edge-orientations are then determined by the
planar embedding since all ports at a and b are used.

We now combine M rigid blocks B1, . . . , BM to form
an M -tube, see Fig. 5b. Since each rigid block has a
unique wIUBVR, so does the M -tube. Note that an
M -tube spans exactly 2M+1 layers.

For representing the vertices, we make use of a dif-
ferent structure. Consider the node block L depicted in
Fig. 6a. A node block can be connected to an M -tube
as depicted in Fig. 6b. The wIUBVR of a node block is
not unique; in particular it can be “bent” at the white
squares.

Now fix a plane graph G=(VG, EG) for which we
wish to find a leveled-planar drawing. Create a plane
graph H for which we wish to find a wIUBVR as follows:

Each edge e in G gives rise to an M -tube Me in H,
where M is chosen sufficiently large (M=24n should
do). Each vertex v of G is replaced by a node gadget
Nv that consists of a cycle of d (where d= deg(v)) node
blocks L1, . . . , Ld that are connected by identifying each
vertex bi with the vertex ai+1; see Fig. 6c. Enumerating
the edges around v as e1, . . . , ed, we attach Li to one end
of M -tube Mei as depicted in Fig. 6b.

It is quite easy to see that if G has a leveled-planar
drawing Γ, then H has an wIUBVR D, essentially by
mapping level h of Γ to the layers from h(2M+8) − 1
to h(2M+8) + 5 in D, arguing that the node gadget Nv

can be placed in those layers, and placing the M -tube
of edge (v, w) in the 2M+1 layers that are between the
layers of its endpoints; see Fig. 7 for an example. For
the other direction, we argue that there is in fact no
other way than to lay out the node gadgets in these
layers, so we can obtain a level-assignment that gives a
leveled-planar drawing of G. The appendix has details.
We conclude:

Theorem 5 It is NP-hard to test whether a given plane
graph H has a wIUBVR.
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Figure 5: The rigid structures used to represent edges.
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Figure 6: (a) A node block (b) connected to an M -tube
and (c) the node gadget of a degree-2 vertex.
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Figure 7: An example of a drawing of H obtained from
a drawing of G. The node gadgets lie completely inside
the shaded rectangles and the M -tubes lie in between.

5 Strong model

Now we turn to the strong model, where the existence of
a line-of-sight implies that the corresponding edge must
exist in G. As a simple warm-up result, we have:

Theorem 6 A tree T has an sIUBVR if and only if it
is a subdivision of a caterpillar of maximum degree 3.

Proof. If T has an sIUBVR, then it also has a strong
unit bar-visibility representation. As shown by Dean
and Veytsel [3], it then has maximum degree 3 and is
a subdivided caterpillar, i.e., it contains a path S (the
spine) such that T −S consists of paths (the subdivided
legs). Vice versa, for any subdivided caterpillar of max-
imum degree 3 it is easy to create an sIUBVR; Fig. 1
illustrates the construction. �

The rest of this section is devoted to showing that
more generally, we can test for any plane graph G
whether it has an sIUBVR. We may assume that G
is connected, else test each component separately. We
assume for now that G is 2-connected.

It will be convenient to direct outer-face edges so
that the outer-face is to their left. Observe that in any
IUBVR, the topmost diagonal edge that spans a slab is
on the outer-face, with the outer-face above it; with the
above direction therefore its orientation is NE or SE.

Let’s start by outlining the idea. We create an aux-
iliary directed graph H that has a super-source s, a
super-sink t, and a vertex v(e, α) for each configura-
tion (e, α), where e is an edge on the outer-face of

G and α ∈ {SE,NE}. Vertex v(e, α) expresses the
possibility of an sIUBVR where e has orientation α
and e is the topmost edge in the slab that it spans.
Crucially, fixing (e, α) determines the entire drawing
within this slab. We can also define conditions under
which two configurations, (e`, α`) and (er, αr), could
occur in consecutive slabs; if they are met, add an arc
v(e`, α`) → v(er, αr) to H. Likewise we can add arcs
s → v(e, α) or v(e, α) → t if (e, α) could occur in the
leftmost/rightmost slab. Testing whether an sIUBVR
exists then amounts to finding a directed path from s
to t in H.

To explain the details, we need a few observations.

Lemma 7 In any sIUBVR D, any internal face f
spans exactly one slab of D.

Proof. In the strong model, the vertices within one
layer i form an induced path connecting two vertices on
the outer-face. Hence any face is either to the left of i
or to the right of i, and so it cannot span two slabs. �
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Figure 8: (a) The sub-drawing D(e, SE). L(e, SE) is
orange (bold), R(e, SE) is blue (dashed). (b and c)
Two examples of slabs that are not compatible: (b)
The combined drawing creates an unwanted edge e. (c)
R(e`,NE)∪L(er,SE) is not an induced path, leading to
parts of G (gray) that are not represented. (d) Example
that has non-unique sIUBVRs.

In fact, as illustrated in Fig. 8a, inner faces in an
sIUBVR have a special form. We say that an in-
ner face f forms a trapezoid (in some sIUBVR) if the
edges of f can be enumerated (in clockwise or counter-
clockwise order) as e1, e2, . . . , ed such that e1 is upward
diagonal, e2 is vertical, e3 is downward diagonal, and
e4, . . . , ed, if they exist, are vertical (Note that we allow
the trapezoid to degenerate to a triangle).

Lemma 8 Fix an arbitrary sIUBVR D. Then any in-
ternal face f forms a trapezoid.

Proof. Assume f spans slab i and let eb, et be the bot-
tommost/topmost edges in slab i that belong to f . One
can easily argue that eb and et must have different orien-
tations, else the face would be split by another diagonal
edge that spans slab i and is between eb and et. Up
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to symmetry et is upward-diagonal and eb is downward-
diagonal. The right ends of et and eb are connected to
each other by a path that runs along level i+ 1. If this
path contains any vertices other than the right ends of
et and eb, these additional vertices would necessarily be
below the top end of et and above the bottom end of
eb. At least one of these vertices would be adjacent to a
vertex on the left side of f (the bottom end of et or the
top end of eb or some vertex in-between). This again
would split face f , a contradiction. So there are no ver-
tices in this path, meaning that the right ends of eb and
et are connected by a single vertical edge as desired. �

As a consequence, fixing the topmost edge of a face
and its orientation fixes the orientation for all edges of
that face. We can propagate this to all faces of a slab,
which gives the crucial insight for our algorithm.

Lemma 9 Let D,D′ be two sIUBVRs of a graph G.
Assume that some outer-face edge e has the same ori-
entation α ∈ {NE,SE} in D and D′, and is the topmost
edge in its slab in both D and D′. Then the slab of e
in D and the slab of e in D′ contain exactly the same
faces and edges, in exactly the same order from top to
bottom.

