The Fault in our Stats

Alexi Turcotte

CISPA Helmholtz Center for Information Security

Saarbriicken, Germany
alexi.turcotte @cispa.de

Abstract—Data analysts need to be careful when they apply
statistical inference techniques to data, as misuse of statistical
inference methods can lead an analyst to draw the wrong
conclusions. They need to be careful because, in the general
case, misuse of statistics does not result in obvious problems;
the numbers returned often look reasonable, and programs with
misuses of statistics do not crash. In this work, we propose a
technique to quickly and statically check data science programs
for compliance with statistics best practice rules, including
checking all assumptions made by statistical methods, as well
as correcting for the multiple comparison problem, or ‘“data
dredging”. This technique is predicated on a novel statistics
intermediate representation, called SIR, that encodes the details
most salient to statistics. We implement this technique in a tool
called STAT-LINT, the first statistics linter, and evaluate STAT-
LINT on 90 Python data science notebooks, finding that only 14
fully check all obligations, only two apply any correction for
multiple comparisons, none validate model residuals, and over
two thirds of obligations go unchecked.

Index Terms—statistics, Python, static analysis, data science

I. INTRODUCTION

Data scientists, or data analysts, often use statistics to
analyze and answer questions about data, and do so using
statistical libraries in languages like Python, R, and Julia. So-
called “literate programming” environments, i.e., notebooks,
interleave code blocks with text discussing data and figures and
are a popular method for creating and sharing data analysis.
As of April 2025, there are over 1.3 million public notebooks
and 23 million users on the Kaggle website, a popular place
to store notebooks in a reproducible environment that includes
any datasets used by the notebook.

Notebooks are not without traditional bugs [10], [28]. Also,
there are myriad ways to misuse statistics [13], [32], [23], [9].
Recent work has identified several bugs related to misuses of
statistics in notebooks [55], specifically related to the misuse
of parametric statistical methods, i.e., statistical methods that
make assumptions about the data they analyze. The thing is,
if a parametric method is used even when an assumption
does not appear to be met, programs do not crash, and
reasonable looking results are still produced. For example,
consider Student’s t-test, which is used to find if there is a
statistically significant difference between two samples. This
test makes three assumptions about the data: the sample
mean should be normally distributed, the variance of the
populations the samples are drawn from should be equal, and
the samples should be independent. If any of these assumptions
are false for the samples, Student’s t-test still yields a result

Neev Nirav Mehta
Saarland University
Saarbriicken, Germany
neme00002 @ stud.uni-saarland.de

that looks reasonable. This is, in part, a good thing, because
the assumptions underlying correct use of statistical methods
often cannot be checked with complete certainty, and moreover
some statistical methods are “robust” in that they still work
well if assumptions they make do not appear to be met.

Now, analysts are not without recourse, and an important
aspect of statistical best practice is to discuss and investigate
the assumed properties of data [45], [49], [47], [35], [33], [37].
There are also many non-parametric statistical methods that do
not make assumptions about data, but are relatively less well
known than ubiquitous methods like Student’s t-test, analysis
of variance, and linear regression. If an analyst wants to check
if they are using statistical methods correctly, they can visual-
ize data, run automated tests to ascertain the degree to which
data adheres to assumed properties, or assume a property based
on some prior knowledge. Recently, Turcotte and Wu [55] pro-
posed a technique whereby developers of statistical libraries
can annotate functions with statistical assumptions, and have
those assumptions translated into automated tests that run and
check data for compliance. To check data, calls to assumption
testing methods (e.g., the Shapiro-Wilk test for normality) are
injected into library code, but these tests can be very sensitive
to departures from assumed properties [25], [24], [1], [14].
This can result in many spurious warnings for analysts.

In this work, we propose a set of statistics best practice rules
that should be obeyed in a program using statistical methods.
For best practice as it relates to parametric statistical methods,
the rules require that any obligations imposed by statistical
methods are checked by the analyst; e.g., the assumption of
normality imposes an obligation to check data for normal-
ity. Checking can be done either by testing data with the
appropriate assumption testing method or by visualizing data
with an appropriate data visualization method. We also include
a rule to prevent the multiple comparison problem (‘“‘data
dredging”), where spurious inferences can be drawn from
repeatedly testing the same data. And finally, we include rules
related to statistical modeling, in particular linear regression,
namely that the residuals of a model must be checked for
normality and homoscedasticity.

To implement these rules, we developed a statistics interme-
diate representation called SIR that encodes the details most
salient to statistics: data flow, statistical tests, statistical mod-
els, and plots. We then developed a tool, STAT-LINT, which
compiles Python data analysis programs into SIR, and verifies
the degree to which all statistics best practice rules were

obeyed. Our approach also includes a quality score indicating
how well a check fulfills an obligation. We evaluated STAT-
LINT on 90 notebooks from the Kaggle website, and found that
only 14 notebooks fully check all obligations related to correct
use of parametric statistics, only 2 notebooks correct for
multiple comparisons, and none of the notebooks we studied
investigated the residuals of fitted linear regression models.
Some notebooks contained a significant statistical misuse;
i.e., a case where correcting the improper use of a statistical
method (such as using a non-parametric test in place of a
parametric test) would result in a different conclusion being
drawn. We used STAT-LINT to investigate if any checks were
made in such cases, and found complete checks in only 8 cases
(of 23 total). Finally, when we repaired the notebooks that did
not correct for multiple comparisons, we found 17 additional
significant misuses related to the multiple comparisons.

In summary, the contributions of this paper are:

o a statistics IR, SIR, encoding the details of a program
most salient to statistics;

« a set of statistics best practice rules for validating use of
statistical methods;

e a tool, STAT-LINT, which analyzes data science code for
compliance with the aforementioned best practice rules
(available in an artifact!);

e an evaluation of STAT-LINT on 90 Kaggle notebooks,
revealing novel statistical misuses and shedding light on
how analysts test their data.

The remainder of the paper is organized as follows: Sec-
tion II presents statistics background, Section III presents
examples of misuses of statistics in notebooks, then Section IV
presents our approach, Section V describes our evaluation
of this approach, Section VI presents threats to validity and
limitations, Section VII sketches related software engineering
and statistics research, and finally Section VIII concludes.

II. BACKGROUND
A. Statistics Background

Statistics is a discipline about inferring characteristics of a
population from samples of that population. An effective math-
ematical tool to characterize populations is the probabilistic
distribution, like the normal distribution, which describes how
samples drawn from a population will look (most of the time).
Distributions also encode characteristics of the population, like
the mean and variance. The normal distribution is particularly
important, and many statistical methods are designed in antic-
ipation of data being normally distributed.

Statistical Inference: Hypothesis tests are statistical
methods that answer questions about populations from sam-
ples. E.g., given two samples from two different populations,
can we conclude that the two populations have the same
mean? Examples include Student’s t-test and the analysis of
variance (ANOVA). Technically, these hypothesis tests pose a
null hypothesis (e.g., the means are equal), and a calculation
is performed to determine to what degree the data supports the

ISee https://zenodo.org/records/15560705.

hypothesis; the null hypothesis can then fail to be rejected, or
rejected in favor of an alternative hypothesis.

Parametric and Non-Parametric Statistics: Statistical
methods like hypothesis tests are said to be parametric if
they assume characteristics about the samples and popula-
tions being analyzed. The aforementioned Student’s t-test and
ANOVA are parametric methods that assume, among other
properties, that the sample mean is normally distributed. There
also exist a plethora of non-parametric statistical methods
which make no assumptions, and many parametric methods
have non-parametric “equivalents” that essentially answer the
same question about analyzed data. For instance, the Mann-
Whitney U test is a non-parametric equivalent of Student’s
t-test for two independent samples.

