
Optimizing Asynchronous JavaScript
Applications

by

Alexi Turcotte

A thesis
presented to Northeastern University

in fulfillment of the
thesis requirement for the degree of

Doctor of Philosophy
in

Computer Science

Boston, Massachusetts, USA, 2023

© Alexi Turcotte 2023

Examining Committee Membership

The following served on the Examining Committee for this thesis. The decision of the
Examining Committee is by majority vote.

External Examiners: Ali Mesbah
Professor, University of British Columbia
Andreas Zeller
Professor, CISPA Helmholtz Centre for Information Security

Supervisors: Frank Tip
Professor, Khoury College, Northeastern University
Jan Vitek
Professor, Khoury College, Northeastern University

Internal Members: Jonathan Bell
Asst. Professor, Khoury College, Northeastern University
Arjun Guha
Assoc. Professor, Khoury College, Northeastern University

ii

Author’s Declaration

I hereby declare that I am the sole author of this thesis. This is a true copy of the thesis,
including any required final revisions, as accepted by my examiners.

I understand that my thesis may be made electronically available to the public.

iii

Abstract

JavaScript is arguably today’s most popular programming language, and it is ubiqui-
tous as the “language of the web”. It is dynamically typed, meaning that programmers do
not write type annotations, and beyond this it also has a nonrestrictive dynamic seman-
tics. This makes it easy for programmers to write code that runs, though determining if
the code is correct or efficient is an entirely different story. Concretely, JavaScript’s dy-
namism renders sound and precise static analysis of the language extremely difficult. This
complicates the development of tooling for JavaScript which could help programmers write
correct and efficient code.

Sound and precise analysis of JavaScript is beyond the state of the art, and in this thesis
we explore the effectiveness of using unsound analysis to build tools to detect and reme-
diate inefficiencies in asynchronous JavaScript programs. We explore the following thesis
statement: Unsound analysis of asynchronous JavaScript applications yields actionable in-
sights and effective optimizations. We support this statement with four approaches to
detect and remediate sub-optimal anti-patterns in various application domains. Promising
results in all cases suggest that perfect is the enemy of good, and that unsound approaches
are viable and useful for improving JavaScript code.

iv

Acknowledgements

J’aimerais remercier le département de mathématiques de l’Université Laurentienne.
Reposez en paix.

Frank: thank you for your support and encouragement, for being an exemplary mentor,
and for your guidance in navigating the research community. Looking forward to many
more years of working together.

Jan: thanks for sharing your enthusiasm for cool research and sound science, and for
knowing what questions to ask and teaching me to ask the right questions. It was (and
will continue to be!) a pleasure working with you.

Committee: thanks to Jon for your enthusiastic support, Arjun for your zany energy,
and Ali and Andreas for the interesting discussion (and getting up super early / working
late to attend my proposal and defence!).

Amber, Alexander, Phraea, Craig: thanks for all the late night dungeon delving. Re-
member, every adventure have skeleton.

Aviral, Filip, Ming-Ho, Ben, Julia, Artem, Aaron, Farideh, Satya, Michelle, Max, Mark,
Mike, Syndey, Dan, Sam, YT, and many more: thanks for making the lab such a fun place!

All my family: an emphatic thank you for your endless encouragement, for not re-
purposing my bedroom back home, and for your curiosity and interest in everything I’ve
gotten up to these past years.

Ellen: There’s no sense in trying to describe this in words.

This work was supported by NSERC, by Office of Naval Research (ONR) grants
N00014-17-1-2945 and N00014-21-1-2491, and by National Science Foundation grants CCF-
1715153, CCF-1930604, and CCF-190772.

v

Dedication

To grandma, your light shines on forever.

To mom, now you can rest.

vi

Table of Contents

Examining Committee ii

Author’s Declaration iii

Abstract iv

Acknowledgements v

Dedications vi

1 Introduction 1

1.1 Soundness of Program Analysis . 2

1.2 Thesis Overview . 3

2 The JavaScript Language and Ecosystem 5

2.1 JavaScript Language Primer . 5

2.1.1 Executing Arbitrary Strings as Code 5

2.1.2 Dynamic Property Access and Extension 6

2.2 Asynchronous JavaScript . 7

2.2.1 The Event Loop . 7

2.2.2 Callbacks . 7

2.2.3 Promises and async/await . 8

vii

2.3 The npm Package Manager . 12

2.3.1 JavaScript Import Mechanisms . 12

3 Related Work 14

3.1 Analysis of JavaScript . 14

3.1.1 Static Analysis . 15

3.1.2 Dynamic Analysis . 16

3.1.3 Combining Static and Dynamic Analysis 17

3.2 Refactoring . 17

3.3 Program Understanding . 18

3.4 Debloating . 19

3.5 Conclusion . 20

4 Anti-Pattern Identification 22

4.1 Introduction . 23

4.2 Promises and async/await . 24

4.3 Motivating Examples . 24

4.4 Anti-Patterns . 27

4.5 Implementation . 30

4.5.1 Static Analysis . 31

4.5.2 Dynamic Analysis . 31

4.5.3 Interactive Visualization . 32

4.6 Case Study . 33

4.7 Evaluation . 36

4.7.1 Experimental Setup . 36

4.7.2 RQ1: How often do anti-patterns occur? 38

4.7.3 RQ2: Can detected anti-patterns be refactored? 40

4.7.4 RQ3: Can the elimination of anti-patterns improve performance? . 40

viii

4.7.5 RQ4: What is the performance of DrAsync? 42

4.8 Threats to Validity . 43

4.9 Relation to Previous Research . 43

4.9.1 JavaScript Anti-Patterns . 44

4.9.2 Profiling Concurrent Applications 45

4.9.3 Software Visualization . 45

4.10 Conclusion . 46

4.11 Discussion . 46

4.12 Data Availability . 47

5 Database Usage Optimizations 48

5.1 Introduction . 49

5.2 Background and Motivation . 51

5.3 Approach . 54

5.3.1 Data-Flow Analysis . 55

5.3.2 Refactoring . 55

5.3.3 Helper Function Reference . 60

5.4 Implementation . 61

5.5 Evaluation . 61

5.6 Threats to Validity . 69

5.7 Relation to Previous Work . 70

5.8 Conclusion . 71

5.9 Discussion . 72

6 Software Debloating 75

6.1 Introduction . 76

6.2 Background and Motivation . 79

6.3 Approach . 80

ix

6.3.1 Call Graph Construction . 82

6.3.2 Introducing Stubs . 83

6.3.3 Guarded Execution Mode . 89

6.3.4 Asynchrony . 89

6.3.5 Bundler Integration . 90

6.4 Evaluation and Discussion . 91

6.4.1 Experimental Setup and Methodology 92

6.4.2 Overview of Results . 96

6.4.3 Comparison with Mininode . 106

6.5 Threats to Validity . 107

6.6 Relation to Previous Work . 109

6.6.1 Control Flow Integrity . 110

6.6.2 Vulnerability Detection and Reduction 110

6.7 Conclusion . 111

6.8 Discussion . 112

7 Lazy Loading 114

7.1 Introduction . 115

7.2 Background . 116

7.3 Lazy Loading . 116

7.4 Approach . 119

7.4.1 Identify Candidate Packages for Lazy Loading 119

7.4.2 Validate and Determine Transformations Required 120

7.4.3 Code Transformations . 122

7.4.4 Implementation . 124

7.5 Evaluation . 126

7.6 Threats to Validity . 131

7.7 Relation to Previous Work . 131

7.8 Conclusion . 132

7.9 Discussion . 133

x

8 Conclusion 136

8.1 Discussion . 138

8.1.1 Dynamic vs. Static Analysis . 139

8.1.2 Empowering Programmers . 140

8.1.3 Finding Precision Where You Can 142

8.2 Closing Thoughts . 144

References 146

APPENDICES 170

A Anti-Pattern Detection 171

A.1 Query Run Times . 171

A.2 Case Study Summary Tables . 171

B Database Usage Optimizations 209

B.1 Raw Data . 209

C Software Debloating 236

xi

Chapter 1

Introduction

JavaScript is arguably today’s most popular programming language; according to the
“States of the Octoverse” 2022 [98], JavaScript is the most popular language in Github
repositories. It is ubiquitous as the language of the web, and is used for building client-side
scripts, and also back-end servers thanks to the Node.js browserless JavaScript runtime.
Modern JavaScript is performant, expressive, and has an incredibly rich ecosystem of pack-
ages (npm) that support or automate many development tasks.