Proof. Set e1=e and let f1 be the unique inner face
adjacent to e. Since e1 is topmost and has orientation
α, we know exactly the trapezoidal shape that f1 must
take, and therefore, the unique other edge e2 that is
diagonal and on f1. Further, e2 has the opposite orien-
tation of e1. Now repeat with e2. Generally, once ei is
fixed, let fi be the face incident to ei that is not fi−1.
If fi is the outer-face then stop. Else the orientation
of ei determines the trapezoidal shape of fi and hence
the unique other diagonal edge ei+1 on fi and its orien-
tation. Repeating the process determines all edges and
faces that intersect the slab. �

We use D(e, α) to denote the subgraph formed by the
inner faces f1, f2, . . . in the above proof, and equip the
edges of D(e, α) with the orientation as they are de-
termined in the process. From the proof of Lemma 9,
it follows that we can determine D(e, α) from the pla-
nar embedding of G alone, without needing to know an
sIUBVR. If there exists some sIUBVR with e in orienta-
tion α as topmost edge of a slab, then D(e, α) expresses
the part of it within that slab. Furthermore, in this case
the edges C(e, α) := {e1, e2, . . . } (see proof of Lemma 9)
span the slab andD(e, α)−C(e, α) is the union of two in-
duced paths (along the sides of the slab). Let L(e, α) be
the path that contains the left end of e and let R(e, α) be
the other one. If anything goes wrong while determining
L(e, α) and R(e, α) (e.g. if some edge obtains two con-
tradictory directions for D(e, α), or if D(e, α)−C(e, α)
is not the union of two paths) then we discard the node
v(e, α) since it cannot lead to an sIUBVR.

Now we add an arc v(e`, α`)→v(er, αr) if (e`, α`)
is compatible with (er, αr). The latter means
that D(e`, α`) and D(er, αr) could occur on two con-
secutive slabs of an sIUBVR of G. It is not hard to
test this in linear time: The two partial representations
fix all the (downward) directions and orientations of all
the involved edges. If this results in contradicting di-
rection for edges, then no such sIUBVR of G can exist.
Otherwise we can uniquely determine the relative posi-
tion of bars for all involved vertices and simply test that
these bars created no unwanted lines-of-sights. Finally
the vertices in R(e`, α`) ∪ L(er, αr) must induce a path
in G, else putting the two partial representations would
skip some inner faces or represent some vertices twice.
See Fig. 8b and the appendix for details.

To finalize H, we add an arc s → v(e, α) if D(e, α)
could be the leftmost slab; this can be read directly from
the planar embedding since then L(e, α) must consist of
outer-face edges. Similarly we add an arc v(e, α) → t
if D(e, α) could be rightmost slab. This finishes the
construction of H.

One can now easily show that G has an sIUBVR D
if and only if H has a directed path s to t. Namely,
given D we can find the vertices v(e, α) for which e is
the topmost edge in some slab and has orientation α
and argue that these form a path in H. Vice versa, if
there is such a path, then each node v(e, α) on it defines
a partial drawing D(e, α), and we can glue these partial
drawings together since the arcs ensure compatibility.
One can then argue that the result exactly represents G.
Details are in the appendix.

Clearly, our approach gives a polynomial-time al-
gorithm to test whether a 2-connected graph has an
sIUBVR. We argue in the appendix how with a bit more
care we can achieve a run-time of O(n2) for 2-connected
graphs. We also discuss how to handle cutvertices in
the appendix by splitting the graph into its 2-connected
components. Overall, we achieve:

Theorem 10 Let G be a plane graph with n vertices.
Then we can test in O(n2) time whether G has an
sIUBVR.

Uniqueness? Our testing algorithm relies strongly
on the fact that once the topmost edge and its orienta-
tion are determined, the representation within one slab
is unique (up to moving bars up or down). Once one
such slab is fixed, often the adjacent slab is fixed as
well. In light of this, it may come as a surprise that an
sIUBVR is not always unique. Indeed, we can construct
an example where for one slab we have fixed the top-
most edge and its orientation, and still at an adjacent
slab we can have choices as to which edges and faces
cross the slab. See Fig. 8d.
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6 Conclusion and open problems

In this paper, we studied IUBVRs. We showed that
recognizing whether a graph has a weak IUBVR is NP-
hard, but in contrast testing whether it has a strong
one is polynomial. We also showed that trees and 2-
connected outer-planar graphs with maximum degree 4
have a weak IUBVR. We leave some open problems:

• In macramé, it is possible to knot more than two
strings together, but typically no more than a small
constant. What graphs are possible if vertex bars
have the form [iv − k, iv]× y for, say, k ≤ 4?

• For some graphs, the existence of an sIUBVR de-
pends on the embedding, e.g. see Fig. 9. Can we
test whether a planar graph (without fixed embed-
ding) has an sIUBVR?

v3

v1 v6 v1 v6

v7 v4

v2 v4 v2 v7 v5

v3

(a) (b)

v5

v1

v6

v2

v7

v5
v4

v3

v1

v6

v2
v3
v4
v5

v7?

Figure 9: (a) Embedding for G that has no sIUBVR (b)
A different embedding of the same G and its sIUBVR
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Appendix A wIUBVR for outerplanar graphs

We now explain how to create a wIUBVR of a 2-
connected outerplanar graph with maximum degree 4.
As before, we root the weak dual G∗ (which is a tree)
at a leaf r∗. For any face f∗ 6= r∗ corresponding to
face f , the parent-face is the face p corresponding to
the parent p∗ of f∗. Let (v, w) be the edge that f
shares with its parent-face; it will be convenient to
direct (v, w) so that f is to its right. The subgraph
Gv,w attached at (v, w) is the graph formed by the
faces in the subtree rooted at f∗. We create up to 5
possible drawings of Gv,w, where the β-drawing, for
β ∈ {NW,N,NE,SE,SW}, satisfies the following (see
also Fig. 10):

r

c

v

w

(a) N

v
w

or

(b) NE

v
w

or

(c) SE

Figure 10: Drawing types. The bold orange edge is the
edge shared with the parent-face, and the entire drawing
must reside within the gray region (extended infinitely
rightward). (a) also illustrates how to add root r at the
end.

• (v, w) is the β-edge at v.

• One of v, w is in layer 1, i.e., the leftmost layer.

• If β = N, then v has a NE-edge, w has a SE-edge,
and layer 1 contains no other vertices.

• If β = NE, then v has a SE-edge and w has a S-
edge or a SE-edge (or both). Layers 1 and 2 are
empty above v, w.

• If β = SE, then w has a S-edge or a SW-edge or
both, and it has no NE-edge. Layers 1 and 2 are
empty above v, w. (This in particular implies that
SE-drawings can exist only if deg(v) = 2; we will
ensure that this holds.)

• β = NW is symmetric with β = NE and β = SW
is symmetric with β = SE; flip the corresponding
drawings in Fig. 10 upside-down.

We create such drawings by going bottom-up in
tree G∗. So let f∗ 6= r∗ be a node of G∗, corresponding
to face f . Enumerate the vertices of f as v1, . . . , vk
in counter-clockwise order such that v1 → vk is the
edge that f shares with its parent-face. We want to
draw the subgraph Gv1,vk attached at (v1, vk). For
s = 1, . . . , k − 1, denote by Gs the subgraph Gvs,vs+1

attached at (vs, vs+1) (it is empty if (vs, vs+1) is on the

v1
v2

v3

vk

fparent-
face

G1

Gk−1

(a) setup

v1

v2

v3

vk

(b) N

v1

v2

v3

vk

(c) N

v3

v1

v2

(d) NE,k=3

vk

v1

v2

(e) NE,k>3

vk

v1

v2

(f) NE,k>3

v1

v2
v3

vk

(g) SE

v1

v2
v3

vk

(h) SE

Figure 11: Drawing face f and merging subgraphs. We
only show the corresponding layered drawing. Dashed
green edges are outer-face edges. We show some of the
cases where Gs is empty and therefore more ports are
available for Gs−1 and Gs+1.

outer-face). Since v1 has degree at most 4 and it is ad-
jacent to vk 6∈ G1 and has one further neighbour in the
parent-face of f , we can conclude that v1 has degree at
most 2 in G1.

We explain how to create a β-drawing of Gv1,vk
only

for β = N,NE,SE, the cases β = NW,SW are symmet-
ric (flip the drawings for NE and SE upside-down); see
Fig. 11.