Statistical Errors: In the context of statistical inference,
there are two important types of errors. A Type I error occurs
when a true null hypothesis is falsely rejected by a test; this
is a false positive in statistics. A Type 2 error occurs when a
false null hypothesis is not rejected; this is a false negative
in statistics. To control Type 1 errors, analysts choose a
confidence level a when conducting inference, and « actually
is the Type 1 error rate. They can then conduct a test and
compare the p-value with «, and if the p-value falls below the
“threshold” « then the null hypothesis is rejected. To control
the Type 2 error rate (also called /3), analysts should choose the
most powerful method given the characteristics of their data.
Statistical power is a measure of how well a method detects
departures from the null hypothesis, and generally parametric
methods are more powerful than non-parametric methods.

Investigating Assumptions: When an analyst wants to
perform some parametric statistics, they (should) first establish
if the assumptions are appropriate given the data. To do
so, analysts can assume the property based on some prior
knowledge, or check the assumption by (1) performing other
statistical tests, or (2) visualizing the data and confirm.

For (1), the idea is to pose as hypothesis that the assumption
is met, and perform a test to see the degree to which the
data supports the hypothesis. E.g., the Shapiro-Wilk [48] test
poses as the null hypothesis that the population is distributed
normally, and the sample is analyzed to see how likely it
is that it was drawn from a normally distributed population.
There are many such tests, such as the Anderson-Darling
distribution test [2], Levene’s [26] and Bartlett’s [5] tests of
homoscedasticity, and Pearson’s [36] correlation coefficient.

For (2), some assumptions can be gleaned from visual
inspection of the data. For instance, one can plot a histogram of
a sample to see how closely it matches the normal distribution.
Moreover, one can plot a quantile-quantile (Q-Q) plot which
plots the quantiles of two sets of data, which is also used to see
if data follows a distribution. These plots also reveal details
about variance, and can reveal relationships between variables.
That being said, visual inspection is a subjective process.

Statistical Modeling: Analysts can also fit models to data
to try to ascertain trends, understand the relationship between
data, and predict values. Linear regression is such a modeling
method that attempts to fit a linear model to the data. To check

the quality of the linear model, an analyst should examine
the residuals of the model [6], [7], [39], i.e., the difference
between the fitted model and the actual observed data.

B. Misuses of Statistical Methods

When assumptions are not met, statistical tests still yield
reasonable looking results. For instance, if two small samples
that do not appear to be normally distributed are compared
with Student’s t-test, it will still yield a number. This makes it
especially difficult to detect misuses of statistics. To mitigate
the risk of misuse, analysts should be aware of and investigate
assumptions in order to choose the most appropriate method.

Another important statistical misuse is the multiple compar-
ison problem, known also as data dredging. In statistics, due
to the random nature of the sampling process, there is always a
chance that a sample does not represent the entire population.
Statistical methods are designed to control and account for
this, but this is an inherently random process, and so errors
are possible. When multiple simultaneous statistical inferences
are performed on the same data set, the chances that spurious
differences are detected increases. E.g., when we run a t-test
at 95% confidence (o = 0.05), there is a 5% chance of a Type
I error, or statistical false positive; so if we run 20 tests on the
same data, chances are that we find one spurious difference.

The primary way to mitigate this risk is to perform multiple
test correction, i.e., increasing the threshold required to draw
inference from data. The most conservative approach is to
apply a Bonferroni Correction [12]; if an analyst wants a total
Type-1 error rate of «, every test should be conducted with
a/n where n is the total number of tests being performed.
There are other similar approaches [3], [18], [17].

C. Glossary

In their paper, Turcotte and Wu [55] propose a glossary of
terms to connect the nomenclatures of statistics and software
engineering. The essential terms to this work are:

« statistical methods are hypothesis testing or other meth-
ods from statistics, and statistical functions are functions
implementing such methods;

« statistical assumptions are assumptions made by statis-
tical methods that cannot be checked with total certainty;

« a potential statistical misuse, or potential misuse, occurs
when a statistical method is used when there is demon-
strated evidence against its assumptions being met;

« a significant statistical misuse, or significant misuse, is
a potential misuse where an equivalent statistical method
that makes fewer assumptions would yield a different
result if run on the same data.

We propose to extend the definition of statistical misuses
to include situations where multiple tests were run on the
same data and a correction (e.g., Bonferroni correction) was
not applied; these potential misuses become significant if
the corrected confidence level would result in a different
conclusion being drawn. Additionally, we propose:

o statistical assumptions can be tested, visualized, as-

sumed, or unchecked;

Rejections for Egypt in Malta

00 02 04 06 08 10
Rejected?

Fig. 1: Box plot of visa application rejections for Egyptians
applying for a Maltese visa (see [30]). This hardly looks like a
box plot, and the data is very clearly not normally distributed.

o a checked statistical assumption (either tested, visualized,
or assumed) can be improperly checked if a super- or
subset of the data subject to the assumption was checked,
or properly checked otherwise.

III. MOTIVATION

Part of the challenge of sound and correct data analysis is
that current programming languages, environments, and tools
do not give analysts any feedback as to potential misuses of
statistical methods.

A. Misuses of Parametric Statistical Methods

For example, let us consider a Kaggle notebook that inves-
tigates which embassies give out visas at a higher rate (“The
Visa Shopper Guide” [30]). The dataset contains information
regarding Schengen State consulates (e.g., which country and
city they are located in), the kinds of visas the consulates
received applications for as well as how many, and how many
visas were issued or not issued. There are 19 columns in total.

The analyst chooses to focus on Egypt, and plots pie and
bar charts to visualize overall how many applications were
received from Egypt for each Schengen state. Then, they split
the data into the 15 most and least generous consulates w.r.t.
the visa rejection rate. After printing out the data frames and
looking at the raw data, they pose and investigate a question:
Could these rejection rates be due to random chance?

To answer this, they use hypothesis testing methods. First,
they assume that each consulate is receiving applications
from the same “pool” or population of applicants. Then, they
loop over the split data and conduct a univariate t-test to
compare the average rejection rate of each of the most and
least generous consulates with the total mean rejection rate
to determine if there is a statistically significant difference
between each consulate and the global mean, using a strict
significance level of 0.001 for these tests.

The univariate t-test assumes that the sample mean is nor-
mally distributed, which would be true if the population being
sampled was itself normally distributed. To investigate this
assumption, we inserted tests for normality using the Shapiro-
Wilk test and Anderson-Darling test, as well as generated box
plots of the data subject to the t-test. In each of the most and
least generous cases, both the Shapiro-Wilk and Anderson-
Darling tests revealed significant departures from normality

Distribution of Female Ratio in All Universities

[| wos -

count
g

Female Ratio

(a) Female ratio across all universities. Note the symmetric, normal-
looking distribution.

Distribution of Female Ratio in Top 100 Universities

D

20

count

20 30 40 50 60 70

Female Ratio

(b) Female ratio across top 100 universities. Note the skewed distri-
bution, with outliers especially on the left.

Fig. 2: Plots from notebook investigating the male and female ratios at global universities. The analyst created the plot in (a),
but performed a parametric test assuming normality with the data in (b). In this case, we found a significant statistical misuse.

(very high significance levels, e.g., the Shapiro-Wilk p-values
were all near O indicating high confidence). Moreover, the
box plots painted a very clear picture of non-normal data
(see Fig. 1 for an example). In the pictured case and other
similar cases in this notebook, the analyst concluded that there
was not a significant difference between the rejection rate of
these consulates and the global mean; had they used a more
appropriate method (e.g., a Wilcoxon signed-rank test), they
would actually have found the opposite, namely that these
consulates do differ significantly from the global mean.

B. Imperfect Checks

In some cases, an analyst will plot or test their data, but
they can miss the mark, as is the case in the notebook titled
“UniRank 2023 Insights” [61] investigating the ratio of males
to females in universities worldwide. The notebook contains
many plots which clearly show data distributions.