JavaScript is a dynamically typed programming language, which means that program-
mers do not write type annotations, but beyond this it is also highly dynamic in its se-
mantics. One would think that the lack of a static type system would result in many more
runtime errors, but JavaScript rarely raises such errors due to aggressive coercion of val-
ues, and a lax semantics when it comes to object properties. Concretely, basic arithmetic
operators are defined on unusual combinations of inputs (e.g., you can add an object and
a number, you can concatenate strings with numbers using addition, etc.), accessing prop-
erties that are not present on an object yields a value (undefined) rather than raising an
error, and objects can be extended with new properties at runtime. This makes it easy for
programmers to write code that runs, though determining if the code is correct or efficient
is an entirely different story.

There is a cost to the dynamism pervading JavaScript: namely, sound and precise
static analysis of JavaScript is extremely difficult. When an analysis needs to account for
all of the potential behavior of JavaScript code, the realm of possibilities quickly becomes
so large as to outpace modern processing power. This is unfortunate, as these kinds of
analysis could be leveraged to build tools to improve the quality of the immense quantity
of JavaScript code running every day.

1

1.1 Soundness of Program Analysis

Traditionally, a static analysis is said to be sound if it reports no false negatives ; i.e., the
analysis does not miss anything. For example: a call graph built using sound analysis
will contain all valid call targets for each call site, but may contain superfluous targets;
or a sound bug finding tool will detect all bugs, but may also report superfluous bugs by
misidentifying correct code as buggy. Soundness is desirable, but plenty of sound analyses
are not particularly useful: for example, an analysis that reports that all variables in a
program have type “top” or “any” is sound but useless. Unlike sound analysis, unsound
analysis is free to report false negatives, and of course both can report false positives.

A user’s tolerance for false negatives or false positives is highly dependent on the appli-
cation domain. In security, for example, an analysis that misses no security vulnerabilities
is highly desirable; that said, if the analysis reports too many false positives will not be
met with enthusiasm as confirming the presence of a security vulnerability in code can
be extremely time consuming. In contrast, a linting tool that misses some “code smells”
is fine, as the consequences of missing one are far from catastrophic. At a high level, if
false negatives can cause serious issues, sound analysis may be best, but developers need
to balance false positives with false negatives. Previous work by Sadowski et al. [189, 188]
report that a bug finding tool is deemed useful by developers if 90% of the bugs reported
by the analysis are indeed bugs; i.e., users are tolerant of a few false positives.

Analysis developers can tinker with the precision of an analysis, i.e., how precise is the
information reported by the analysis. Imagine a program with the single variable assign-
ment let v = 5, and an analysis to determine the type of v. The analysis could conclude
that v has type “top”, number, integer, or even 5 depending on the expressiveness of the
type system. These are all true statements, but saying that v has type integer is more
precise than saying it has type “top”. In the realm of building call graphs, a more precise
analysis would report fewer potential call targets for a call site than a less precise analysis.

Finding the right level of precision for an analysis is far from straightforward, as it
may simply be too costly for an analysis to be both sound and precise; this is known as
scalability. (Note that unsound analyses are free to produce false positives, so they can be
made arbitrarily precise by reporting precise but false information.) Given infinite time to
exhaust all possible options, a sound analysis can be made precise, but programmers do not
have infinite patience, and scalability is a concern for developers particularly in contexts
where an analysis needs to be run often, e.g., in interactive development environments
(IDEs).

2

1.2 Thesis Overview

Sound and precise analysis of JavaScript is unfortunately beyond the state of the art,
and in this thesis, we explore the effectiveness of using unsound analysis to build tools to
detect and remediate inefficiencies in asynchronous JavaScript programs. In the domain of
finding inefficiencies, false negatives are tolerable as they correspond to missed optimization
opportunities, and so an unsound analysis is appropriate in principle.

We explore the following thesis statement:

Unsound analysis of asynchronous JavaScript applications yields actionable insights
and effective optimizations.

There are a few important parts to this statement. First, we investigate unsound anal-
ysis: sound and precise static analysis of JavaScript is elusive, so we employ methods that
make no soundness guarantees. Next, actionable insights : we mean to devise techniques
that communicate information to users that allows them to optimize their applications.
Finally, effective optimizations : when possible, we design techniques that automatically
repair code by transforming the application and optimizing it in some way. As an aside,
when we say optimize we mean to improve some desirable and measurable aspect of code,
e.g., its performance or size.

The thesis is organized as follows:

• Chapter 2 describes general background requisite for understanding this thesis. We
describe the JavaScript language, how to build asynchronous JavaScript applications,
how external code is imported into applications as well as the package management
ecosystem (npm).

• Chapter 3 describes the literature broadly related to this thesis, and touches on
program analysis of JavaScript (both static and dynamic), on code changes that will
parallelize applications, on general refactoring, program understanding, and software
debloating (relevant for Chapters 6 and 7).

• Chapters 4 through 7 describe four research projects wherein we developed ap-
proaches to optimize asynchronous JavaScript applications using unsound program
analysis. Chapter 4 describes how general anti-patterns related to misuses of promises
can be detected and effectively communicated to programmers, Chapter 5 describes
an approach for detecting and refactoring misuses of ORMs in JavaScript applica-
tions, Chapter 6 describes an approach for leveraging unsound analysis to remove

3

dead code from applications, and Chapter 7 describes a situation where applications
are refactored to lazily load packages used only in the context of event handlers.

• Finally, Chapter 8 concludes with an in-depth retrospective and discussion of how to
best leverage unsound analysis.

4

Chapter 2

The JavaScript Language and
Ecosystem

This chapter reviews JavaScript and its ecosystem. It includes an overview of the JavaScript
event-loop architecture, presents callbacks, promises, and async/await, and discusses the
many mechanisms for including external files and modules in JavaScript applications.
Readers familiar with these concepts should feel free to skip this chapter.

2.1 JavaScript Language Primer

JavaScript is a dynamically typed language, meaning that programmers do not write type
annotations. Beyond being dynamically typed, the JavaScript semantics are also extremely
dynamic. Put simply, JavaScript is highly expressive, and the language rarely restricts pro-
grammers; among other things, programmers can execute dynamically constructed strings
as code at run time, non-existent object properties can be safely accessed, and objects can
be extended at runtime.

2.1.1 Executing Arbitrary Strings as Code

In JavaScript, the eval function takes a string as an argument and executes it as if it
were JavaScript source code. Previous work by Richards et al. [183] investigated what
programmers typically do when they use it, finding that eval’d strings exercise the full
gamut of the language. Thus, such strings are a total wildcard from the point of view

5

of static analysis: if programmers build up strings dynamically and eval them, a sound
static analysis would have to determine exactly what that string is, which would essentially
amount to running a large part of the program. As such, analyses are typically pessimistic
about the outcome of a call to eval. Moreover, use of eval is widespread. Richards et
al. [184] investigate 103 web sites, and find that they all use eval, from a handful to a few
hundred times per application. They also stress the variety of code that eval executes.

2.1.2 Dynamic Property Access and Extension

In JavaScript, programmers can use dynamic values to index and extend objects at runtime.
To help illustrate, consider the following code snippet:

1 let O = {};

2 let b = "m";

3 O.m = () => { return 2; };

4

5 O.m(); // calls m

6 O["m"](); // calls m

7 O[b](); // calls m

Here, we first define an empty object O (line 1) and a variable b initialized with the string
"m". We then dynamically extend O with a property m initialized with an arrow function that
returns the number 2 (line 3). Then, we illustrate three different ways to call m: (1) directly
with the property name on line 5, (2) dynamically with the property name passed as a string
value on line 6, and again (3) dynamically with a variable that evaluates to "m" on line 7.
Now, imagine we want to compute the call graph for a JavaScript application. The above
code snippet illustrates a particularly tricky combination of JavaScript semantics: functions
are first-class values, meaning you can create them dynamically and pass them around,
you can dynamically extend objects at runtime, and you can access object properties
with computed values (you can also extend objects using computed values). To soundly
determine all possible call targets of the expression O[b](), a static analysis would need to
determine all possible values of b, essentially running part of the program. A sound static
analysis would either need to over-approximate call targets and be imprecise but scalable,
or be precise at the cost of scalability.