Case 1: β = N. We draw f as a trapezoid with
(v1, vk) as long vertical edge in layer 1. Directing the
other edges as v1 → v2 → · · · → vk, their orientations
(in order) are NE,N, . . . ,N,NW. With this we have the
required NE-edge for v1 and SE-edge for vk.

For each 1 ≤ s ≤ k−1, recursively find the β′-drawing
of Gs where β′ is the orientation that we just assigned
to vs → vs+1. The goal is to merge these drawings; for
this we need to argue that no port at a vertex vs is used
repeatedly (it could be used by f or by Gs−1 or by Gs).

One easily verifies that there is no conflict between f
and Gs due to the restrictions on the drawing type
for Gs; for example; if Gs is a N-drawing, then its left-
most layer contains only (vs, vs+1) and so it uses no
port at vs that was used by f . But it is less obvious
that Gs−1 and Gs, presuming they are both non-empty,
could not both use a port of vs. Recall that Gs−1 uses
a NE-drawing or a N-drawing, so vs has a S-edge or a
SE-edge in Gs−1 that is not (vs−1, vs). Likewise Gs uses
a NW-drawing or a N-drawing, and vs has a N-edge or
a NE-edge in Gs that is not (vs, vs+1). This gives four
distinct edges at vs, so by deg(vs) ≤ 4 there are no oth-
ers. So all edges of vs in Gs−1 go southward while all
its edges in Gs go northward and there is no conflict
among the ports.
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With this, we can merge the drawings of the attached
subgraphs into the drawing of the face. Because no
ports at any vs can be used by two subgraphs, this does
not lead to overlap as long as we compact the drawing
of Gs vertically so that it occupies only minimal space
below vs and above vs+1. Also, if G1 is non-empty then
it uses a NE-drawing and so v1 has a SE-edge other
than (v1, v2). Since v1 has at no other neighbours in G1

as argued earlier, it has no S-edge and layer 1 is empty
below v1. Similarly layer 1 is empty above v2. So we
have created the desired N-drawing of Gv1,vk

.

Case 2: β = NE and k = 3. We draw f as a trian-
gle with v1 → v3 as NE-edge of v1; thus v1 → v2 is a
SE-edge and v2 → v3 is a N-edge, giving the edges re-
quired for a NE-drawing. As before, for each attached
subgraph find the drawing that respects these orienta-
tions (this is feasible for G1 since v1 has at most two
neighbours in G1). If both G1 and G2 are non-empty,
then v2 has a NE-edge in G2 and a S-edge or SW-edge
in G1, and so there is no port-conflict at v2. Therefore,
we can merge the drawings of the sub-graphs. One eas-
ily verifies that layer 1 and 2 remain empty above v1
and vk, so we obtain a NE-drawing.

Case 3: β = NE and k > 3. We draw f as a pen-
tagon with v1 → v3 as NE-edge of v1; v1 → · · · → vk re-
ceive orientations (in order) SE,NE,N, . . . ,N,NW. As
before, for each attached subgraph Gs find the draw-
ing that respects these orientations. The argument
that there is no conflict among ports is the same as
for Case 1, except at vertex v2. Here (presuming both
subgraphs G1 and G2 are non-empty) v2 receives a S-
edge or SW-edge in G1 and a SE-edge in G2, and by
maximum degree 4 it has no other edges and there are
no port-conflicts. Therefore we can merge the draw-
ings of the sub-graphs. One easily verifies that layer 1
and 2 remain empty above v1 and vk, so we obtain a
NE-drawing.

Case 4: β = SE. We know that this happens only if
deg(v1) = 2. We draw f as a trapezoid with v1 → vk as
SE-edge, so the edges v1 → · · · → vk receive orientation
S,NE,N, . . . ,N. Since deg(v1) = 2 there is no subgraph
attached at (v1, v2). For 2 ≤ s < k−1, find the drawing
of Gs that respects the assigned orientations. Verify as
for Case 1 that this cannot lead to conflict among the
ports. Therefore we can merge the drawings of the sub-
graphs. One easily verifies that layer 1 and 2 remain
empty above v1 and vk.

We must argue that vk has no NE-edge. We know
that vk has at most three neighbours in Gv1,vk (be-
cause it has one more in the parent-face of f). If it has
three neighbours, then the neighbour x other than v1
and vk must be in subgraph Gk−1. But Gk−1 uses a N-
drawing or a NE-drawing; either way it has an edge dif-
ferent from (vk−1, vk) that is a S-edge or SE-edge of vk.
So (vk, x) has southerly orientation, as do (vk, v1) and

(vk, vk−1). Hence vk has no NE-edge and we obtain a
SE-drawing.

With this, we can draw any subgraph that corre-
sponds to a strict subtree of G∗. To finish off, as before
let r∗ be the root of G∗ and let (v, w) be the unique
chord of r (recall that r∗ is a leaf). Find a N-drawing of
the graph Gv,w attached at (v, w), which places (v, w)
as vertical edge in the leftmost layer. We can now add r
as a trapezoid with (v, w) as long edge on the right and
all other vertices in one layer further left. This gives the
desired wIUBVR of G.

Appendix B Details of the NP-hardness

We start by describing the components used later
to form a vertex gadget. We define a k-zigzag
to be the graph that consists of a (2k−1)-cycle
v1, . . . , vk, uk−1, . . . , u1 with chords (vi, uj) for i =
2, . . . , k−1 and j ∈ {i − 1, i}; see Fig. 12a. We call
vertices v1, . . . , vk squared, vertices u1, . . . , uk−1 circu-
lar, and the vertices v1 and vk end vertices. Since every
interior face of a k-zigzag T is a triangle, choosing the
orientation of a single edge of T fixes the orientation
of all of its edges. Note that the edges on the path
v1, . . . , vk are all drawn with the same orientation β; we
say that T is drawn with orientation β or that it is a
β-k-zigzag or just β-zigzag.

We construct a node block L as follows; see Fig. 12b.
Let T be a 3-zigzag, and let T ′ and T ′′ be two 4-
zigzags. Identify vertex v4 of T with vertex v′1 of T ′

and vertex v′5 of T ′ with vertex v′′1 of T ′′. Finally, add
a path P=(v′3, x, y, v

′′
3 ), (called a fixating path). Let a

be vertex v1 of T and let b be vertex v′′5 of T ′′. A node
block Li(v) consists of a 3-zigzag Ti, two 4-zigzags T ′i
and T ′′i and a fixating path Pi.

v1

v2

v3

v4

u1

u2

u3

(a)

a

b

T

T ′

T ′′
P

(b)

a

b

(c) (d)

Figure 12: (a) A 3-zigzag. (b) A node block (c) con-
nected to a tube and (d) the node gadget of a degree-2
vertex.

Let n = |VG| and set M = 24n. For any vertex
v ∈ VG with deg(v)=d, the node gadget Nv of v con-
sists of a cycle of d node blocks L1(v), . . . , Ld(v) in H
obtained by identifying vertex bi of Li(v) with ver-
tex ai+1 of Li+1(v) for i=1, . . . , d (where Ld+1=L1).
See Fig. 12d. Let u1, . . . , ud be the neighbours of v in G
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(b)

Ti

T ′′i−1

T ′i−1

Ti−1

T ′i
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(c)

Figure 13: (a) A node v in G; (b)–(c) the node gadget
of v in H when v has neighbours on (b) both sides and
(c) only to the right. In this and the following figures,
we omit the (v) identifier of the zigzags and we label the
layers without the addition of hv · (2M + 8) to reduce
clutter.

in clockwise order as defined by the embedding. Assign
edge (v, ui) in G to the 3-zigzag Ti(v) in H, 1 ≤ i ≤ d.