For example, the analyst created the plot in Fig. 2a showing
the distribution of the ratio of females to males across all
universities. However, the analyst does not test with exactly
this data. Instead, they run a t-test on the female ratio only at
the top 100 universities, but there is no way to tell from the
plot which subset of the data this constitutes. We generated
the plot in Fig. 2b to show that the distribution of the data
does not appear to be completely normal. In this case, the
analyst performed a t-test to see if there was a significant
difference in the gender ratios at the top 100 universities, and
the t-test found no significant difference. We performed a more
appropriate Mann-Whitney U test instead, and concluded that
there was in fact a significant difference in ratios.

C. The Multiple Comparisons Problem (“Data Dredging”)

Let’s say an analyst was diligent about testing or plotting
to test assumptions, as was the case in the “PASSNYC: The
Magic of Data Science” notebook [19] investigating the impact
of PASSNYC outreach services (these services are designed
to improve the chances that New York City minority or un-
derserved middle school students score well on a standardized

advanced high school placement exam called the SHSAT). The
dataset is split into two groups: one group is middle schools
that have attached high schools where at least one student took
the SHSAT, and the other group is schools where the highest
grade is middle school but no students took the SHSAT.

At face value, this is quite a good notebook, as the analyst
generates plots of almost all the data subject to test. However,
they do run a lot of tests; the data set is subject to 12 different
tests, such as:

o “is the % of Asian students different in the two groups?”

o “is the % of White students different in the two groups?”

o “is there a difference in the rigor of instruction between
the two groups?”

The recommended process to reduce risk of multiple com-
parison problems is to choose stricter confidence thresholds.
To see the effect of this, we introduced a Bonferroni correction
in this notebook, where we divided the significance level
chosen by the analyst (o = 0.05) by the total number of tests
(12). This actually reveals a false positive: with correction
applied, we cannot conclude that the % of Black students
differs in a statistically significant way between groups.

IV. APPROACH

In this paper, we present an approach to automatically iden-
tify situations where statistics best practice was not followed.
To achieve this, our approach compiles notebooks into an
intermediate representation (IR) that encodes only the details
salient to statistics. We encode best practice rules based on
this IR, and the compiled notebooks are checked to see the
degree to which they adhere to these rules.

A. Compile to Intermediate Representation

The first stage of the approach takes a program performing
some statistical data analysis (e.g., a Python Jupyter notebook)
and compiles the program into our Statistics Intermediate
Representation (SIR). The cornerstones of this intermediate
language are the structure of data, any uses of statistical
methods, as well as any calls to data visualization methods.

1) Recording Data Structure: Data frames are the essential
data structure for data analysis, and in SIR we represent data
frames as an object which records:

o the identifier for the base data frame;

o the set of columns referenced;

« any filters or slices;

e any group-by clauses and aggregator functions.

For example, the Python expression:

df [df ["age’] > 18] [’'salary’]1[50:150]

would be translated in SIR as:

{df, cols : [‘salary’], filters : [‘age’ > 18], slice : (50,150)}

If data analysts explicitly sample a data frame (e.g., with df
.sample ()), we record “sample” as the slice.

2) Statistical Methods: We also record calls to statistical
functions. These take the form:

test D Nt

where D is the data being tested (there can be one or more)
and Nr specifies the name of the statistical method. Recall:
a statistical function implements a statistical method, but it’s
the methods themselves that impose the assumptions.

For example, the following line of Python:

ttest_ind(df[df[’Color’] == ’'Blue’],
df [df["Coloxr’] == ’'Red’],
equal_var=False)
will be translated in SIR as:
test {df, filters : [‘Color’ == ‘Blue’]},

{df, filters : [‘Color == ‘Red’]},
Welch’s t-test

In this case, the statistical function ttest_ind implements
Welch’s t-test if the equal_var parameter is false. If the
result of a statistical function is saved in a variable, the
identifier is translated as a special test result identifier which
we track to see if they are involved in multiple comparisons.
3) Statistical Modeling Methods: Methods building statis-
tical models are compiled as well. The shape of these is:

model P D Ny

where D is the data the model is built from, P are the
parameters of the model, and NV, is the name of the statistical
model that was fit. For example, the following line of Python:

m, b, _, _, _ = linregress (X, Y)
will be translated as:
model [m, b] X, Y linregress

Here, the data is passed into the modeling method by variable;
SIR has an alias resolution phase that will replace these
instances of X and Y with the appropriate data.

70000

60000

50000

, 40000

charges

) female
30000 male

20000

10000

0

smoker

non-smoker

smoker

Fig. 3: Example of data visualized by a violin plot with filters.

4) Data Visualization Methods: Calls to data visualization
methods are handled in much the same way as tests. Consider:

plot D Ny

Here, D represents the data being visualized and Ny the name
of the visualization method. E.g., the following line of Python:

sns.catplot (x="smoker",
hue="sex", kind="violin",

y="charges",
data=df)

will be translated in SIR as:

plot {df, cols : [‘charges’],

filters : [‘smoker’, ‘sex’]} violin

The idea with the plot SIR expression is to capture precisely
what data is displayed in the plot. For instance here, the violin
plot will plot "charges" for each "smoker" value, and
additionally display data filtered by the "sex" of the subject.
We have included an example plot for reference in Fig. 3. From
the plot, an analyst can view the distribution and variance of
the charges for each combination of smoker, non-smoker and
female, male; this is what we capture in SIR.

5) Models: In order for our compiler to accurately compile
statistical and data visualization functions from Python into
SIR, we have built a set of models that specify the translation.
We developed these through careful study of Python data vi-
sualization libraries, statistical libraries, and open-source code
that utilizes them in order to determine what they test/plot,
and how to translate that into the IR.

For example, consider the call to catplot shown above.
This is a visualization function in the seaborn library for
drawing categorical plots. From studying the API?, we can see
that the kind of plot is specified by the “kind” argument, the
data is either the “data” argument with “x” and “y” arguments
specifying columns, or if no “data” argument is passed then

[T

x” and “y” form pairs of points that can be plotted in,

2See https://seaborn.pydata.org/generated/seaborn.catplot.html.

e.g., a scatter or line plot. Additionally, arguments “hue” and
“weights” can take additional columns to color or size the
elements of the visualization. We can see this in Fig. 3. We
also developed models for testing methods; e.g., a model for
ttest_ind specifies that the equal_var parameter value
differentiates between Student’s and Welch’s t-test, and overall
the test models are simpler than the plot models.

Our compiler is modular, and adding support for more plots
or tests involves defining a model, but the models are quite
small (the catplot model is just a Python dictionary with 7
elements, and is included in the artifact for interested readers).

6) Functions, Conditionals, and Loops: Data analysis pro-
grams, being programs typically written in general-purpose
programming languages, have access to more than just statis-
tical APIs. Analysts might loop over the columns of a data
frame, guard certain methods behind conditions, or define
functions that implement some common data analysis proce-
dures that they apply many times. To this end, SIR supports
function definitions and calls, loops, condition expressions,
and aliasing. After a data analysis program is first translated
into SIR, we perform two passes over the initial IR to deal
with functions and aliases.

First, we perform function call resolution, where calls to
functions are replaced with:

« aliases for function arguments to ensure proper data flow;

« the in-lined function body;

o ‘“‘un-alias” expressions to restore state.

Next, we perform alias resolution, where identifiers are re-
placed with their values. This handles all regular aliases, as
well as the function call aliases introduced by the previous
pass. At the end, the only identifiers left in the SIR program
are data frame identifiers and so-called “loop identifiers”, or
“over-approximate identifiers”; these represent loop iterator
variables. We make only limited attempts to reason about loop
iterations, and so the presence of these loop identifiers is an
indicator for unsoundness in subsequent analysis. Generally
speaking, if a loop identifier is present in the column, filter,
or slice component of a SIR data structure, we assume that all
possible column, filter, or slice values can be taken.