Now, one wonders how often programmers actually use these dynamic features. Ac-
cording to a study by Richards et al. [184], JavaScript programs exhibit a high degree of
dynamism and thus present a “harsh terrain for static analysis”. For instance, JavaScript
has fewer monomorphic call sites than Java (81% vs 90%), all projects studied had meg-
amorphic call sites with over 32 possible call targets (2.5% of call sites had more than

6

5 potential targets), and most studied applications use eval and eval’d code strings are
extremely varied.

On top of this basic complexity, JavaScript also has mechanisms for writing asyn-
chronous programs (naturally, as the web is an asynchronous environment). This is intro-
duced next.

2.2 Asynchronous JavaScript

There are three major ways to build asynchronous JavaScript applications, presented in
§ 2.2.2 and § 2.2.3. First, it helps to understand how asynchronous computations are
realized in the language, discussed next.

2.2.1 The Event Loop

JavaScript only has a single user thread, but JavaScript applications rely heavily on I/O
operations, e.g., interaction with servers and user input handling. To reconcile this, the
language has run-time model based on an event loop that enables it to perform operations
asynchronously despite being single-threaded. Essentially, the event loop is a queue of
function calls (i.e., callbacks) to be executed, which follow run-to-completion semantics;
calling functions asynchronously has the effect of loading them onto the event loop. Once
on the event loop, a callback is executed similarly to any other synchronous code.

2.2.2 Callbacks

This style of asynchronous programming relies on functions being registered as listener
callbacks for specific events, which are called when the associated event is emitted. As
an example, consider the following code snippet, which declares a function onClick that is
then registered as a listener callback handling the "click" event:

function onClick(event) { /* handler logic */ }

document.addEventListener("click", onClick);

The call document.addEventListener("click", onClick) registers onClick as the callback to
handle the "click" event on the document component of the web page. Later, when a user
clicks on the page, the "click" event fires and a call to onClick is placed on the event loop.

7

2.2.3 Promises and async/await

This section reviews promises [73, Section 27.2] and the async/await feature [73, Sec-
tion 15.8] features, which were added to JavaScript in recent years to facilitate asynchronous
programming.

A promise is an object that represents the value computed by an asynchronous com-
putation, and is in one of three states: pending, fulfilled, or rejected. Upon construction,
a promise is in the pending state. If the computation associated with a promise p suc-
cessfully computes a value v, then p transitions to the fulfilled state, and we will say that
p is fulfilled with value v. If an error e occurs during the computation associated with a
promise p, then p transitions to the rejected state, and we will say that p is rejected with
value e. The state of a promise can change at most once; accordingly, we will say that a
promise is settled if it is fulfilled or rejected.

Creating promises. Promises can be created by invoking the Promise constructor, pass-
ing it an executor function expecting two arguments, resolve and reject, for fulfilling or
rejecting the newly constructed promise, respectively. E.g., the following code snippet

let c = ...

let p1 = new Promise((resolve , reject) => {

if (c){ resolve (3) } else { reject("error!") }

})

assigns to p1 a new promise that is fulfilled with the value 3, or rejected with the value
"error!", depending on the value of c. The functions Promise.resolve and Promise.reject

accommodate situations where a promise always needs to be fulfilled or rejected with a
specified value, respectively. For example, the following code snippet:

let p2 = Promise.resolve (4)

let p3 = Promise.reject("error!")

assigns to p2 and p3 promises that are fulfilled with the value 4 and rejected with the value
"error!", respectively.

Reactions. To specify that a designated function should be executed asynchronously
upon the settlement of a promise, programmers may register reactions on promises using
methods then and catch. Here, a reaction is a function that takes one parameter, which is
bound to the value that the promise was fulfilled or rejected with. For example, consider
the following code snippet:

p2.then((v) => console.log(v*v))

8

This snippet extends the previous example by registering a reaction on the promise
referenced by variable p2 to print the value 161. Similarly, the following code snippet:

p3.catch((e) => console.log("error:␣" + e))

will cause the text “error: error!” to be printed.

Promise chains. The then method returns a promise. If the reaction that is passed to
it returns a (non-promise) value v, then this promise is fulfilled with v. If the reaction that
is passed to it throws an exception e, then this promise is rejected with e. Furthermore, if
then is used to register a reaction f on a promise p, then the rejection of p with a value e
will cause the rejection of the promise returned by p.then(f) with the same value e. This
enables the construction of chains of promises. In the following code snippet, a promise
chain is created starting with variable p1 as defined above:

p1.then((v) => v+1)

.then((w) => console.log(w))

.catch((err) => console.log("an␣error␣occurred."))

if p1 was fulfilled with 3, then the reaction (v) => v+1 will be executed asynchronously with
v bound to the value 3 and return the value 4, so the promise created by this call to then

is fulfilled with the value 4 as well. Since a reaction (w) => console.log(w) was registered
on that promise, the value 4 will be printed. If, on the other hand, p1 was rejected with
the value "error!", the promises created by both calls to then will be rejected as well, with
the same value, causing the reaction on the last line to execute, which prints "an error

occurred.".

Linked promises. So far, we have only considered situations where a function f that is
registered as a reaction on a promise returns a non-promise value. However, if f returns
a promise p, that promise becomes linked with the promise p’ created by the call to then

(or catch) that was used to register the reaction. Concretely, this means that p′ will be
fulfilled with a value v if/when p is fulfilled with v, and p′ will be rejected with a value
e if p is rejected with e, and if p remains pending then so will p′. Consider the following
example:

let p4 = Promise.resolve (5);

let p5 = new Promise((resolve ,reject) =>

setTimeout (() => resolve (6), 1000))

p4.then((v) => p5)

.then((w) => console.log(w)) // prints 6 after one second

1The then method optionally accepts a reject-reaction as its second argument.

9

Here, the promise referenced by p4 is fulfilled with 5, and the promise referenced by p5

is fulfilled with 6 after 1000 milliseconds have elapsed. The reaction (v) => p5 that is
registered on p4 returns p5, so the promise created by this call to then becomes linked with
p5, i.e., it will be fulfilled with 6 after 1000 milliseconds have passed. The last line registers
another reaction on this promise, so the value 6 is printed after 1000 milliseconds.

Synchronization. Several functions are provided for synchronization. The Promise.all

function takes an array of promises [p1, · · · , pn] as an argument and returns a promise that
is either fulfilled with an array [v1, · · · , vn] containing the values that these promises are
fulfilled with, or that is rejected with a value ei, if pi is the first promise among p1, · · · , pn
that is rejected, and ei is the value that it is rejected with. Other synchronization functions
include Promise.race and Promise.any. For example2, the following snippet prints Array [3,

42, "foo"] after 1 second:

let p6 = Promise.resolve (3);

let p7 = 42;

let p8 = new Promise ((resolve , reject) => {

setTimeout(resolve , 1000, ’foo’);

});

Promise.all([p6, p7 , p8])

.then((vs) => console.log(vs););

Promisification. Promisification is a mechanism for automatically adapting an asyn-
chronous event-driven API into a promise-based API. It assumes that methods in an
event-driven API meet two requirements: (i) the callback function is the last parame-
ter, (ii) upon completion of the asynchronous operation, the callback function is invoked
with two parameters err and result, where err is a value that indicates whether an error
has occurred, and result contains the result of the asynchronous computation otherwise.
In such cases, an equivalent promise-based API can be derived by creating a new promise
that invokes the event-driven API, passing it a callback that rejects the promise with err

if an error occurred, and fulfills it with result otherwise. Promisifying event-driven APIs
can be done using the built-in util.promisify function.

async/await. JavaScript allows a function to be declared as async to indicate that it com-
putes its result asynchronously. An async function f returns a promise: if no exceptions
occur during the execution of f , this promise is fufilled with the returned value, and if

2Adapted from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/

Global_Objects/Promise/all.

10

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all

an exception e is thrown, then the promise is rejected with e. Inside the body of async

functions, await-expressions may be used to await the settlement of promises, including
promises created by calls to other async functions. Concretely, when execution encounters
an expression await x during the execution of an async function, control returns to the
main event loop. At some later time, when the promise that x evaluates to has settled,
execution resumes. If that promise was fulfilled with a value v, then execution resumes
with the entire await-expression evaluating to v. If the promise was rejected with a value
e, then execution resumes with the entire await-expression throwing an exception e.

The async/await feature has been designed to interoperate with promises, as is illus-
trated by the example below.