Now every edge (v, u) of EG is assigned to exactly
two 3-trapezoids in H, say Ti(v) and Tj(u). Attach an
M -tube Me to Ti(v) and Tj(u) as depicted in Fig. 12c.
This completes the construction of H.

From G to H. We now show that we can construct
a wIUBVR D of H from a leveled-planar drawing Γ
of G. Enumerate the levels of Γ from left to right
as 0, 1, . . . ,m. Let v be a node of G with deg(v)=d
that is drawn in level hv. We draw Nv in the layers
hv · (2M + 8)−1 to hv · (2M + 8) + 5 as follows. Let
(v, ui) be the edge assigned to Ti(v), 1 ≤ i ≤ d.

First, assume that v has at least one neigh-
bour in both level hv+1 and level hv−1. Let ui
be the top-most neighbour of v in level hv+1
and let uj be the bottom-most neighbour of v
in level hv−1; see Fig. 13a (top). We draw
the trapezoids Ti(v), T ′i (v) . . . , Tj−1(v), T ′j−1(v) with S-
orientation such that all their squared vertices lie in
layer hv · (2M + 8) + 4 and all their circular vertices
lie in layer hv · (2M + 8) + 5; see Fig. 13b. The in-
terior vertices of the fixating paths Pi, . . . , Pj−2 are
placed one layer left of their endpoints, that is, in
the layer hv · (2M + 8) + 3. Symmetrically, we place
the trapezoids Tj(v), T ′j(v) . . . , Ti−1(v), T ′i−1(v) with N-
orientation such that all their squared vertices lie in
layer hv · (2M + 8) and all their circular vertices lie
in layer hv · (2M + 8) − 1. The interior vertices

v

1 2 3 4

(a) G

M -tube

Nv

(b) H

Figure 14: An example of a drawing of H obtained from
a drawing of G. The node gadgets lie completely inside
the shaded rectangles and the M -tubes lie in between.

of Pj , . . . , Pi−2 are symmetrically placed in layer hv ·
(2M + 8)+1. The trapezoid T ′′i−1(v) is drawn with SE-
orientation in the layers hv ·(2M+8) to hv ·(2M+8)+4.
By this construction, the endpoints of Pi−1 lie in the lay-
ers hv ·(2M+8) and hv ·(2M+8)+2, so we can place its
interior vertices in layer hv · (2M + 8). Symmetrically,
the trapezoid T ′′j−1(v) is drawn with NW-orientation in
the layers hv ·(2M+8) to hv ·(2M+8)+4 and the interior
vertices of Pj−1 are placed in layer hv · (2M + 8)+3.

Second, assume that all neighbours of v lie in
level hv+1 as shown in Fig. 13a (bottom). Again let ui
be the top-most neighbour of v. We place the trape-
zoids Ti(v), T ′i (v) . . . , Ti−1(v) with S-orientation such
that all their squared vertices lie in layer hv ·(2M+8)+4
all their circular vertices lie in layer hv ·(2M+8)+5; see
Fig. 13c. As in the previous case, the interior vertices
of Pi, . . . , Pi−2 are placed in layer hv · (2M + 8) + 3.
The trapezoid T ′i−1(v) is placed with NW-orientation
and T ′′i−1(v) is placed with NE-orientation in the layers
hv ·(2M+8)+4 to hv ·(2M+8) This way, the endpoints
of Pi−1 both lie in layer hv ·(2M+8)+2, so we can draw
the path vertically in this layer.

Finally, if all neighbours of v lie in level hv−1,
then we place the vertices symmetrical to the previ-
ous case by choosing ui as the bottom-most neigh-
bour of v such that the circular vertices of the trape-
zoids Ti(v), T ′i (v) . . . , Ti−1(v) lie in layer hv ·(2M+8)−1.

By this construction, if any edge between a node v
in level hv and a node u in level hv+1 is assigned to vi
and uj inH, then the circular vertices of Ti(v) are drawn
in layer hv ·(2M+8)+5 and the circular vertices of Tj(u)
are drawn in layer (hv+1) · (2M + 8) − 1, so there are
exactly 2M+1 layers between them that we use to place
the M -tube that is connected to Ti(v) and Tj(u). This
completes the construction; see Fig. 14 for an example.

From H to G. Next, we show how to construct a
leveled-planar drawing Γ of G from a wIUBVR D
of H. We enumerate the layers of D from left to right
as 0, 1, . . . ,m. For any vertex u ∈ VH , let `(u) be the
layer of u in D.

Let v ∈ VG with deg(v)=d and let e=(v, u) ∈ EG be
assigned to the trapezoids Ti(v) and Tj(u). Since Ti(v)
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and Tj(v) are connected to an M -tube Me, both have
to be drawn with S-orientation or with N-orientation.
Furthermore, Ti(v) is a S-zigzag if and only if Tj(u) is a
N-zigzag. Assume w.l.o.g. that Ti(v) is a S-zigzag. We
aim to show that Nu lies completely to the right of Nv,
that is, `(u∗) > `(v∗) for every u∗ ∈ Nu and v∗ ∈ Nv.
The node gadget Nv consists of d node blocks, so it con-
tains 24d ≤ 24n vertices. Analogously, Nu consists of at
most 24n vertices. Hence, both Nv and Nu lie in at most
24n consecutive layers. Let v′ ∈ Ti(v) and u′ ∈ Tj(u).
Since Ti(v) and Tj(u) are connected to the same M -
tube Me, we have `(u′) ≥ `(v′)+2M+2. Furthermore,
for any vertex v∗ ∈ Nv we have `(v∗) ≤ `(v′) + 24n and
for any vertex u∗ ∈ Nu we have `(u∗) ≥ `(u′) − 24n.
Hence,

`(u∗) ≥ `(u′)− 24n ≥ `(v′) + 2M + 2− 24n

≥ `(v∗) + 2M + 2− 48n

= `(v∗) + 48n+ 2− 48n > `(v∗).

Let v ∈ G and let Mi(v) be the M -tube attached
to the 3-zigzag Ti(v) in Nv, i = 1, . . . , d = deg(v).
Since D is planar, the M -tubes M1(v), . . . ,Md(v) ei-
ther all leave Nv to the right, all leave Nv to the left, or
there is some 1 ≤ i, j ≤ d such that Mi(v), . . . ,Mj−1(v)
leave Nv to the right and Mj(v), . . . ,Mi−1(v) leave Nv

to the left. It follows that Nv has one of the following
properties.

(P1) Every Ti(v), 1 ≤ i ≤ d, is a S-zigzag.
There is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered
from top to bottom in this order.

(P2) Every Ti(v), 1 ≤ i ≤ d, is a N-zigzag.
There is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered
from bottom to top in this order.

(P3) There is some i, 1 ≤ i ≤ d, and some j 6= i,
1 ≤ j ≤ d, such that Ti(v), Ti+1(v), . . . , Tj−1(v)
are S-zigzags, Mi(v),Mi+1(v), . . . ,Mj−1(v) are
ordered from top to bottom in this order,
Tj(v), Tj+1(v), . . . , Ti−1(v) are N-zigzags, and
Mj(v),Mj+1(v), . . . ,Mi−1(v) are ordered from bot-
tom to top in this order.

Lemma 11 Let Nv be a node gadget. The circular ver-

tices of all S-3-zigzags of Nv lie in the same layer
−→
`v

and the circular vertices of all N-3-zigzags of Nv lie in

the same layer
←−
`v with ∆`=

−→
`v−
←−
`v=6. Furthermore, the

drawing of Nv spans at least 6 layers between
←−
`v and

−→
`v .