Summary: The goal of SIR is to standardize data analysis
code into a “normal form” more amenable to analysis. Our
current prototype, STAT-LINT, supports Python, the language
of choice for most statistical notebooks, and a very expressive
language with many ways to do the same thing. Beyond
having several libraries each implementing similar methods,
data frame expressions are highly varied, and Python has a
lIot of dynamism and syntactic sugar that make direct static
analysis of the code complicated. As a concrete example,
recall the Python data frame expression mentioned earlier;
the order of the filters, column access, and slice are fully
interchangeable, so translating those varied expressions into
the same SIR expression greatly simplifies further analysis.

B. Analysis of Intermediate Representation

By now, we have compiled a data analysis program into SIR,
and have resolved calls and aliases. This SIR program encodes

the statistical and data visualization methods that were applied
to data, and now we add the checks and obligations imposed
by the tests and visualizations to the SIR program.

1) Add Checks and Obligations: A set of models maps test,
plot, and model SIR expressions into the checks they make and
obligations they impose. These take the form:

plot or test or model — check or obligation

For instance, our t-test model imposes obligations of normality,
homoscedasticity, and independence on the data being tested,
and our scatterplot model states that the correlation between
data sets is shown if more than one is plotted. Not all tests
impose obligations, e.g., Levene’s test checks homoscedastic-
ity of the inputs, and so does Bartlett’s test but it also assumes
normality. Examples of our mapping models are given below:

test dy, do Student’s t-test — obl dy, dy normal
—— obl dy,dy homoscedastic
— obl dy, dy independent
plot dy, dy scatter — vis dy, ds correlation
test dy, dy Bartlett — test dq,ds homoscedastic
—— obl dq, ds normal

plot di histogram —— vis dy normal

The model SIR expressions are slightly more involved, as
residuals are computed based on model parameters as well
as the data involved in the model. For linear regression:

model [m,b] X,Y lregress — obl b+ m x X —Y normal
— oblb+m=x*x X —Y hmsced

The obligations are imposed on the residuals, the difference
between the fitted model (b + m * X) and the data (Y).

In our framework, we support two styles of checks: fest and
visualize (or vis), which discriminates between assumptions
that were tested with methods like the Shapiro-Wilk test, and
that were examined via plots like a histogram. In practice,
STAT-LINT does not distinguish between these two cases, but
the rules are configurable in case someone disagrees with our
assessment (e.g., some work in statistics discourages checking
assumptions with visualizations [47], [15]). The full set of
models is available in the artifact.

2) Resolve Obligations: This final translation results in
a set of checks and obligations, and so we are finally in
a position to validate if all obligations are satisfied in the
program. We define a set of declarative statistical best practice
rules in the following style:

necessary checks

: — (RULE-NAME)
satisfied obligation, Q¢

Here, the necessary checks must be present for the obliga-
tion to be satisfied. We additionally note a check quality Q¢
which represents the overall quality of the match between the
checks and in the obligation. In exact matches Q¢ = 1, but

lower Q¢ scores can occur if data does not exactly match,
e.g., when checks are performed on a sub- or super-set of the
data with an obligation; essentially, if any of the filters, slice,
or groupby aspects of the data are not the same, we record
a partial match of Q¢ = 0.5. Lower scores can also occur if
not all the data involved in an obligation is checked.

As an example, consider a t-test on two samples. Both
samples should be normally distributed, and an analyst can
check for normality of both individually:

test d; normal test do normal

— (NORM-DBL-EACH)
obligation dy,ds normal, 1.0

If they fail to check both data, we have a partial match:

test di normal

— (NORM-DBL-LEFT)
obligation dy,ds normal, 0.5

Note that when checking obligations, all possible options are
considered, and as long as one match applies with Q¢ = 1
then the obligation is said to be met, or fully checked.

Perhaps an analyst plotted a subset of the data subject to an
obligation; in such a case, we have a partial match:

d~d

obligation d normal, 0.5

vis d’ normal

(NORMAL-IMP-VIS)

In this and other rules, d = d’ denotes a partial match between
d and d’'. d ~ d’' iff both refer to the same data frame, same
columns, but the filters, slice, or grouping do not match.
Note on Correlation and Independence: Technically,
checking for correlation is not the same as checking for
independence. That being said, data that appears correlated
is unlikely to be independent; it is not uncommon [4], [41]
to use correlation tests to investigate independence, and many
notebooks (particularly exploratory data analysis notebooks)
check for correlations to find relationships between data
(16.7% of notebooks studied in our evaluation did so). As
such, we include this rule, which can be disabled if desired:

test dy, ..., d, correlation n>1

(CORR-IND)

obligation dy, ..., d, independent, 1.0

Independence of a single sample cannot be tested or visual-
ized, and must be assumed; this is not supported in STAT-LINT.

3) Multiple Comparisons: The multiple comparison prob-
lem in statistics occurs when an analyst performs many tests
on the same piece of data. This is unwise as it increases the
likelihood of spurious statistical significance. To capture this,
we define a few additional rules:

|test_result pr d np| <n nr € Iy

pr comp_op =
(MULT-COMP-SURE)

Here, | IR statement | represents the number of occurrences
of that IR statement in the SIR program. The rule states:

when there are at most n test results pp from statistical
inference tests n € Iny (I is a list of statistical inference
test names, including Student’s t-test but excluding assumption
tests like Shapiro-Wilk) performed on the same data d, the test
results must be compared against a significance level « that
is divided by n; i.e., a Bonferroni correction. This represents
cases where we are absolutely sure that a correction factor
was applied. There are situations where an analyst will not
explicitly compare the p-value (i.e., test result) of a test with
a confidence, e.g., they might just print the results and interpret
them themselves. In such cases we report a warning.

4) Model Obligations: A discerning analyst will check the
residuals, but many analysts instead plot the model against
the data to visually judge the fit. This is less precise, so we
consider this a partial check (similar for homoscedasticity):

vis b+ m x X line
oblb+mx*x X —Y normal, 0.5

(PLOT-LINE-PARTIAL)

Summary: Given a SIR program compiled from a data
analysis program, we first translate all test, visualization,
and modeling methods into the checks they perform and
obligations they make, and then check these for adherence
to a set of statistical best practice rules, finding obligations
that are fully met (with a quality score Q¢ = 1.0), partially
met (with a Q¢ € (0,1)) or unmet (Q¢c = 0.0).

Important Note: In notebooks, it is not uncommon for an
analyst to perform some check in a cell, look at it, and decide
what subsequent analysis to perform based on the result. In
other words, they do not necessarily guard the application of
statistical methods behind checks for assumptions. As such,
we also do not require this in our statistical rules; we give the
analyst the benefit of the doubt, and are satisfied if checks were
performed regardless of where they were performed. This is
important for checks related to model residuals, as the model
has to be fit before it can be validated.

C. Implementation

We developed an interpreter for SIR in Python, and a
compiler from Python into SIR also written in Python. We
also provide models for data visualization functions, statis-
tical functions, as well as a set of checks and obligations
and statistics best practice rules as Python dictionaries that
are consumed by our SIR interpreter. These rules are fully
customizable. All of these pieces together make up a prototype
implementation called STAT-LINT, the first linter for statistical
misuses. All of this is available in our artifact.

D. A Note on Soundness

Python, a dynamic language, is not amenable to precise
static analysis [63]. Particularly with data manipulation code,
there are many dynamic methods that are infeasible to model,
e.g., analysts can apply arbitrary functions to columns of data
frames. Moreover, notebooks can have a complex execution
order between cells [51], [59], and STAT-LINT treats the
notebook as if it executed from the first cell to the last; this is

particularly relevant to alias resolution. That being said, checks
do not have to happen before obligations, and can happen after.
Moreover, since data is often modified through the course of
execution, accounting for every possible execution order would
likely result in many false positives. Our compiler from Python
into SIR is a best effort, and has been thoroughly tested and
validated on the notebooks discussed in the next section, as
well as a battery of “unit test” notebooks to ensure that STAT-
LINT can correctly and precisely capture most behavior.