33 import fs from ’fs’

34 async function analyzeDir(dName){

35 let fNames = await fs.promises.readdir(dName);

36 let ps = fNames.map((fName) => fs.promises.stat(fName));

37 let fStats = await Promise.all(ps);

38 let sum = fStats.reduce ((acc ,v) => acc + v.size , 0);

39 console.log(sum);

40 }

The example shows an async function analyzeDir that prints the sum of the sizes of the files
in the directory identified by its parameter dName. On line 35, an await-expression is used
to await the results of the built-in readdir operation; this operation returns a promise that
is eventually fulfilled with an array containing the names of files in the specified directory,
which is assigned to fNames. On line 36, the map operation on arrays is used to map the
built-in fs.stat operation3 over this array, resulting in an array ps of promises that will
eventually resolve to objects containing meta-information for each file. Promise.all is used
on line 37 to create a promise that is eventually fulfilled with the meta-information objects
for each of the files, and an await-expression is used to await this result so that it can be
stored in a variable fStats. On line 38, the reduce operation on arrays is used to compute
the sum of the sizes of the files, and this sum is printed on line 39.

JavaScript’s async/await feature can be thought of as syntactic sugar for promise-based
asynchrony. Consider:

41 function fetchAsynchronously(url) {

42 fetch(url)

43 .then(response => response.json ())

44 .then(jsonResponse => {

45 // do something

46 });

47 }

3fs.stat is a library function that returns an object that contains various information about a file,
including its size; see https://nodejs.org/api/fs.html#fs_class_fs_stats.

11

https://nodejs.org/api/fs.html#fs_class_fs_stats

Here, the function fetchAsynchronously takes a url, fetches it, converts it to JSON, and
then does something with it—all using promises. In this setup, the bulk of the function
logic would be in the body of the last callback (// do something). Using async/await, we
can write the function more concisely as:

48 async function fetchAsynchronously(url) {

49 const response = await fetch(url);

50 const jsonResponse = await response.json ();

51 // do something

52 }

2.3 The npm Package Manager

JavaScript developers enjoy npm, a thriving ecosystem of over two million external pack-
ages [170]. To include external code in their project, a developer simply needs to open
a command line interface (CLI), type npm install p-name, and the code for package
p-name and all of its dependencies will be downloaded. Once downloaded, programmers
can import the package using require, or the static import statement and dynamic import

function.

2.3.1 JavaScript Import Mechanisms

require The traditional method of including external code in JavaScript is to use require,
a function that dynamically and synchronously loads and executes the package matching
the supplied name. Consider:

const xlsx = require("xlsx");

function importXLSXData(data) {

const contents = xlsx.read(data , {...});

// do stuff with the contents.

}

First, the "xlsx" package is imported at runtime and saved in the xlsx global variable.
"xlsx" exports a read function to convert raw spreadsheet data, and so inside importXLSXData

the exported function is referenced as a property on the xlsx object (xlsx.read). Notably,
xlsx contains the entire package code.

static import ECMAScript 6 introduced the static import declaration as an alternative
to the dynamic require. These import statements must be at the top level, all bindings
must be identifiers, and the package name must be a string literal (this makes them easier

12

to analyze statically); e.g., the statement import * as xlsx from "xlsx" imports the entire
"xlsx" package. A major advantage of static import statements is that a developer can
specify which parts of a package they want to import; e.g., in the following snippet, the
read function exported by "xlsx" is imported directly:

import { read } from "xlsx";

function importXLSXData(data) {

const contents = read(data , {...});

// do stuff with the contents.

}

The strict nature of these static import statements allows static analyzers to more
effectively determine the extent to which an application exercises the code it imports,
which can sometimes lead to smaller distributions—this is called tree-shaking [186, 232].
Unfortunately, JavaScript’s high degree of dynamism limits the power of these static anal-
yses [175, 125, 130], preventing tree-shaking from removing much code.

dynamic import Static imports are syntactically rigid by design, and so ECMAScript
2020 introduced a dynamic, asynchronous import function. The import function accepts a
string containing the name or path of a package as an argument and returns a promise.
That promise can either resolve with an object containing all the exported functions and
objects, or be rejected if the package cannot be found. This syntax is especially useful
for importing large or rarely used external packages, since they will not be bundled with
the rest of the application. This can often result in smaller initial application sizes and
potentially faster load times. The following code snippet illustrates how to dynamically
import "xlsx" only in the context of importXLSXData:

async function importXLSXData () {

const xlsx = await import("xlsx");

const data = xlsx.read (...);

}

Note that if a dynamic import for a particular package is encountered more than once,
the package is loaded only once, and all subsequent invocations resolve to the same cached
instance. Thus, even if import("xlsx") or importXLSXData is invoked multiple times, the
"xlsx" package will be loaded only once and served to all subsequent invocations.

13

Chapter 3

Related Work

In this chapter, we review the literature as it applies to this thesis, which touches on pro-
gram analysis, debloating and reducing program size, optimizing programs, understanding
programs, and refactoring. This chapter presents a general literature overview, while each
of Chapters 4-7 have their own “Relation to Previous Literature” section that refers back
to this chapter, and also describes some related work specific to the chapter itself.

3.1 Analysis of JavaScript

An essential component of this thesis is program analysis. There are two prevailing methods
to analyze programs: (1) static analysis, which analyzes source code without running the
actual program, and (2) dynamic analysis, which must execute the code to perform its
analysis. There are advantages and disadvantages to each approach. While dynamic
analysis yields precise insights about programs (since the program actually ran), it is
unclear how well insights about one particular execution generalize, and is limited in that
code needs to be run, which can be surprisingly difficult. In contrast, static analysis can
simply analyze the source code, but must model any inaccessible code (e.g., some library
code, or opaque language functionality like JavaScript’s native models), and importantly
must account for all possible program behavior to preserve soundness. This last point is
of particular concern in dynamic languages where the behavior of a program at runtime
can be unpredictable. In a sense, dynamic analysis under-approximates the behavior of a
program by considering a finite number of executions of the program, while static analysis
over-approximates behavior through it’s model of potential program executions.

14

Broadly, dynamic languages pose many unique challenges to the design of language
tooling, which often relies on program analysis. Work by Wei et al. [234] present a fuzzing
approach for deep-learning libraries, and in their implementation of this as a tool for Python
have struggled with the dynamism inherent to the language (to tackle the issue, they
performed a corpus analysis to infer type specifications for functions). Also in the context
of Python, Yang et al. [243] present a study of how the complex features of Python are used,
and how frequently, culminating in a minimum set of features that any practical static
analysis of the language should support. A separate study [177] describes the common
language features across multiple Python projects. As for JavaScript, Richards et al. [183]
show that eval is everywhere in JavaScript, and so any language tools need to be aware
of the unsoundness.

3.1.1 Static Analysis

There are several static analysis frameworks for JavaScript. JSAI [122] is an abstract inter-
pretation framework for JavaScript, with user-configurable analysis sensitivity. TAJS [116]
is a framework for inferring sound type information about JavaScript programs. WALA [227]
is a set of libraries provided by IBM for analysis of Java bytecode and also JavaScript. Cod-
eQL [152] is a framework for the declarative specification of static analyses as queries over
an AST, data flow graph, and/or control flow graph of a program. Jelly [158] is a re-
cent addition to the landscape, which is intentionally not fully sound, and who’s design is
based on several academic JavaScript analysis approaches (JAM [168], TAPIR [159], and
ACG [90]).

Besides these tools, there are a number of other academic efforts to improve static
analysis of JavaScript. Work by Madsen et al. [141] sheds light on how to leverage how
a library is used to improve the precision of static analysis in JavaScript. Other work by
Madsen et al. [142] discuss an approach to constructing an event-based call graph to find
bugs in event-driven JavaScript applications. The aforementioned Jelly [158] tool incorpo-
rates several advancements in the field, incorporating: JAM [168], an approach to building
call graphs that leverages the module structure of Node.js applications; TAPIR [159], an
approach which localizes static analysis to user-specified code locations; and ACG [90],
an approach that is intentionally unsound (e.g., it does not analyze dynamic property
accesses) to improve scalability of static analyses.

In this thesis, we often leverage static analysis to detect inefficiencies, rather than prove
properties about programs; in their paper, Gorogiannis et al. [103] propose a True Positives
Theorem for establishing the “soundness” of static analyses as bug finding and testing tools,

15

rather than verification tools. Essentially, they propose a theorem to verify that a static
analysis reports no false positives—these analyses may not be sound in the traditional
verification sense, but this is nonetheless a useful and desirable property. This is directly
applicable in the context of this work, which leverages unsound analysis to essentially
build optimization tools, though we make no claim that no false positives are reported by
these approaches. Also, in Chapters 5-7, we apply transformations to remediate detected
inefficiencies, which is outside the scope of the theorem presented in the paper.