Proof. Consider first the case that D is drawn with
property (P1), that is, Every Ti(v), 1 ≤ i ≤ d, is
a S-zigzag and there is some 1 ≤ j ≤ d such that
Mj(v), . . . ,Md(v),M1(v), . . . ,Mj−1(v) are ordered from

Ti
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(a) T ′i (v) and T ′′i (v)
are S-zigzags

Ti

Ti+1

T ′i

T ′′i
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Figure 15: Ti(v) and Ti+1(v) are S-zigzags.

top to bottom in this order. Let 1 ≤ i ≤ n, i 6= j−1.
Then, Ti and Ti+1 are S-zigzags and Mi+1(v) lies be-
low Mi(v). We will argue that T ′i (v) and T ′′i (v) are also
S-zigzags. Intuitively, between two zigzags in counter-
clockwise order, there can never be a “rightwards bend”
because of the order of the edges around each squared
vertex, as otherwise at least one port has to be used
twice.

Consider the (directed) edges e1, . . . , e6 in Fig. 15.
By construction, e1 and e6 are S-edges. Since there
are two edges between e1 and e2 around their common
vertex in clockwise order, e2 and thus e3 has to be a
S-, SW-, or NW-edge. Symmetrically, e5 and thus e4
has to be a S-, SE-, or NE-edge. However, since there
are two edges between e3 and e4 around their common
vertex in clockwise order, there are only two compatible
configurations: either both are a S-edge (see Fig. 15a),
or e3 is a NW-edge and e4 is a NE-edge (see Fig. 15b);
otherwise, at least one port between e3 and e4 has to
be used twice (see Figures 15c and 15d. However, the
second case is a contradiction to the face that Mi(v)
lies completely above Mi+1(v). Hence, e1, . . . , e6 are
S-edges and thus Ti(v), T ′i (v), T ′′i (v), and Ti+1 are S-
zigzags.

Now, let i=j−1. In this case, the argument is
exactly the same; with the only difference that now
Mi(v)=Mj−1(v) is the bottom-most one M -tube, so
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Tj−1

T ′j−1

Tj

T ′′j−1

(a) T ′j−1(v) is a S-zigzag and
T ′′j−1(v) a NW-zigzag

Tj−1

T ′j−1
Tj

T ′′j−1

(b) T ′j−1(v) a S-zigzag and
T ′′j−1(v) is a SW-zigzag

Tj−1

T ′j−1

Tj

T ′′j−1

(c) T ′j−1(v) is a SW-zigzag
and T ′′j−1(v) is a NW-zigzag

Tj

Tj−1

T ′′j−1

T ′j−1

(d) T ′j−1(v) and T ′′j−1(v) are
NW-zigzags

Figure 16: Tj−1(v) is a S-zigzag and Tj(v) is a N-zigzag.

Mi+1(v)=Mj(v) lies above it. Hence, the case that e3
and e4 are S-edges is a contradiction to this property.
Thus, T ′i (v) is a NW-zigzag and T ′′i (v) is a NE-zigzag;
see Fig. 15b. Hence, Nv spans exactly the 6 layers be-

tween
−→
`v − 5 and

−→
`v .

This shows that Tj(v), T ′j(v), T ′′j (v), . . . , Tj−1(v) are
all S-zigzags. Hence, the circular vertices of the 3-
zigzags T1(v), . . . , Td(v), which are all S-3-zigzags, all

lie in the same layer
−→
`v .

The case that D is drawn with property (P2) is com-
pletely symmetric.

Consider now the case that D is drawn with property
(P3), so there is some 1 ≤ i, j ≤ d, i 6= j, such that
Ti(v), . . . , Tj−1(v) are S-zigzags and Tj(v), . . . , Ti−1(v)
are N-zigzags. With the same argument as above, we
show that the circular vertices of Ti(v), . . . , Tj−1(v) all

lie in the same layer
−→
`v and that the circular vertices of

Tj(v), . . . , Ti−1(v) all lie in the same layer
←−
`v . It remains

to show that ∆`=6.

Consider the S-zigzag Tj−1(v), the N-zigzag Tj(v),
and the (directed) edges e1, . . . , e6 in Fig. 16. Following
the same arguments as above, T ′j−1(v) has to be a S-,
SW-, or NW-zigzag and T ′′j−1(v) has to be a N-, SW-
, or NW-zigzag. However, the fixating path Pj−1(v)
forces either T ′j−1(v) to be a S-zigzag or T ′′j−1(v) to be
a N-zigzag; see Fig. 16a and Fig. 16b for the former
case, the latter case is symmetric. In particular, as-
sume that T ′j−1(v) and T ′′j−1(v) are both drawn SW-

or NW-zigzags; see Fig. 16c and Fig. 16d, the remain-
ing cases are symmetric. Then, there are three lay-
ers between the endpoints of Pj−1(v), but Pj−1(v) only
has two interior vertices. Hence, it is impossible to
draw Pj−1(v). Thus, T ′j−1(v) and T ′′j−1(v) have to be
drawn as in Fig. 16a and Fig. 16b (up to symmetry)
and one can easily see that this implies ∆`=6 and Nv

spans exactly the 7 layers between
←−
`v and

−→
`v . �

We now show that every node gadget Nv lies com-
pletely inside the layers hv·(2M+8)−1 to hv·(2M+8)+5
for some 0 ≤ hv ≤ n.

First, we show that all vertices in layer 0 belong to
a node gadget. Assume to the contrary that there is
some vertex u in layer 0 that belongs to an M -tube. By
construction, every M -tube is connected to a vertex of
a node gadget on both sides; hence, there has to be at
least one vertex that completely lies to the left of the
M -tube. This is a contradiction to layer 0 being the
leftmost layer that contains a vertex.

Let s ∈ VG be a node such that some vertex of Ns

lies on layer 0 in D. For any node v ∈ VG, let dv be the
length of the shortest path between s and v in G. We
now analyze the layers that contain the vertices of node
gadgets.

Lemma 12 For any node v ∈ VG,
←−
`v=hv · (2M+8)−1

and
−→
`v=hv · (2M + 8) + 5 for some 0 ≤ hv ≤ dv.

Proof. We prove the lemma by induction over dv.
If dv=0, then v=s. Let hs=0. By choice of s, the

leftmost vertex of Ns lies in layer 0 > 0 · (2M + 8)− 1.
Since there are no node gadgets that lie to the left of Ns,
it is drawn as depicted in Fig. 13c. Hence, the Ns is
drawn with property (P1) and by Lemma 11 all circular
vertices of its S-3-zigzags lie in layer 5=hv ·(2M+8)+5.

Now, assume that the lemma holds for all vertices w ∈
VG with dw ≤ k ≥ 0. Let v ∈ VG with dv=k+1 and
let (u, v) be the last edge on the shortest path from s
to v in G. Let ui and vj be the vertices the edge (u, v)
is assigned to.

Assume first that Ti(u) is a S-3-zigzag and Tj(v) is

a N-3-zigzag. By induction, ui lies in a layer
−→
`u=hu ·

(2M+8)+5 for some 0 ≤ h ≤ du. The vertices ui and vj
are connected to the same M -tube. Since an M -tube
spans exactly 2M+1 layers, it follows that `(vj)=

−→
`u +

(2M+2)=hv · (2M + 8) − 1 for hv=hu+1. Hence, by

Lemma 11,
←−
`v=hv ·(2M+8)−1 and

−→
`v=hv ·(2M+8)+5.