E. Extending SIR and STAT-LINT

There are myriad other best practice rules that one could
add to STAT-LINT. On the topic of validating assumptions, one
could add rules related to multi-variate statistical analysis (e.g.,
ensuring that the variance-covariance matrix is computed),
or rules related to time series analysis (e.g., ensuring that
time series are checked for seasonality or autocorrelation).
To achieve this, one mainly needs to define the model for
the methods of interest (so that it can be compiled into SIR),
and then define the best practice rules for that method. These
would be the easiest to add, but there are also best practice
rules outside validating assumptions; e.g., Wasserstein and
Lazar [60] conclude that “Good statistical practice emphasizes

. a variety of numerical and graphical summaries of data

> and that “no single index should substitute for scientific
reasoning”; such rules could be incorporated into STAT-LINT,
with a rule ensuring that data be passed to multiple plotting
or summary methods, or a rule ensuring that data is not only
passed to methods that compute a p-value, resp. It is also
possible to extend STAT-LINT to handle different multiple
comparison corrections, e.g., by adding a rule like MULT-
COMP-SURE but with Siddk’s correction [50] applied instead.

V. EVALUATION

To evaluate STAT-LINT, we pose these research questions:
RQ1) How many instances each of fully, partially, and
unchecked obligations are discovered by STAT-LINT? To
get a sense for how often analysts check assumptions.
How many significant misuses have fully or partially
checked obligations? To get a sense for how much
checking prevents significant misuses.

What would the results of assumption tests and visu-
alizations show in these cases? To get a sense for the
clarity provided by checking assumptions.

How many potential and significant misuses are the
result of multiple comparisons? To collect data on the
prevalence of a novel statistical misuse and assess the
impact of multiple comparisons.

Does STAT-LINT report false positives or false negatives?
To investigate the impact of unsoundness.

RQ6) What is the running time of STAT-LINT? To get a sense

for how usable the tool is in its current state.

RQ2)

RQ3)

RQ4)

RQ5)

A. Experimental Setup
STAT-LINT analyzes Python data science applications, and

we focus this evaluation on Kaggle notebooks. Notebooks in-
terweave code with data visualization and discussion, making

them a popular format for data analysis. Kaggle in particular
offers a reproducible environment for actually running the
notebooks alongside the data they require. For this evalua-
tion we selected the 60 Kaggle notebooks analyzed in prior
work [55] that used parametric statistical methods and were
written in Python and supplemented this with 30 additional
notebooks from Kaggle; this made up 90 notebooks. All
notebooks we studied are available in our artifact.

For RQ1 we run STAT-LINT on each notebook and re-
port and discuss the results. RQ2-RQ4 focus on significant
misuses; recall that a potential statistical misuse is a call to
a parametric statistical method for which a test of at least
one assumed property yields significant evidence against that
assumption being met. Then, a significant misuse occurs when
the p-value of a more appropriate but equivalent method falls
on a different side of the chosen confidence threshold. So
for RQ2 we investigate the significant misuses in our studied
notebooks and see if analysts were performing any checks. For
RQ3, we investigate the significance of the failed assumption
tests and the plots of the data. For RQ4, we investigate a novel
statistical misuse: multiple comparisons without correction.
For this we use STAT-LINT to find data that was subject to
multiple tests, and compare the p-value of tests with corrected
significance levels to see if the p-value falls on a different
side of the corrected significance threshold. For RQS5, we
manually investigated all obligations to identify cases where
unsoundness might have caused a check to be missed or
incorrectly detected. Finally, for RQ6 we time how long it
takes to run STAT-LINT on each notebook. All experiments
run on an Apple MacBook Pro M2 Max with 64 GB RAM.

B. Baselines

To the best of our knowledge, ours is the first approach
to statically detect violations of statistics best practice; as
such, there is no baseline to compare against beyond one
we construct ourselves. That said, the prob-check [55] tool
from prior work is thematically similar; prob-check allows
library developers to annotate statistical APIs with statistical
assumptions, and inserts checks into the library code to
“guard” API use by testing data for compliance. Our tool,
in contrast, investigates the degree to which statistics code
adheres to statistics best practice. Put differently, prob-check
asks “does data comply with statistical assumptions?”, while
we ask “do analysts follow statistics best practice?”

In the context of RQ2-3, we empirically compare prob-
check with STAT-LINT in that we investigate the overlap
between unchecked obligations detected by STAT-LINT and
significant misuses detected by prob-check; all significant
misuses discussed here were found with prob-check. To build
a baseline for RQs 4-5, we read each notebook, taking note
of any called statistical methods, which plots were made, and
what data was passed to these methods and plotting functions;
we then matched up obligations made by methods with checks
made by either tests or plots. For RQ4, we counted how often
the same data frame was passed to statistical methods.

RQ1) How many instances each of fully, partially, and
unchecked obligations are discovered by STAT-LINT?

Of 90 notebooks, only 14 have all obligations checked. This
is mostly achieved by plotting the data subject to test, and
we found that testing assumptions explicitly is comparatively
uncommon (only 20 notebooks have such tests, while 57 have
plots). In total, STAT-LINT found 996 obligations spanning
these 90 notebooks. Of these, 319 were checked (91 fully,
and 195 partially), which leaves 677 unchecked obligations.
Most checks were done by visualizing data, and few were
done by testing data. This includes independence between
multiple samples, which can be partially investigated by testing
or plotting possible correlations between data.

STAT-LINT did not detect any checks of residuals of linear
models in the notebooks we studied (we confirmed manually
that there were indeed no checks of residuals), though STAT-
LINT found 50% check the fit by plotting the model. We
manually inserted plots of residuals into the notebooks, and
judged that only 22.2% of these linear models were a good
fit for the data. We include in Fig. 4 an example of how only
looking at the model fit can be deceptive; here, a linear fit looks
good, but the residuals reveal that perhaps a time series model
would be more appropriate. Investigating the residuals of a
model highlights the differences between the model and the
data, i.e., the ways in which the model is deficient, and analysts
can make more informed decisions based on this information.

Takeaway: 68% of obligations are unchecked, few
notebooks tests all assumptions, and none investigate
residuals. Visualizing fits and data is most common.

RQ2) How many sig. misuses have checked obligations?

Here, we investigate what STAT-LINT reports about the
significant misuses detected by prob-check. In total, 13 note-
books had at least one significant misuse, and there were
23 total such misuses. Of these, STAT-LINT found that 2
had their assumptions tested, and 10 had their assumptions
visualized. Of these visualizations, 8 had the exact same data
plotted as was passed to the statistical method. 7 were in
a single notebook, and when discussing the test results in
text they expressed surprise that the hypothesis tests found
no differences between the tested samples; a non-parametric
test would have found the difference. The other case was in a
notebook where the analyst was plotting and testing all in the
same function, without interpreting the plot at all. The other,
partially checked cases were: one analyst plotted the data
before transforming it, and did not examine the transformed
data before performing a t-test; another analyst plotted the
whole data but tested only the first 100 elements.

Takeaway: Only 8 of 23 significant misuses were
fully visualized and none were tested, suggesting that
explicitly investigating assumptions reduces the risk of
committing significant statistical misuses.

RQ3) What would the results of assumption tests and visual-
izations show in these cases?

There are two primary ways for analysts to check as-
sumptions: testing, and visualizing. As these are all potential
statistical misuses, at least one test in each case must have in-
dicated statistically significant evidence against assumptions.
In all, the median p-value of these failed tests was on the
order of 10717, indicating a very high confidence in the
data not meeting the assumption. As for visualization, we
generated box plots of the data subject to testing. We created
40 such plots, and the majority (32) did not look normal;
24 were clearly long-tailed, 6 looked severely abnormal, and
finally 2 were “borderline”. All of these plots are available
in the artifact, and we included an example each of long-tail,
abnormal, and borderline in Fig. 5.