3.1.2 Dynamic Analysis

There are a few major paradigms in the space of dynamic analysis: instrumentation, and
source code rewriting. With instrumentation, the runtime performs the analysis, and
often exposes hooks for custom dynamic analyses to take advantage of. For example,
the Async Hooks [3] API in Node.js exposes callbacks for major events in the lifetime of
JavaScript promises (e.g., when they are created, destroyed, resolved, etc.) that provide
precise information about runtime promises. More generally, the NodeProf [204] dynamic
analysis framework in GraalVM [237, 235] exposes many callbacks for general program
execution, e.g., function entry and exit, property reads and writes, etc. Instrumentation
is relatively performant compared with source code rewriting, but suffers in that analyses
are limited to the framework they are built in: an analysis written in NodeProf will not
run on Node.js.

With source code rewriting, the program source code itself is transformed and state-
ments are inserted collecting the desired information. A popular framework for this in
JavaScript is Jalangi [194], which inserts callback functions with user-defined bodies into
the relevant source code locations, but support for Jalangi has ceased and the alterna-
tive Jalangi2 [191] has not been updated in several years. Source code rewriting is more
portable, but can significantly degrade the performance of analyzed applications. More-
over, source code rewriting approaches modify the program being analyzed, which can lead
to behavioral differences between executions of a program with or without analysis code
inserted.

Approaches using dynamic analysis are common. For example, work by Adamsen et
al. [35] propose an approach using dynamic analysis to detect event races when web pages
are initialized. Karim et al. [121] describe a platform-independent approach to dynamic
taint analysis of JavaScript applications by generating stack machine instructions from
program executions. Augur [39] is a tool that extends this approach, implementing it in the
NodeProf framework and finding significant performance improvements over the original

16

approach that used Jalangi. Kreindl et al. [128] describe a language-agnostic framework
for specifying taint labels for dynamic taint analysis, implementing it in TruffleTaint in
the context of GraalVM.

3.1.3 Combining Static and Dynamic Analysis

Static and dynamic analysis are not mutually exclusive. Conceptually, insights from static
analysis could be given as input to a dynamic analysis, or vice versa. Tzermias et al. [220]
present a mixed approach to detecting security vulnerabilities in PDF documents, lever-
aging static page analysis and dynamic code execution. Lindorfer et al. [136] present a
tool for classifying Android apps according to their percieved level of maliciousness using
machine learning, and static and dynamic analysis. Balzarotti et al. [54] present SANER,
a tool for sanitizing web applications that also combines static and dynamic analysis. Park
et al. [176] describe an approach which uses dynamic analysis as a shortcut to speed up
static analysis of JavaScript. Toman and Grossman [212] combine concrete and abstract
interpretation to analyze programs that make extensive use of third party libraries and
otherwise inaccessible code. Godefroid et al. [99] present DART, a fully automated test-
ing framework that combines static analysis to determine the API of an application with
dynamic analysis of generated random tests to analyze the behavior of the application.

3.2 Refactoring

This thesis discusses source code transformations (known as refactoring) that optimize ap-
plication performance, and there is a wealth of work on this topic. Traditionally, refactoring
refers to code transformations that preserve the behavior of the program, but improve the
quality of the code, described in Fowler’s seminal books [91, 93]. In this realm, Di Nucci et
al. [68] explored if machine learning is feasible to use in the context of refactoring, Kamiya et
al. [120] explored tokenizing source code to find code clones, Kessentini et al. [123] propose
a parallel consensus-based method for detecting code smells efficiently. Work by Arteca et
al. [49] present an automated refactoring for applications which use async/await by hoisting
promise creation as early as possible, and delaying the await-ing of those promises as much
as possible. Feldthaus et al. [89] describe a framework for specifying and implementing
refactorings for JavaScript that uses pointer analysis.

There is also a wealth of work on refactoring applications to make them more asyn-
chronous. Dig [69] present a toolset for many refactorings that increase parallelism. Desyn-

17

chronizer [100] refactors JavaScript applications to use asynchronous APIs where syn-
chronous APIs were once used. Schäfer et al. [192] helps programmers refactor their code
to take advantage of ReentrantLocks and ReadWriteLocks. Lin et al. [134] present a study
to understand the use of AsyncTask in Android applications, and an accompanying tool
to assist programmers in refactoring their applications to make use of it. Okur et al. [172]
convert concurrent code from low-level abstractions to higher-level equivalents. Other re-
search loosely in this space includes work by Khatchadourian et al. [124] on automatically
parallelizing Java 8 streams, by Dig et al. [71] to parallelize Java loops, by Wloka et al. [236]
on refactoring applications to be reentrant, by Dig et al. [70] for leveraging concurrency
APIs to transform sequential code.

As for refactorings pertaining to database-backed applications, existing work has con-
sidered refactoring database schemas to improve performance. Ambler and Sadalage [44]
catalogue database refactorings, i.e., behavior-preserving changes to a database schema
such as moving a column from one table to another. Similarly, Xie et al. [238] and Wang
et al. [230] study how application code must be updated in response to schema changes.
Rahmani et al. [179] present an approach for avoiding serializability violations in database
applications by transforming a program’s data layout. These are primarily relevant to
Chapter 5.

There are a number of non-academic tools for detecting and fixing “smells” in JavaScript
applications: ESLint [12], JSLint [20], and JSHint [2]. These are most closely related to
Chapter 4 and the anti-pattern detection, and indeed ESLint detects a few of the anti-
patterns that we specified in the tool. That said, CodeQL allows for more precise static
analyses (e.g., CodeQL supports data flow analyses, which ESLint does not), and many of
the anti-patterns discussed in Chapter 4 are detected thanks to data flow.

3.3 Program Understanding

This thesis discusses code transformations that are achieved through unsound program
analysis, and these changes are presented to developers so that they can study and care-
fully vet them before applying them. It is important that changes are understood by
programmers, which is related to the study of program understanding. In the space of
understanding asynchronous JavaScript programs, work by Alimadadi et al. [42] explores
how event-based asynchrony in JavaScript can be better understood, how asynchrony on
the entire application stack can be understood [41], and how DOM-sensitive changes affect
program understanding [40]. More broadly, there have been experiments to determine the
benefit of dynamic profile information for program comprehension tasks [62], a survey of

18

dynamic analysis techniques for program comprehension [63], and on understanding Ajax
programs by connecting client- and server-side execution traces [251].

3.4 Debloating

Chapters 6 and 7 are concerned with reducing the size of JavaScript applications, known as
software debloating. Many applications contain far more code than is required, commonly
referred to as “dead code”, and the study of debloating is the study of how to determine
and safely remove this dead code. Besides increasing application size, dead code is unde-
sirable as it increases the “attack surface” of an application, i.e., more code provides more
opportunities for an attacker to take advantage of a system.

There is a wealth of work in this space. For example, Bhattacharya et al. [55] studies
situations where functions accumulate more features than are strictly necessary, yielding
poor performance when spurious functionality is not needed. Koo et al. [127] propose
configuration-driven software debloating, where application configurations are linked with
feature-specific libraries, and libraries are only loaded when the appropriate configuration
criteria are met. This is a semi-automated process, and the code itself is not changed. Soto
et al. [198] propose an approach to automatically specialize Java dependencies according to
how they are used by the application’s test suite, and Sharif et al. [195] propose a technique
that leverages constant value configuration data to specialize applications. [37] present an
type-inference based application extractor for Self [36] which extracts a bloat-free source file
for distribution. The Jax application extractor for Java [209] relies on efficient type-based
call graph construction algorithms such as RTA [53] and XTA [210] to detect unreachable
methods, and further relies on a specification language [206] in which users specify classes
and methods that are accessed reflectively, going above-and-beyond dead code elimination
with, e.g., class hierarchy compaction [211]. Rayside and Kontogiannis [181] present a tool
for extracting subsets of Java libraries using Class Hierarchy Analysis [67] to identify the
subset of a library that is required by a specific application, though their work does not
consider unsoundness. [127] present a technique relying on manual analysis of configuration
files and profiling to obtain coverage information for executions in different configurations,
minimizing based on that coverage.