If that Ti(u) is a N-3-zigzag and Tj(v) is a S-3-zigzag,

then analogously `(vj)=
←−
`u−(2M + 2)=hv · (2M + 8) + 5

for hv=hu+1 and thus
←−
`v=hv ·(2M+8)−1 and

−→
`v=hv ·

(2M + 8) + 5. �

We are now ready to create the drawing Γ of G. We
draw every node v ∈ VG in level hv in Γ. Let v1, . . . , vk
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be the vertices in level h, 0 ≤ h ≤ n. By Lemma 11
and 12, each node gadget Nv1 , . . . , Nvk contains at least
one vertex in layer hv ·(2M+8). Since each of these node
gadgets is connected to at least one M -tube, there is
some order, say v1, . . . , vk, such that the vertices in layer
belong to Nv1

, . . . , Nvk from bottom to top. We draw
each node vi, 1 ≤ i ≤ k at coordinate (h, i). Since D
is planar, the obtained drawing Γ of G is also planar.
Let (v, u) ∈ EG be assigned to vertices vi of Nv and uj
of Nv. Assume w.l.o.g. that Ti(v) is a S-zigzag and Tj(u)
is a N-zigzag. Since vi and uj are connected to a com-

mon M -tube, we have `(vi)=
−→
`u=hu · (2M + 8) + 5 and

hu · (2M + 8)− 1 =
←−
`u = `(uj)

= hv · (2M + 8) + 5 + 2M + 2

= (hv+1) · (2M + 8)− 1,

so hu=hv+1. Hence, v is placed in level hv and u is
placed in level hv+1, so Γ is a leveled-planar drawing.

This completes the proof of Theorem 5.

Appendix C Details of testing for an sIUBVR

C.1 Compatibility of configurations

We first explain in more detail how to test whether
two configurations (e`, α`) and (er, αr) are compatible,
i.e., what properties must hold if some sIUBVR has
D(e`, α`) and D(er, αr) in adjacent slabs, say in slabs
i−1 and i corresponding to layers i−1, i and i+1.

In the following, we consider paths R(e`, α) and
L(er, αr) to be directed downward, i.e., from the end
in e`/er to the other end. We claim that the following
conditions are necessary for compatibility:

• The vertices U of R(e`, α`) ∪ L(er, αr) form an in-
duced path P of G that can be directed such that
it is consistent with the directions of R(e`, α`) and
L(er, αr). This holds because the union of the two
paths is drawn on level i as a vertical path.

• In particular, the vertices I in R(e`, α`)∩L(er, αr)
must form a subpath of P and the edges among
them must be directed the same in R(e`, α`) and
L(er, αr). Also, the vertices in U − I=R(e`, α`) ⊕
L(er, αr) must occur at the beginning or end of P .

• If α`=SE, thenR(e`, α`) is a prefix of P , i.e., no ver-
tex of P comes before the first vertex of R(e`, α`).
This holds because the left end v` of e` is above
the right end w`, and w` is the topmost vertex of
R(e`, α`). If any vertices of L(er, αr) were above
w`, then there would be an edge from them to v`
(or higher up), and hence e` would not be on the
outer-face.

• Similarly we have three more requirements at the
bottom/top ends to avoid unwanted edges.

– if αr=NE, then no vertex in P comes before
L(er, αr).

– Let e` be the bottommost diagonal edge of
D(e`, α`). If its direction (in D(e`, α`)) is NE,
then no vertex in P comes after R(e`, α`).

– Let er be the bottommost diagonal edge of
D(er, αr). If its direction (in D(er, αr)) is SE,
then no vertex in P comes after R(er, αr).

It is not hard to see that these conditions are also
sufficient. If they are satisfied, then draw P , in order,
in level i from top to bottom. In level i−1 place the
vertices of L(e`, α`) so that their position relative to the
vertices in R(e`, α`) is the same as it was in D(e`, α`).
Observe that this results in exactly the same set of edges
as the set that spans slab i−1. Additional edges could
only come from vertices above/below R(e`, α`) in P but
such vertices either require e` to be directed NE or e`
to be directed SE, neither of which results in a line-
of-sight. Similarly, we place the vertices of R(er, αr) in
level i+1 to obtain the desired representation of the two
slabs.

For later use, we note one more property:

Observation 2 Assume that (e`, α`) is compatible with
(er, αr). Then the edges in R(e`, α`)⊕L(er, αr) are on
the outer-face.

Proof. Consider just the edges of R(e`, α`)−L(er, αr),
the others are symmetric. Continuing in the notations
introduced above, we saw that all these edges are drawn
vertically in layer i, either above or below D(er, αr).
Say they are above. Then no diagonal edge that spans
slab i is above them, thus they can reach the outer-face
through slab i. �

C.2 Correctness of the construction

Recall that we combined all D(ei, αi) for some path
s → v(e1, α1) → · · · → v(ek, αk) → t. Let D be the
sIUBVR that is induced by the resulting bars. For
i=2, . . . , k, set Ii := R(ei−1, αi−1)∩L(ei, αi). By Obser-
vation 2, Ii is a path that connects two outer-face ver-
tices. We can therefore split the graph G into subgraphs
by splitting at all paths I2, . . . , Ik. More precisely, us-
ing I1=L(e1, α1) and Ik+1=R(ek, αk), we set Gi to be
the graph formed by all faces that can reach the inner
face at ei along a path of inner faces without crossing Ii
or Ii+1.

It is now straightforward to show by induction that
the first i slabs of D (i.e., what we obtain when putting
together D(e1, α1) ∪ · · · ∪ D(ei, αi)) is an sIUBVR of
G1 ∪ · · · ∪ Gi. This is straightforward for i=1 since
D(e1, α1) represents exactly G1. When adding in
D(ei+1, αi+1), we add exactly the faces of Gi+1 since
D(ei+1, αi+1) covers them, and we do not add extra
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edges since the compatibility-condition ensures that ver-
tices in L(ei+1, αi+1) (if any) that are added in layer i+1
do not add edges to layer i.

C.3 Run-time

We now turn towards the time-complexity of testing
whether a 2-connected plane graph G has a sIUBVR.
There are O(n) edges on the outer-face of G, hence H
has O(n) vertices. As we will argue below, it also
has O(n) arcs. Computing the directed path in H (if
any) hence takes O(n) time, and we can extract the
sIUBVR from it in O(n) time as well.

However, computing the arcs of H is non-trivial and
takes cubic time if done in a straightforward way, and
quadratic time if we are careful. As a first step, com-
pute sets L(e, α) and R(e, α) for all configurations (e, α)
where e is on the outer-face and α ∈ {NE,SE}; this can
be done in O(n) time per configuration and hence over-
all quadratic time. While doing this we can easily check
whether (e, α) is compatible with the left/right bound-
ary and hence find all arcs incident to s and t.

The remaining arcs all connect v(e, α) to v(e′, β)
for some outer-face edges e, e′ and directions α, β ∈
{NE,SE}. To find such an arc, we do four tests for
each configuration (e, α):

• Walk clockwise along the outer-face starting at e
until you encounter the first edge e′ that does not
belong to R(e, α). Test for both β=NE and β=SE
whether (e, α) is compatible with (e′, β).

• Walk counter-clockwise along the outer-face start-
ing at e until you encounter the first edge e′′ that
does not belong to L(e, α). Test for both γ=NE and
γ=SE whether (e′′, γ) is compatible with (e, α).