As for the 8 cases where plots “looked reasonable”, the tests
also had a relatively low p-value (in the 10~3-10~° range). The
reason for significant errors in these cases is that the data was
quite similar, which is a situation where a careful choice of
parametric or non-parametric method is most critical. In these
cases, an analyst could perhaps apply some transformations to
the data to bring it more clearly in line with assumptions if
they choose to use parametric methods.

Takeaway: Most of the data involved in significant
misuses of parametric statistical methods appeared
quite clearly to not satisfy assumptions.

RQO4) How many potential and significant misuses are the
result of multiple comparisons?

In total, 7 notebooks had a significant misuse related to the
lack of a correction for multiple comparisons; there were 17
such significant misuses. Only two notebooks identified and
applied a Bonferroni correction, and both were when the para-
metric method was applied in a loop, computing the correction
term based on the loop bounds. Here are some examples of
the significant misuses: the difference between total Spotify
streams on Friday and Saturday is not significant; there is no
significant difference in student academic performance if they
identify as being in a relationship.

Takeaway: Significant misuses resulting from multiple
comparisons were present in 8.6% of notebooks, and
analysts rarely apply corrections.

RQ5) Does STAT-LINT report false positives/negatives?

For this research question, we manually determined all
checks and obligations made in each notebook, and compared
the output of STAT-LINT with this baseline. For false positives,
i.e., obligations with missed checks, we found only 4 cases,
which were all in a single notebook investigating Spotify
trends [31]. The analyst built a function that performs several
statistical tests, and that function takes song titles as a string
like "artist - song’, and splits the string inside the

1e6 Scatter Plot with Fitted Line

Residuals Plot

Histogram of Residuals

@ Data points
—— Fitted line

Residuals

-2500

-5000

~7500

-10000

@ Residuals 400

-~ Fitted line
350

300

250

N
g
8

Frequency

150

I

0 500 1000 1500 2000 2500 3000 3500 0 500
X

1000 1500 2000 2500 3000 3500
X

0
-10000

~7500

-5000 -2500 0

Residuals

2500 5000 7500

Fig. 4: An example of the pitfalls of plotting only the model fit, drawn from the simpleeda notebook in our evaluation.
The analyst produced the plot on the left, which suggests a good fit, however had they plotted the residuals (middle and right

plots) they would see that the relationship is non-linear.

Is Revenue normally distributed?

Is Rejection Rate normally distributed?

Is Prediction normally distributed?

T T T T T T
60000 80000 100000 00 02 04

revenue

T
40000

(a) Long-tail box plot.

Rejection

(b) Abnormal box plot.

T T T r T]
06 08 10 u 16 18 2
Prediction

(c) Borderline box plot.

Fig. 5: Examples of plotting data related to significant misuses. We judge (c) to be borderline as the mean is not quite near
the middle of the figure. The other two box plots look highly un-normal.

function to extract the artist and song title. The data frame
in the notebook has columns for artist and song, and while
the analyst does build the appropriate plot, STAT-LINT does
not model string manipulation functions (like split), and thus
cannot find what data is subject to analysis. We found no false
negatives (i.e., obligations incorrectly deemed as checked) in
our manual investigation of all checks and obligations.

Takeaway: Unsoundness in STAT-LINT does not ap-
pear to result in many missed checks, or obligations
incorrectly identified as being checked.

RQ6) What is the running time of STAT-LINT?

The approach itself is quite lightweight, and the median
run time on the studied notebooks is 3.72s, and the average
is 13.98s namely because of some outliers. The PASSNYC
notebook [19] takes almost five minutes to analyze because
there are so many checks and obligations, as the phase for
finding if obligations are checked takes the longest. The
median time to check a single obligation is 0.04s, and the
average is 0.82s again due to the PASSNYC notebook.

Takeaway: STAT-LINT has a modest run time, and
checking single obligations in particular is quite quick.

10

VI. THREATS TO VALIDITY AND LIMITATION

The main threat to validity is that the presence of an
assumption check does not necessarily mean that the method
was used correctly. To count a visualization as a check, an
analyst should actually interpret a plot and judge whether
the plot supports an assumption being true. Some statistics
literature even discourages visualizing assumptions and deem
the process too subjective [47], [15]. In this way, one can
think of STAT-LINT as a charitable statistical linter that gives
the analyst the benefit of the doubt. If they have not performed
sufficient checks, STAT-LINT’s feedback will inform them of
the assumptions that they may not have been aware of.

It is also possible that our data set is not representative
of real-world statistics notebooks. That said, some of the
notebooks used in our evaluation were drawn from prior
work [55], and contain a wide range of notebooks: statistics
tutorials, exploratory data analysis of large datasets, Kaggle
competition notebooks, and also contains notebooks in a mix
of styles, including some that perform larger-scale automated
testing of large datasets. We supplemented these with addi-
tional notebooks randomly sampled from Kaggle (so long as
they contained at least one call to the methods we considered
in this paper). Several notebooks have many “up votes” and
clones, suggesting high visibility in the Kaggle community.
Even though STAT-LINT is a static analysis and does not
require the notebook to be executed, execution is an important

part of validation and is necessary to detect statistical misuses.

One limitation of our analysis is that it is unsound in that
we do not precisely track data flow; thus, it is possible that
we miss checks for obligations if dynamic language features
are used, or only find a partial match between data involved in
a check and obligation. To mitigate this threat, we manually
created a baseline by carefully examining each notebook and
noting the checks and obligations made by methods therein.
Sound, scalable, and precise static analysis of Python is
currently beyond the state of the art [63].

VII. RELATED WORK

Notebook Studies: The research community is gaining
interest in literate programs like notebooks. De Santana et
al. [10] study bugs in Jupyter notebooks. Liu et al. [29] study
how notebooks are refactored. Kery et al. [22] interview data
scientists to glean their development practice. Chattopadhyay
et al. [8] present pain points in building computational note-
books by interviewing and surveying data scientists. Pimentel
et al. [38] study the reproducibility of notebooks. Wang et
al. [59] propose a technique to recover the execution order of
a notebook. Wang et al. [58] study how to repair notebooks
that no longer execute. These are but a few of many [57], [44],
[42] studies of data science notebook development practice.
Our work complements this literature, as none of these studies
are concerned with misuses of statistical methods.

Statistical Languages: This work proposes a static anal-
ysis to validate statistical analyses, a step towards types for
statistical languages. The two programming languages most
widely used for statistics are Python and R. Python has added
support for type hints [40], which has led to further research
investigating their use [43] and studying their evolution [11].
In R, Turcotte and Vitek [54] discuss the difficulty of devel-
oping a type system for R, and Turcotte et al. [S3] propose
type annotations that are translated to dynamic checks.

A few systems have been proposed to facilitate statistical
analysis, such as Statsplorer [56], Tea [20], and Tisane [21].
Unlike our approach, these each represent significant depar-
tures from traditional programming languages, and are either
stand-alone systems or present domain-specific languages for
describing statistical methodology. Turcotte and Wu [55] find
many potential misuses using a dynamic approach; in contrast,
this work proposes a static approach that instead finds if an-
alysts are checking assumptions themselves, and additionally
identifies multiple comparison problems.

Python Static Analysis: As Python is a dynamic language,
it is not readily amenable to precise and scalable static
analysis [63]. That said, there have been a number of static
analysis frameworks proposed for python, e.g., Scalpel [27].
Ruohonen et al. [46] use static analysis to identify security
vulnerabilities in PyPI packages. Oh and Oh [34] use static
analysis to detect type errors in Python. Gulabovska et al. [16]
survey Python static analysis tools. Suboti¢ et al. [51] propose
a static analysis framework for data science notebooks that
targets a subset of the Python language. Liblit et al. [28]
present a preliminary effort to detect defects related to machine

11

learning in notebooks, finding an average of one issue per
seven notebooks. Yang et al. [62] generate documentation from
data wrangling code using program synthesis and test case
selection to help programmers debug their data transformation
pipelines. None of these frameworks deal specifically with
statistics, which is one of the reasons we developed SIR and
STAT-LINT separately from existing work. In the future, we
will explore building compilers from R and Julia into SIR.