Some recent work has been concerned with debloating JavaScript applications. Mala-
volta et al. [143] propose a technique to debloat client-side JavaScript applications with
various levels of optimization; first, dead code is determined by consulting a call graph of
the application, and one of the optimization levels proposed in the work replaces dead code
with snippets to load the code lazily. Vasquez et al. [224] propose a technique that flags

19

external library functions as being potentially dead, and removes them once a programmer
confirms that they are truly unused. Mininode [126] is a tool for debloating JavaScript
applications using static analysis, and code can be removed at one of two levels of granu-
larity: “coarse”, where entire modules are removed, or “fine”, where individual functions
are removed. We discuss Mininode in more detail in Chapter 6 where it is most relevant.

In certain situations, outright removal of code is not desirable and instead developers
want to load optional functionality on-demand; this is known as code splitting. In the space
of identifying optional functionality that could be split, there is work [55] proposing an
approach relying on a combination of human input, dynamic analysis, and static analysis
to identify optional functionality. As for actually splitting the code, Doloto [138] proposes
an approach that leverages developer-supplied application traces to automatically refactor
applications to load entire “routes” lazily, only when they are needed; their approach
performs dynamic loading synchronously, which is disallowed in the modern web standard.
[129] proposed a code-splitting technique for Java that partitions classes into separate
“hot” and “cold” classes to avoid transferring code that is rarely used. [225] present an
optimistic compaction technique for Java applications, where minimized distributions are
outfitted with a custom class loader that performs partial loading and on-demand code
addition.

Developers are also interested in minimizing code size, particularly when preparing
production-level distributions of their applications. Several implementations of Smalltalk
developed in the 1990s (e.g., [174, 112]) include features for “packaging” or “delivering”
applications, and IBM’s 1997 Handbook for VisualAge for Smalltalk [112] describes a
reference-following strategy to determine minimal code for a package. Compacting code is
a related area, for example [66] present Squeeze++, a link-time code compactor for low-
level C/C++ code. Another facet of this area is specializing distributions: [195] present
TRIMMER, which specializes LLVM bytecode applications to their deployment context
using input specialization. The performance impact of using application bundles has also
been studied in the context of Java, where [110] study performance issues that arise when
bundles of JVM class files for Java applications are downloaded from a server.

3.5 Conclusion

By now, we have reviewed the vast landscape of literature and have given the background
knowledge required for understanding, broadly, the contents of this thesis. We are aiming
to show that unsound analysis of asynchronous JavaScript applications yields actionable in-

20

sights and effective optimizations, and the next four chapters present exemplar approaches
in support of this statement. The chapters are:

• Chapter 4 describes how general anti-patterns related to misuses of promises can be
detected and effectively communicated to programmers;

• Chapter 5 describes an approach for detecting and refactoring misuses of ORMs in
JavaScript applications;

• Chapter 6 describes an approach for leveraging unsound analysis to remove dead
code from applications;

• and Chapter 7 describes a situation where applications are refactored to lazily load
packages used only in the context of event handlers.

21

Chapter 4

Anti-Pattern Identification

Abstract

Promises and async/await have become popular mechanisms for implementing asynchronous computa-

tions in JavaScript, but despite their popularity, programmers have difficulty using them. In this chapter,

we identify 8 anti-patterns in promise-based JavaScript code that are prevalent across popular JavaScript

repositories. We present a light-weight static analysis for automatically detecting these anti-patterns. This

analysis is embedded in an interactive visualization tool that additionally relies on dynamic analysis to

visualize promise lifetimes and instances of anti-patterns executed at run time. By enabling the user to

navigate between promises in the visualization and the source code fragments that they originate from,

problems and optimization opportunities can be identified.

We implement this approach in a tool called DrAsync, and found 2.6K static instances of anti-patterns

in 20 popular JavaScript repositories. Upon examination of a subset of these, we found that the majority

of problematic code reported by DrAsync could be eliminated through refactoring. Further investigation

revealed that, in a few cases, the elimination of anti-patterns reduced the time needed to execute the

refactored code fragments. Moreover, DrAsync’s visualization of promise lifetimes and relationships pro-

vides additional insight into the execution behavior of asynchronous programs and helped identify further

optimization opportunities.

22

4.1 Introduction

The async/await feature [73, Section 15.8] was added to the JavaScript programming lan-
guage in 2017 to facilitate asynchronous programming with convenient syntax and error
handling. Programmers can designate a function as async to indicate that it performs an
asynchronous computation, and await-expressions may be used in these functions to await
the result of other asynchronous computations. The JavaScript community has enthusias-
tically embraced this feature, as it is less error-prone than event-driven programming and
syntactically much less cumbersome than the promises feature [73, Section 27.2] on which
it builds. However, many JavaScript programmers are still unfamiliar with asynchronous
programming, and particularly with async/await and how it interacts with promises. As a
result, they sometimes produce code creating redundant promises, or code that performs
poorly because the ordering of asynchronous computations is constrained unnecessarily
[49].

We identify 8 anti-patterns involving the use of promises and async/await that com-
monly occur in JavaScript programs. These anti-patterns reflect designs that are likely to
be suboptimal because they may create promises unnecessarily, perform synchronization
that is redundant, or cause code to become needlessly complicated. Examples of these anti-
patterns include redundant uses of await, the use of await in loops over arrays, and explicit
creation of new promises where none are needed. In many cases, these anti-patterns can
be refactored into code that is more concise or more efficient.

We developed a lightweight static analysis to detect these anti-patterns directly in
source code, and implemented this analysis as a set of CodeQL queries [51, 5]. Fur-
thermore, to help programmers understand the run-time impact of the anti-patterns, we
developed DrAsync, a profiling tool that visualizes the lifetime of the promises created
by an application, and that highlights the run-time instances of each anti-pattern. This
enables programmers to focus their attention on anti-patterns in frequently-executed code
and provides valuable insights into where performance bottlenecks occur.

In an experimental evaluation, DrAsync’s static analysis detected 2.6K instances of
anti-patterns in 20 JavaScript applications, and DrAsync’s dynamic analysis determined
that, in the aggregate, these anti-patterns were executed 24K times by the application test
suites. To evaluate whether the detected anti-patterns represent actionable findings, we
selected 10 instances of each anti-pattern randomly and attempted to manually refactor
them to eliminate the anti-pattern. We were able to successfully refactor 65 of these 80
instances, and determined that, in certain cases, these refactorings can have measurable
impact on the number of promises created by an application, or the time needed the execute
affected code fragments.

23

In summary, this chapter contains:

• the definition of 8 anti-patterns that commonly occur in asynchronous JavaScript
code;

• DrAsync, a tool that relies on static and dynamic program analysis to detect anti-
patterns and visualize promises and occurrences of anti-patterns during program
execution, enabling programmers to quickly identify quality issues and performance
bottlenecks;

• an empirical study of 20 JavaScript applications in which DrAsync is used to identify
2.6K anti-patterns which are executed 24K times, confirming that they are pervasive;
and

• a case study that investigates whether 10 randomly chosen instances of each anti-
pattern can be refactored, providing evidence that the majority of anti-patterns re-
ported by DrAsync can be eliminated through refactoring. Further analysis of these
results suggests that, under certain conditions, eliminating anti-patterns may improve
performance.

The remainder of this chapter is organized as follows: § 4.2 points readers to relevant
background discussed in Chapter 2, § 4.3 showcases many pitfalls related to using promises
in JavaScript, § 4.4 formally describes the anti-patterns, § 4.5 describes the static analyses,
dynamic profiler, and visualization that make up the DrAsync tool, § 4.6 describes selected
case studies in refactoring issues, § 4.7 presents an evaluation of the tool, § 4.8 discusses
threats to validity of this work, § 4.9 positions this work in the context of the literature,
§ 4.10 concludes and § 4.11 presents a short retrospective of this work, and puts it into
context with respect to the other work in this thesis.

4.2 Promises and async/await

This chapter describes anti-patterns related to misuse of promises and async/await. Please
refer to Section 2.2.3 for relevant background on JavaScript promises.