To see that this suffices, observe that if (e, α) it compat-
ible with (e′, β), then the clockwise path Q from e to e′

on the outer-face belongs to either R(e, α) or L(e′, β).
(This holds by Observation 2: The edges in R(e, α) ⊕
L(e′, β) are on the outer-face, and because G is 2-
connected, path Q cannot include any edges not in
them.) If Q belongs to R(e, α), then our first test will
use exactly this e′ and hence detect the compatibility.
If Q belongs to L(e, α), then at the time of perform-
ing the test for configuration (e′, β), the second test will
use e as e′′ and hence detect compatibility. So this de-
termines all arcs of H as needed, and there are O(n) of
them. Notice that one test of compatibility can be done
in O(n), and so the overall run-time is quadratic.

C.4 Dealing with cutvertices

So far, we assumed that G is a 2-connected plane graph.
If G has a cutvertex, then we will argue that we can
process each 2-connected component (blocks) separately.

For this, we need to argue some restrictions on the struc-
ture near cutvertices. We assume in the following thatG
is not a path, else it trivially has an sIUBVR. We need
two definitions. First, recall that the edges at a vertex
can be classified as NE-edge etc. by their relative direc-
tions; we say that two edges incident to a vertex v use
consecutive ports if their directions are consecutive in
the cyclic order {N,NE,SE,S,SW,NW}. Second, de-
fine an subdivided leg of graph G to be a maximal in-
duced path for which one end has degree 1 in G. The
other end (which necessarily has degree at least 3 in G)
is called the attachment point of the subdivided leg.

Lemma 13 Let G be a plane graph that has an
sIUBVR D. Let v be a cutvertex of G that is in layer i.

1. v is on the outer-face of G.
2. If w1, w2 are two vertices in the same layer but in

different cut-components of v, then they are both in
layer i with v between them.

3. If e1, e2 are two incident edges of v in different cut-
components of v, then they do not use consecutive
ports at v.

4. v has at most three cut-components.
5. If v has exactly three cut-components, then one of

them is a subdivided leg.
6. For any block B containing v the IUBVR DB of B

induced by D is a strong IUBVR and contains v as
topmost or bottommost vertex in layer i.

Proof. 1. Recall that an inner face forms a trape-
zoid, hence is drawn convex in the associated lay-
ered drawing. But at least one face at v contains v
repeatedly and so cannot be convex. So v must be
adjacent to the outer-face.

2. The vertices within one layer induce a path. So if
w1, w2 are in the same layer, they are connected
by the path of the vertices that are between them
on the layer. Any such path must contain v since
w1, w2 are in different cut-components.

3. Inspection of all cases shows that if two such edges
use consecutive ports, then their other endpoints
are connected by an edge, contradicting that they
are in different cut-components.

4. v has only 6 ports, and we must skip one port when-
ever we switch from one cut-component to the next
in the order of edges around v.

5. The three cut-components must use 3 ports at v
without using consecutive ones; up to symmetry
these are the N-,SE-, and SW-port. Then the cut-
component that uses the N-port must entirely lie
within layer i to avoid having an edge to the other
two components. So it forms an induced path and
its topmost vertex has degree 1, hence it is a sub-
divided leg.
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(a) (b)

(d) (e)

(c)

(f)

Figure 17: Possible cutvertex configurations

6. Let x, y be two vertices in B and assume that they
have a line-of-sight in DB , but not in D. The ver-
tex z that blocked the line-of-sight in D must share
a level with at least one of them, say z and x are in
the same level. Since z is in a different 2-connected
component, this must be level i and vertex v must
be between z and x. But then vertex v would block
the line-of-sight in DB . So DB is a strong IUBVR.
If there were vertices of B both above and below v
in layer i, then the N-edge and S-edge at v belong
to B. All other edges at v hence would then use
consecutive ports with an edge in B, contradicting
that v is a cutvertex.

�

We assume in the following that G satisfies conditions
(1),(4) and (5), i.e., the conditions that do not depend
on the choice of the sIUBVR.

Lemma 14 Let G be a plane graph that has an
sIUBVR. Let G′ be the graph obtained from G by re-
moving all subdivided legs. Then the blocktree of G′ is
a simple path.

Furthermore, the blocktree can be enumerated as B0−
w1−B1−· · ·−Bk−1−wk−Bk for blocks B0, . . . , Bk and
cutvertices w1, . . . , wk such that `(w1) ≤ · · · ≤ `(wk)
(where `(wi) denotes the layer of wi), and all vertices
of Bi lie within [`(wi), `(wi+1)] (where `(w0) := 1 and
`(wk+1) :=∞).

Proof. Call a cutvertex of G non-trivial if it has at
least two cut-components that contain cycles; these are
the same as the cutvertices of G′. Notice that a non-
trivial cutvertex has exactly two cut-components with
cycles (which correspond to cut-components of G′) by
Lemma 13.

Fix a non-trivial cutvertex v and the two cut-
components C1, C2 of v that have cycles. We claim that,
up to renaming, all vertices in C1 must be in the level
of v and farther left while all vertices in C2 must be in
the level of v or farther right. For otherwise, since both
cut-components have cycles, they would both use the

same adjacent layer of v, leading to an edge from C1−v
to C2 − v, a contradiction. We say that v separates its
cut-components that have cycles.

Now consider a block B that is not a bridge and hence
has cycles and occupies at least two layers. Assume two
non-trivial cutvertices v1, v2 belong to B and are in the
same layer. Since v1 separates B from some other cut-
component at v1, it must be in the leftmost or rightmost
layer of B. Say v1 and v2 are in the leftmost layer of B.
Then the other cut-components C1 and C2 at v1 and v2
must be to the left of v1 and v2. We may choose C1

and C2 to contain cycles, so they must use layers strictly
to the left of v1 and v2. But then there is an edge from
C1 − v1 to C2 − v2, an impossibility. So for any non-
bridge block B, no two non-trivial cutvertices can be in
the same layer, and if there are two, they must be in
the leftmost and rightmost layer of B. We say that B
is between its non-trivial cutvertices. In particular, this
implies that any non-bridge block has at most two non-
trivial cutvertices. Putting things together, therefore
every block and cutvertex of G′ has at most two incident
cutvertices/blocks, which means that the blocktree ofG′

is as desired.
The second claim follows almost immediately. Let `

be the leftmost and rightmost level that contain ver-
tices of G′. If all of G′ is drawn within layer `, then the
second claim holds trivially. So assume G′ uses some
layers further right, and let B be a block of G′ that
spans slab `. Observe that there cannot be two such
blocks B,B′, because otherwise we could find a cycle
that contains edges of both blocks by using the paths
within layers ` and `+1 and the diagonal edges in the
two blocks that span the slab. Observe further that B
cannot have a non-trivial cutvertex in `. For otherwise
both of its incident cut-components in G′ would have to
use layer `+1, leading to an edge between them, a con-
tradiction. Since B lies between its non-trivial cutver-
tices, therefore B has only one non-trivial cutvertex, in
its rightmost layer. Thus B is a leaf of the blocktree
of G′; call it B0 and enumerate the rest of the blocktree
correspondingly. In particular w1 is the (unique) non-
trivial cutvertex of B0 and lies in its rightmost column.
Block B1 cannot use layers to the left of w1 since w1

separates B0 and B1. So B1 is either drawn entirely
within `(w1) (then it is necessarily a bridge) or it is
drawn in `(w1) and further right, and its unique other
non-trivial cutvertex lies in its rightmost level. Either
way we obtain `(w1) ≤ `(w2) and B1 lies only within
these layers. Repeating the argument for the remaining
blocks and cutvertices of G′ gives the claim. �

We note here that this lemma mirrors nicely the char-
acterization of T that have an sIUBVR: We know that
this exists if and only if T is a subdivided caterpillar,
which means that it, after removing subdivided legs, is
a path (and hence its blocktree is also a path).
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We need one last characterization of how subdivided
legs can be drawn.