Misuses of Statistics: There is ample statistics research
on misusing statistical methodology [13] (dating as far back
as 1938 [9]), e.g., in the biomedical field [52], pharmacol-
ogy [32], medical research [23]. While misuses are known, the
best way to detect and remediate potential misuses of statistics
is still a matter of debate. E.g., when it comes to automated
testing of statistical assumptions, plenty of work discourages
testing [45], [49], [47], and plenty recommends testing [35],
[33], [37] (these are but a few of many examples). Some even
recommend against visual inspection of data due to subjectiv-
ity concerns [47], [15]. (This is particularly interesting given
the cases in our evaluation where analysts plotted data but
still committed a significant statistical misuse.) We incorporate
this diversity of opinions in STAT-LINT by allowing analysts
to check assumptions in a variety of ways.

VIII. CONCLUSION

An important aspect of statistics best practice is to check and
validate assumptions about data, as even when assumptions are
not met, statistical methods depending on them do not crash
and yield normal-looking results. We proposed an approach
allowing data analysts to validate their notebooks quickly and
statically to ensure that all obligations imposed by statistical
methods they used are checked, and that they are free of mul-
tiple comparison problems. We implemented this technique
in STAT-LINT, the first statistics linter, and evaluated it on 90
Kaggle data science notebooks, finding that only 14 notebooks
fully check all obligations, all but 2 suffer from multiple
comparison problems, and over two thirds of obligations go
unchecked. None of the notebooks we studied validated model
residuals, and they should; we show that plotting only the
fit of a model can be deceptive. In addition to the 17 new
significant misuses related to multiple comparisons that STAT-
LINT found, in the 23 cases of significant misuse of parametric
statistical methods, we found that analysts never tested all
assumptions, and only 8 misuses had assumptions validated
via plot. Funnily enough, in these cases analysts expressed
surprise in the results of their analysis; unbeknownst to them,
more appropriate methods would yield more expected results.

ACKNOWLEDGEMENTS

This research was partially funded by the European Union
(ERC “Semantics of Software System”, S3, 101093186).
Views and opinions expressed are however those of the authors
only and do not necessarily reflect those of the European
Union or the European Research Council. Neither the Euro-
pean Union nor the granting authority can be held responsible
for them. Huge thanks to Andreas Zeller for his support.

[1]

[3]

[4]

[5]

[6]
[7]

[8]

[9]

[10]

(1]

[12]

[13]

[14]

[15]
[16]
(17]
[18]

(19]

[20]

[21]

[22]

[23]

REFERENCES

AHAD, N. A., YIN, T. S., OTHMAN, A. R., AND YAACOB, C. R.
Sensitivity of normality tests to non-normal data. Sains Malaysiana
40, 6 (2011), 637-641.

ANDERSON, T. W., AND DARLING, D. A. Asymptotic theory of
certain” goodness of fit” criteria based on stochastic processes. The
annals of mathematical statistics (1952), 193-212.

ARCURI, A., AND BRIAND, L. A hitchhiker’s guide to statistical tests
for assessing randomized algorithms in software engineering. Software
Testing, Verification and Reliability 24, 3 (2014), 219-250.

BADEA, B., AND VLAD, A. Revealing statistical independence of two
experimental data sets: an improvement on spearman’s algorithm. In
International Conference on Computational Science and Its Applications
(2006), Springer, pp. 1166-1176.

BARTLETT, M. S. Properties of sufficiency and statistical tests. Pro-
ceedings of the Royal Society of London. Series A-Mathematical and
Physical Sciences 160, 901 (1937), 268-282.

BELLOTO, J., AND SOKOLOVSKI, T. Residual analysis in regression.
American Journal of Pharmaceutical Education 49, 3 (1985), 295-303.
CASSON, R. J., AND FARMER, L. D. Understanding and checking
the assumptions of linear regression: a primer for medical researchers.
Clinical & experimental ophthalmology 42, 6 (2014), 590-596.
CHATTOPADHYAY, S., PRASAD, 1., HENLEY, A. Z., SARMA, A., AND
BARIK, T. What’s wrong with computational notebooks? pain points,
needs, and design opportunities. In Proceedings of the 2020 CHI
Conference on Human Factors in Computing Systems (New York, NY,
USA, 2020), CHI ’20, Association for Computing Machinery, p. 112.
COHEN, J. B. The misuse of statistics. Journal of the American
Statistical Association 33, 204 (1938), 657-674.

DE SANTANA, T. L., NETO, P. A. D. M. S., DE ALMEIDA, E. S., AND
AHMED, I. Bug analysis in jupyter notebook projects: An empirical
study. ACM Trans. Softw. Eng. Methodol. 33, 4 (Apr. 2024).

D1 GRAZIA, L., AND PRADEL, M. The evolution of type annotations
in python: an empirical study. In Proceedings of the ACM International
Conference on the Foundations of Software Engineering (New York, NY,
USA, 2022), ESEC/FSE 2022, Association for Computing Machinery,
p. 209220.

DUNN, O. J. Multiple comparisons among means.
American statistical association 56, 293 (1961), 52-64.
GARDENIER, J., AND AND, D. R. The misuse of statistics: Concepts,
tools, and a research agenda. Accountability in Research 9, 2 (2002),
65-74. PMID: 12625352.

GASTWIRTH, J. L., GEL, Y. R., AND MIAO, W. The impact of Levene’s
test of equality of variances on statistical theory and practice. Statistical
Science 24, 3 (2009), 343-360.

GNANADESIKAN, R., AND WILK, M. B. Probability plotting methods
for the analysis of data. Biometrika 55, 1 (1968), 1-17.
GULABOVSKA, H., AND PORKOLAB, Z. Survey on static analysis tools
of python programs. In SQAMIA (2019).

HOCHBERG, Y. A sharper bonferroni procedure for multiple tests of
significance. Biometrika 75, 4 (1988), 800-802.

HoLM, S. A simple sequentially rejective multiple test procedure.
Scandinavian journal of statistics (1979), 65-70.

HUNGFEIL. PASSNYC: The magic of data science, 2025. See URL:
https://www.kaggle.com/hungfei/passnyc-the-magic-of-data-science.
Accessed 10/05/2025.

JUN, E., DAUM, M., ROESCH, J., CHASINS, S., BERGER, E., JUST,
R., AND REINECKE, K. Tea: A high-level language and runtime system
for automating statistical analysis. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (2019),
pp. 591-603.

JUN, E., SEO, A., HEER, J., AND JUST, R. Tisane: Authoring statistical
models via formal reasoning from conceptual and data relationships.
In Proceedings of the 2022 CHI Conference on Human Factors in
Computing Systems (2022), pp. 1-16.

KERY, M. B., RADENSKY, M., ARYA, M., JOHN, B. E., AND MYERS,
B. A. The story in the notebook: Exploratory data science using a
literate programming tool. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (New York, NY, USA, 2018),
CHI ’18, Association for Computing Machinery, p. 111.

Kim, J. S., KiMm, D.-K., AND HONG, S. J. Assessment of errors and
misused statistics in dental research. International dental journal 61, 3
(2011), 163-167.

Journal of the

12

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

KUNDU, M., MISHRA, S., AND KHARE, D. Specificity and sensitivity
of normality tests. In Proceedings of VI International Symposium on
Optimisation and Statistics. Anamaya Publisher (2011).

LE BOEDEC, K. Sensitivity and specificity of normality tests and
consequences on reference interval accuracy at small sample size: a
computer-simulation study. Veterinary clinical pathology 45, 4 (2016),
648-656.