4.3 Motivating Examples

Asynchronous programming is rife with pitfalls. As a first example, consider SAP’s
ui5-builder project, which provides modules for building UI5 projects. ui5-builder’s file

24

https://github.com/SAP/ui5-builder

ResourcePool.js contains the following function, which DrAsync flagged as an instance of
the promiseResolveThen anti-pattern that will be presented in Section 4.4:

67 async getModuleInfo(name) {

68 let info = this._dependencyInfos.get(name);

69 if (info == null) {

70 info = Promise.resolve (). then(async () => {

71 const resource = await this.findResource(name);

72 return determineDependencyInfo(resource , ...);

73 });

74 this._dependencyInfos.set(name , info);

75 }

76 return info;

77 }

On line 70, Promise.resolve() is invoked to create a promise that is fulfilled immediately
with the value undefined1. On the same line, an async function is registered as a fulfill
reaction on this promise, so this reaction is asynchronously invoked with undefined as an
argument. This means that 3 promises are created when the reaction executes: (i) the
promise created by Promise.resolve, (ii) the promise created by the invocation of then,
and (iii) the promise created by the invocation of the async function. This is manifested
in DrAsync’s visualization as an extremely short-lived promise linked two other, longer-
running promises (see Figure 4.1).

In this case, the code can be refactored as such:

78 async getModuleInfo(name) {

79 let info = this._dependencyInfos.get(name);

80 if (info == null) {

81 info = (async () => {

82 const resource = await this.findResource(name);

83 return determineDependencyInfo(resource , ...);

84 })();

85 this._dependencyInfos.set(name , info);

86 }

87 return info;

88 }

Now, only one promise is created (on line 81, by invoking the async function). This
code is executed 204 times in ui5-builder’s test suite, and 2 fewer promises are executed
each time. Besides being more efficient, the code is more concise, and easier to understand.

As another example, consider appcenter-cli, developed by Microsoft, which imple-
ments the Command Line Interface (CLI) for the Visual Studio Code (VSCode) Interactive
Development Environment (IDE). Function cpDir, defined on lines 89-94 in src/util/misc/

promisified-fs.ts, implements the copying of a directory:

1Since no argument is passed in the call to Promise.resolve, the value undefined is used by default.

25

https://github.com/microsoft/appcenter-cli

Figure 4.1: An example of the promiseResolveThen anti-pattern found in getModuleInfo. The user
selected one of the promises in a promise chain originating from an empty Promise.resolve(), identified
by Label A, and the reaction’s promise is shown with Label B, and finally the promise belonging to the
async function is shown with Label C.

89 async function cpDir(source , target) {

90 // details omitted

91 const files = await readdir(source);

92 for (let i = 0; i < files.length; i++) {

93 const sourceEntry = path.join(source , files[i]);

94 const targetEntry = path.join(target , files[i]);

95 await cp(sourceEntry , targetEntry);

96 }

97 }

This code reads the source directory source on line 91 and then iterates over the resulting
list of file names. In each iteration of the loop, a call to function cp is await-ed, which
copies a file from sourceEntry to targetEntry. Here, cp returns a promise that is fulfilled
once sourceEntry is successfully copied to targetEntry, or rejected if an error occurs. It is
important to note that this use of await in a loop causes the execution of function cpDir to
be paused until the promise returned by cp is fulfilled, and execution will pass back to the
main event loop at this time so that other event handlers can be executed in the meantime.
This is manifest in DrAsync’s visualization by a “staircase” pattern of promises that have
lifetimes that do not overlap (see Figure 4.2).

In this case, the copying of file-entries need not be sequential, and we can refactor the
above code as follows:

98 async function cpDir(source , target) {

99 // details omitted

100 const files = await readdir(source);

101 await Promise.all(files.map(file => {

102 const sourceEntry = path.join(source , file);

103 const targetEntry = path.join(target , file);

104 return cp(sourceEntry , targetEntry);

105 }));

106 }

26

Figure 4.2: An example of the loopOverArrayWithAwait anti-pattern in the visualization, from a view de-
picting an overview of all promises. Each loop iteration is clearly separated, with no overlapping promises.

Here, we turn the for-loop into a map over the files array, mapping a function that
returns the promise associated with cp. We then await the entire array of promises with
Promise.all (line 101), which will wait for all these promises to resolve. This refactoring
preserves the behavior of appcenter-cli ’s tests, and enables additional concurrency because,
although JavaScript is single-threaded at the language level, it relies on I/O libraries that
can execute concurrently [49]. We will report in Section 4.7 how the refactoring significantly
improves the performance of the loop.

These anti-patterns are detected using a simple static analysis. Our DrAsync tool
additionally relies on dynamic analysis to determine how often each instance of an anti-
pattern is executed, and helps programmers prioritize which code should be fixed. For
instance, we found many instances of the “await-in-loop” pattern in appcenter-cli, but
the highlighted cpDir example was by far the most frequently executed while running the
application’s tests.

4.4 Anti-Patterns

This section defines a set of anti-patterns that occur frequently in asynchronous JavaScript
applications. We identified most of these through manually inspecting JavaScript source
code2, and inspecting visual profiles produced by DrAsync for noteworthy patterns (e.g.,
repetitive structures or promises that are very short-lived). In addition, a search for issues
related to promises and async/await on the popular stackoverflow forum turned up the
explicitPromiseConstructor 3 and customPromisification 4 anti-patterns.

2Section 4.7.1 provides further detail on the process for selecting subject applications.
3https://stackoverflow.com/questions/23803743
4https://www.grouparoo.com/blog/promisifying-node-functions

27

asyncFunctionNoAwait = { f | f async ∧ (∃e0, e1 : e0 = await e1 ⇒ e0 ̸ ◁f) }
asyncFunctionAwaitedReturn = { f | f async ∧ (∃e0, e1 : e0 = return e1 ∧ e0◁f) ⇒ ∃e2 : e1 = await e2 }

loopOverArrayWithAwait = {s0 | ∃e0, e1, e2, e3, s1 : s0 = for(e0, e1, e2){s1} ∧ isArrayTest(e1) ∧ await e3◁s1 }
promiseResolveThen = {e0 | ∃e1, f : e0 = Promise.resolve(e1).then(f) }
executorOneArgUsed = {e0 | e0 = ∃f, v0, v1 : new Promise(f) ∧ v0 = arg(f, 0) ∧ v1 = arg(f, 1) ∧

(∃e1, e2 : e1, e2◁f ∧ e1, e2 ∈ {v0, v1} ⇒ e1 = e2)}
reactionReturnsPromise = {e0 | ∃e1, e2, f : e0 = e1.then(f) ∧ return e2◁f ∧

(e2 = Promise.resolve(· · ·) ∨ e2 = Promise.reject(· · ·)) }
customPromisification = {e0 | ∃f0, f1, f2, s0, s1, v0, v1 : e0 = new Promise(f0) ∧ f1(..., f2)◁f0 ∧

if (· · ·) {s0} else {s1}◁f2 ∧ v0 = arg(f0, 0) ∧ v1 = arg(f0, 1) ∧
((v0◁s0 ∧ v1◁s1) ∨ (v0◁s1 ∧ v1◁s0)) }

explicitPromiseConstructor = {e0 | ∃e1, f0, f1, f2, v0, v1, v2, v3 : e0 = new Promise(f0) ∧ e1.then(f1).catch(f2)◁f0∧
v0 = arg(f0, 0) ∧ v1 = arg(f0, 1) ∧ v2 = arg(f1, 0) ∧ v0(v2)◁f1 ∧
v3 = arg(f2, 0) ∧ v1(v3)◁f2 }

Figure 4.3: Anti-patterns that commonly occur in asynchronous JavaScript code.

It is important to note that an occurrence of one of these anti-patterns is not necessarily
a reflection that a design is “wrong” or “inefficient”, but it indicates that it is likely that
the code can be improved to make it more efficient by creating fewer promises or enabling
additional parallelism, or to make it more concise. Section 4.6 presents a case study that
investigates, for a representative subset of instances of these anti-patterns, how often we
were able to refactor them manually. Section 4.7 presents an empirical evaluation that
reports on the prevalence of each of the anti-patterns.

Figure 4.3 defines each anti-pattern as a set of AST nodes that meet some specified
criteria. In the figure, we use f to represent functions (including arrow functions and class
methods), e to represent expressions, and s to represent statements. Subscripts are used in
cases where a predicate refers to multiple program elements of the same kind. Furthermore,
f async denotes that f is an async function, and e◁f (read as: “f contains expression e”)
indicates that f is the innermost function declaration or function expression such that e
syntactically occurs within the body of function f .

asyncFunctionNoAwait. This anti-pattern is defined as any function f such that: (i) f is
an async function and (ii) for any expression e0 = await e1, e0 does not occur in the body
of f . In other words, the pattern identifies async functions that do not contain any await

expressions. As we will discuss in Section 4.6, such functions can often be refactored into
functions that are not async, to avoid the creation of a promise each time the function is
executed. Note that the scope of this refactoring may expand beyond f itself: functions
calling f may no longer need to await the result of the call f .