Observation 3 Let G be a plane graph that has an
sIUBVR D. Let G′ be the graph obtained from G
by removing subdivided legs and let D′ be its induced
sIUBVR. Let P be a subdivided leg whose attachment
point v is not in the leftmost or rightmost level of D′.
Then P is drawn vertically in the level of v, and either
immediately above v or immediately below v.

Proof. Let i be the level of v, and assume for contra-
diction that P contains a diagonal edge, say vertex wP

of P is in level i+1. By assumption some vertex w′ of G′

also resides in level i+1. This contradicts Lemma 13
since wP and w′ are in different cut-components of v.
So P must reside within level i, and be immediately
above or below v to create the edge between v and its
neighbour in P . �

Now we can explain the full algorithm. First, de-
tect all subdivided legs (this can be done in linear time
by extending paths from vertices of degree 1) and re-
move them while marking their attachment point. So
we have G′ and compute its blocktree of G′. This must
split into a path B0 − w1 −B1 − · · · − wk −Bk, else G
has no sIUBVR. Note that if G has an sIUBVR, then we
may without loss of generality assume that none of the
vertices of B0 are farther right than the vertices of Bk,
for otherwise we can rotate the representation by 180◦.
We hence can require the levels of the cutvertices to
satisfy `(w1) ≤ `(w2) ≤ · · · ≤ `(wk).

For each block Bi of G′ that is not a bridge, let Hi

be the auxiliary graph computed as before, with super-
source si and super-sink ti. We modify Hi slightly to
remove some arcs that clearly cannot lead to a solu-
tion. Namely, assume that Hi has an arc a=v(e`, α`)→
v(er, αr). If arc a is used in a solution, then the result-
ing sIUBVR contains D(e`, α`) and D(er, αr) in consec-
utive slabs, and in particular, fixes exactly the vertices
U=R(e`, α`) ∪ L(er, αR) that are in the common layer
of the slabs (say layer j). It also fixes the direction of
incident edges of U . We remove arc a from Hi if this
placement of U contradicts restrictions from Lemma 13
or Observation 3. In particular we remove a if

• U contains cutvertex wi or wi+1. (This would con-
tradict that these two cutvertices are the leftmost
or rightmost within their 2-connected component,
while arc a implies that there are vertices both left
and right of layer j.)

• U contains a cutvertex w 6= wi, wi+1 of G, and
w is not the topmost or bottommost vertex of U .
(Note that we are studying here cutvertices of G,
not G′, so such a cutvertex w can exist if it is the
attachment point for some subdivided leg.)

• U contains a cutvertex w 6= wi, wi+1 of G, but the
edges to U use ports such that we cannot attach
the subdivided leg vertically at w without using
consecutive ports and while respecting the planar
embedding.

With this, any path from si to ti in Hi leads to an
sIUBVR of Bi to which we can add all subdivided legs
whose attachment point is not in the leftmost or right-
most layer.

Now we want to create an auxiliary graph for Bi ∪
Bi+1. Assume first that neither Bi nor Bi+1 is a bridge.
We then combine the two auxiliary graphs Hi and Hi+1,
by eliminating vertices ti and si+1 and adding arcs be-
tween some of their neighbours. Consider any (e, α)
and (e′, β) such that we had arcs (e, α) → ti and
si+1 → (e′, β) in Hi, i.e., we could have had these con-
figurations in the rightmost/leftmost slab in represen-
tations of Bi/Bi+1. We can eliminate any such vertices
if wi+1 6∈ R(e, α) or wi+1 6∈ L(e′, β), since we know
that this is required in an sIUBVR of G′. If wi+1 oc-
curs in both sets, then this determines a unique way
of merging D(e, α) and D(e′, β), and with it, the direc-
tion of all edges incident to R(e, α) ∪ L(e′β). We add
an arc a=v(e, α) → v(e′, β) if this gives a feasible rep-
resentations that allows adding subdivided legs. More
precisely, we add arc a only if

• no port at wi is used by edges in both partial draw-
ings,

• no two consecutive ports at wi are used by edges
to Bi and Bi+1,

• for any w ∈ R(e, α) ∪ L(e′, β) that is an attach-
ment point of a subdivided leg, the incident edges
in Bi and/or Bi+1 use ports such that it is possible
to add the subdivided leg vertically at w without
using consecutive ports or violating the planar em-
bedding.

(It may sound as if we could create Ω(n2) arcs here, but
similarly as in the 2-connected case we need not test
all combinations of (e, α) and (e′, β); we can read from
the planar embedding and the outer-face path of G′ a
constant-size set of edges e′ that need to be tested for
each configuration (e, α).)

Thus if neither Bi nor Bi+1 is a bridge, then
we can combine their auxiliary graphs. If Bi is a
bridge (wi, wi+1), then we create an auxiliary graph
for Bi ∪ Bi+1 similarly. Namely, let in this case Hi

consist of vertices si and ti and four more ver-
tices v(e,N), v(e,NE), v(e,SE) and v(e, S), representing
the possibility of drawing (wi, wi+1) while respecting
`(wi) ≤ `(wi+1). Each vertex determines the represen-
tation of Bi in its entirety and so we can combine this
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graph with Hi+1 as above, adding arcs only if this al-
lows for merging of subdivided legs. Similarly we deal
with the case where Bi+1 is a bridge.

With this, any directed path from si to ti+1 in the
combined graph leads to an sIUBVR of Bi∪Bi+1 where
we can add all subdivided legs whose attachment point
is not in the leftmost and rightmost layer. Repeatedly
merging, we obtain one graph H where any path from
s0 to tk corresponds to an sIUBVR of G′ where we can
add all subdivided legs whose attachment point is not
in the leftmost or rightmost layer.

As a final step, we must modify H to deal with subdi-
vided legs whose attachment points are in the leftmost
layer (the rightmost layer is dealt with similarly). This
is slightly different from before since Observation 3 does
not apply. In fact, a subdivided leg that attaches at
(say) the topmost vertex v in the leftmost layer may
well use the NW-port at v, allowing the NE-port of v
to be used by G′. More precisely, let a=s0 → v(e, α) be
an arc in H0 (and hence H). If arc a is used for a so-
lution, then this determines the layout of L(e, α) in the
leftmost layer. Let vt and vb be the topmost and bot-
tommost vertex of L(e, α). We must remove a from H
if one of the following happens:

• L(e, α) contains a cutvertex w of G that is neither
vt nor vb.

• vt 6= vb, both vt and vb are cutvertices of G, vt uses
the NE-port and vb uses the SE-port for edges in
B0. (In this case, neither of the attached subdi-
vided legs at vt and vb can be drawn vertically, so
they both must go to the left, but this would create
an edge between them which is not allowed.)

It should be clear from the construction that if G
has an sIUBVR, then there exists a path from s0 to tk
in the final constructed auxiliary graph. For the other
direction, assume we have such a path. This implies
a path from si to ti in each subgraph Hi and so an
sIUBVR Di for each block Bi. Furthermore, we elimi-
nated sufficiently many arcs such that D0 ∪ . . . Dk can
be combined into one, and all subdivided legs can be
attached without creating unwanted edges. So we ob-
tain an sIUBVR of G as desired. Therefore testing for
an sIUBVR equals finding a path from s0 to tk in a di-
rected graph, which takes linear time. Building H can
be done in O(n2), since for each of the O(n) arcs the
conditions for eliminating or adding it can be tested in
O(n). Theorem 10 follows.