LEVENE, H. Robust tests for equality of variances. Contributions to
probability and statistics (1960), 278-292.

L1, L., WANG, J., AND QUAN, H. Scalpel: The python static analysis
framework, 2022.

LIBLIT, B., LUO, L., MOLINA, A., MUKHERIJEE, R., PATTERSON, Z.,
PISKACHEV, G., SCHAF, M., TRIPP, O., AND VISSER, W. Shifting
left for early detection of machine-learning bugs. In International
Symposium on Formal Methods (2023), Springer, pp. 584-597.

Liu, E. S., LUKES, D. A., AND GRISWOLD, W. G. Refactoring in
computational notebooks. ACM Trans. Softw. Eng. Methodol. 32, 3 (Apr.
2023).

MA7555. The visa shopper guide, 2025. See URL: https:
/Iwww.kaggle.com/ma7555/getting-started-the- visa-shopper- guide-eg.
Accessed 10/05/2025.

MAJICKDAVE. Spotify 2017 analysis, 2025. See
https://www.kaggle.com/code/majickdave/spotify-2017-analysis.
Accessed 10/04/2025.

MARINO, M. J. The use and misuse of statistical methodologies in
pharmacology research. Biochemical pharmacology 87, 1 (2014), 78—
92.

NIMON, K. F. Statistical assumptions of substantive analyses across the
general linear model: a mini-review. Frontiers in psychology 3 (2012),
322.

OH, W., AND OH, H. Towards effective static type-error detection for
python. In Proceedings of the 39th IEEE/ACM International Conference
on Automated Software Engineering (2024), pp. 1808-1820.

PATINO, C. M., AND FERREIRA, J. C. Meeting the assumptions of
statistical tests: an important and often forgotten step to reporting valid
results. Jornal Brasileiro de Pneumologia 44, 05 (2018), 353-353.
PEARSON, K., AND GALTON, F. Vii. note on regression and inheritance
in the case of two parents. Proceedings of the Royal Society of London
58, 347-352 (1895), 240-242.

PERVEEN, F., AND HUSSAIN, Z. Use of statistical techniques in analysis
of biological data. Basic Research Journal of Agricultural Science and
Review 1, 1 (2012), 1-10.

PIMENTEL, J. F., MURTA, L., BRAGANHOLO, V., AND FREIRE, J. A
large-scale study about quality and reproducibility of jupyter notebooks.
In 2019 IEEE/ACM 16th International Conference on Mining Software
Repositories (MSR) (2019), pp. 507-517.

POOLE, M. A., AND O’FARRELL, P. N. The assumptions of the linear
regression model. Transactions of the Institute of British Geographers
(1971), 145-158.

PYTHON TEAM. Type Hints for Python.
library/typing.html, 2020.

QUESSY, J.-F. Theoretical efficiency comparisons of independence tests
based on multivariate versions of spearman’s rho. Metrika 70, 3 (2009),
315-338.

RAGHUNANDAN, D., ROy, A., SHI, S., ELMQVIST, N., AND BATTLE,
L. Code code evolution: Understanding how people change data science
notebooks over time. In Proceedings of the 2023 CHI Conference on
Human Factors in Computing Systems (2023), pp. 1-12.
RAK-AMNOUYKIT, I., MCCREVAN, D., MILANOVA, A., HIRZEL, M.,
AND DOLBY, J. Python 3 types in the wild: a tale of two type systems.
In Proceedings of the 16th ACM SIGPLAN International Symposium on
Dynamic Languages (2020), pp. 57-70.

RAMASAMY, D., SARASUA, C., BACCHELLI, A., AND BERNSTEIN,
A. Visualising data science workflows to support third-party notebook
comprehension: an empirical study. Empirical Software Engineering 28,
3 (2023), 58.

RASCH, D., KUBINGER, K. D., AND MODER, K. The two-sample t
test: pre-testing its assumptions does not pay off. Statistical papers 52
(2011), 219-231.

RUOHONEN, J., HJIERPPE, K., AND RINDELL, K. A large-scale
security-oriented static analysis of python packages in pypi. In 2021 18th
International Conference on Privacy, Security and Trust (PST) (2021),
pp. 1-10.

URL:

https://docs.python.org/3/

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]
[61]

[62]

[63]

SCHODER, V., HIMMELMANN, A., AND WILHELM, K. Preliminary
testing for normality: some statistical aspects of a common concept.
Clinical and experimental dermatology 31, 6 (2006), 757-761.
SHAPIRO, S. S., AND WILK, M. B. An analysis of variance test for
normality (complete samples). Biometrika 52, 3-4 (1965), 591-611.
SHUSTER, J. J. Diagnostics for assumptions in moderate to large simple
clinical trials: do they really help? Statistics in medicine 24, 16 (2005),
2431-2438.

SIDAK, Z. Rectangular confidence regions for the means of multivariate
normal distributions. Journal of the American statistical association 62,
318 (1967), 626-633.

SuBOTIC, P., MILIKIC, L., AND STOJIC, M. A static analysis frame-
work for data science notebooks. In Proceedings of the 44th Interna-
tional Conference on Software Engineering: Software Engineering in
Practice (2022), pp. 13-22.

THIESE, M. S., ARNOLD, Z. C., AND WALKER, S. D. The misuse
and abuse of statistics in biomedical research. Biochemia medica 25, 1
(2015), 5-11.

TURCOTTE, A., GOEL, A., KRIKAVA, F., AND VITEK, J. Designing
types for R, empirically. Proc. ACM Program. Lang. 4, OOPSLA (nov
2020).

TURCOTTE, A., AND VITEK, J. Towards a type system for R. In
Proceedings of the 14th Workshop on Implementation, Compilation, Op-
timization of Object-Oriented Languages, Programs and Systems (New
York, NY, USA, 2019), ICOOOLPS ’19, Association for Computing
Machinery.

TURCOTTE, A., AND WU, Z. Expressing and checking statistical
assumptions. In Proceedings of the ACM International Conference on
the Foundations of Software Engineering (2025).
WACHARAMANOTHAM, C., SUBRAMANIAN, K., VOLKEL, S. T., AND
BORCHERS, J. Statsplorer: Guiding novices in statistical analysis. In
Proceedings of the 33rd annual acm conference on human factors in
computing systems (2015), pp. 2693-2702.

WANG, A. Y., MITTAL, A., BROOKS, C., AND ONEY, S. How
data scientists use computational notebooks for real-time collaboration.
Proceedings of the ACM on Human-Computer Interaction 3, CSCW
(2019), 1-30.

WANG, J., Kvo, T.-v., L1, L., AND ZELLER, A. Assessing and
restoring reproducibility of jupyter notebooks. In Proceedings of
the 35th IEEE/ACM International Conference on Automated Software
Engineering (New York, NY, USA, 2021), ASE °20, Association for
Computing Machinery, p. 138149.

WANG, J., L1, L., AND ZELLER, A. Restoring execution environments
of jupyter notebooks. In 2021 IEEE/ACM 43rd International Conference
on Software Engineering (ICSE) (2021), IEEE, pp. 1622-1633.
WASSERSTEIN, R. L., AND LAZAR, N. A. The asa statement on p-
values: context, process, and purpose, 2016.

XREINAS8. UniRank 2023 insights, 2025. See URL: https://www.kaggle.
com/xreina8/unirank-2023-insights. Accessed 10/05/2025.

YANG, C., ZHOU, S., GUO, J. L., AND KASTNER, C. Subtle bugs
everywhere: Generating documentation for data wrangling code. In
2021 36th IEEE/ACM International Conference on Automated Software
Engineering (ASE) (2021), IEEE, pp. 304-316.

YANG, Y., MILANOVA, A., AND HIRZEL, M. Complex python features
in the wild. In Proceedings of the 19th International Conference on
Mining Software Repositories (2022), pp. 282-293.

13