28

asyncFunctionAwaitedReturn. This anti-pattern is defined as any function f such that:
(i) f is an async function and (ii) any return-expression in f is an await-expression. In
such cases, the use of await is redundant, because the value v that the await-expression
evaluates to is immediately used to settle the promise created by the async function (which
itself would need to be awaited—it is more efficient to return the promise as it will become
linked with the promise created by the async function).

loopOverArrayWithAwait. This anti-pattern covers for-loops like for(e0, e1, e2){s1} where
(i) the condition e1 tests that the loop iterates over an array by checking that it refers to
the Array.prototype.length property (using auxiliary function isArrayTest), and (ii) the
body s1 of the loop contains at least one await-expression. This situation is well-known in
the JavaScript community as being needlessly inefficient in situations where the iterations
of the loop are independent of one another, and the ESLint checker [12] has a rule for
detecting it. As we will discuss in Section 4.6, in many cases, such loops can be refactored
to use Promise.all and Array.prototype.forEach to enable additional parallelism.

promiseResolveThen. An expression e0 = Promise.resolve(e1) .then(f) is constructed,
i.e., a new promise is constructed on which a fulfill-reaction is registered immediately. Note
that entire expression e0 may form the beginning of a longer chain of promises. In such
cases, it is often possible to shorten the length of the promise-chain by refactoring e0,
e.g., to Promise.resolve(f(e1)}, to reduce the number of created promises. Section 4.3
discussed a slightly more complex instance of this anti-pattern.

executorOneArgUsed. This anti-pattern targets expressions of the form new Promise(f)
where a promise is constructed using an executor function f that has formal parameters
v0 and v1 (usually the parameters of executor functions are called resolve and reject

but programmers may choose different names). Furthermore, an additional constraint is
imposed that if the body of f contains expressions e1 and e2 that refer to v0 or v1, then they
must both refer to the same variable. In other words, the anti-pattern targets executor
functions that either resolve or reject the promise, but not both. In such cases, it may be
possible to refactor the code to use Promise.resolve or Promise.reject instead.

reactionReturnsPromise. In this scenario, a reaction f that is registered on a promise in
an expression of the form e1.then(f) returns an expression e2 that consists of either a call
to Promise.resolve or a call to Promise.reject. In such cases, it is often possible to avoid

29

the explicit construction of a promise because the reaction already creates a promise that
is fulfilled or rejected with the reaction’s return value.

customPromisification. This anti-pattern aims to detect situations where a programmer
has written a custom function for promisifying an event-based API call. It targets ex-
pressions of the form new Promise(f0) where the Promise constructor is invoked with an
executor function that contains a call f1(..., f2), that passes a callback function f2 to some
API function f1. Moreover, f2 contains a statement if (· · ·) {s0} else {s1}, where either
s1 calls the function passed as the first parameter to the executor (usually called resolve)
and s2 calls the function passed as the second parameter to the executor (usually called
reject), or vice versa. In such cases, it is often possible to utilize the util.promisify promisi-
fication function instead. While this does not reduce the number of promises created, it
avoids the pitfalls of accidentally introducing bugs when re-implementing functionality that
is available in standard libraries.

explicitPromiseConstructor. This anti-pattern occurs when a new promise is constructed
that is fulfilled when some existing promise is fulfilled, and that is rejected when that
promise is rejected. Concretely, we say that an instance of this pattern occurs when the
promise constructor is invoked with an executor function f0 that has parameters v0 and
v1. In addition, the body of f0 contains an expression e1.then(f1).catch(f2), where f1 has
a parameter v2 and f2 has a parameter v3. Lastly, f1 is required to contain a call v0(v2)
and f2 is required to contain a call v1(v3). Occurrences of this anti-pattern can often be
refactored to avoid the creation of a new promise, e.g., by returning the promise e1.

4.5 Implementation

DrAsync consists of three components: (i) a static analysis for detecting anti-patterns, (ii)
a dynamic analysis for gathering information about the lifetimes of promises and detecting
run-time instances of anti-patterns, and (iii) an interactive profiling tool that visualizes the
lifetimes of promises and instances of anti-patterns, and that provides additional features
for understanding execution behavior. Our code is open-source and publicly available 5.

5Artifact link: https://doi.org/10.5281/zenodo.5915257

30

4.5.1 Static Analysis

The static analysis uses CodeQL [51, 5] to implement the anti-patterns of Figure 4.3 as a
set of QL queries. These queries follow the logic of the definition closely. For example, the
query that is used to find the promiseResolveThen anti-pattern looks as follows:

107 predicate promiseDotResolveDotThen(MethodCallExpr c) {

108 c.getMethodName () = "then" and

109 c.getReceiver () instanceof MethodCallExpr and

110 ((MethodCallExpr) c.getReceiver ()). getMethodName () = "resolve"

111 }

In two cases, we extended the queries with special handling of corner cases. Our imple-
mentation of executorOneArgUsed was extended to exclude cases where calls to resolve are
passed as an argument to setTimeout as we found that such occurrences of the anti-pattern
are generally not amenable to refactoring. We also extended loopOverArrayWithAwait to
handle for-of and for-in loops.

4.5.2 Dynamic Analysis

DrAsync relies on the Node.js Async hooks API [3] to instrument source code to log the
creation and settlement of promises, to record when await-expressions are first encountered
and when their execution is resumed, and to determine run-time instances of anti-patterns.
The instrumentation distinguishes different run-time instances of promises that are created
at the same location (e.g., promises created during multiple executions of the same promise
constructor or of the same async function), enabling us to calculate how often each anti-
pattern is executed.

Furthermore, information is recorded about dependencies between promises: the Async
hooks API provides a unique asyncId for each promise, as well as a triggerAsyncId, which is
the asyncId of the promise that triggered it (i.e., the promise that it depends on). Moreover,
the dynamic analysis determines whether promises are related to I/O operations through
simple heuristics (if a promise originates from a function from a predefined list of I/O
functions from the util Node.js library), and whether they originate from user code or
from library code. This information is used in the interactive visualization to enable
programmers to filter promises based on their origin, and quickly hone-in on relevant
promises.

The results of the static analysis and a dynamic analysis are aggregated into a single
trace file that is used in DrAsync’s interactive visualization component.

31

Figure 4.4: The interactive visualization displays the run-times of each promise as well as visually summa-
rizes the data capture by DrAsync. Users can filter particular promises and directly investigate the source
code for more details on demand.

4.5.3 Interactive Visualization

The visualization helps with exploring the execution behavior of asynchronous JavaScript
code and enables one to identify certain anti-patterns visually. The visualization also
shows the number of runtime occurrences for each instance of an anti-pattern, enabling
programmers to prioritize those anti-pattern instances that may impact execution behavior
the most.

DrAsync’s interactive visualization tool was developed using the P5.js framework [148].
Figure 4.4 shows a screenshot of a visualization produced by DrAsync, which follows the
standard information taxonomy by providing: a high level overview, filters, and details on
demand [197]. We briefly discuss DrAsync’s different views.

Promise Lifetime View and Source Code View. This view (labeled A○ in the figure)
is organized as a Gantt Chart [106]. Here the x-axis represents time, and the y-axis shows
the created promises as a series of stacked bars, so each promise is represented by one line
that starts at the time when the promise was created, and that ends when it was settled.
Users can pan and zoom through the promise lifetime view, and hovering on a promise
shows a fragment of the source code responsible for creating the promise, along with some

32

Table 4.1: Summary of Case Study
Anti-Pattern # Successful # Unsuccessful

asyncFunctionNoAwait 9 1
asyncFunctionAwaitedReturn 9 1
loopOverArrayWithAwait 7 3

promiseResolveThen 9 1
executorOneArgUsed 6 4

reactionReturnsPromise 9 1
customPromisification 9 1

explicitPromiseConstructor 7 3

meta-information. Furthermore, clicking on one of the promises opens the associated source
code in tab B○ for further inspection.

Mini Display View. This view (green bars in the view labeled C○ at the bottom of the
figure) shows the general ’shape’ of the promises created during execution; clicking here
enables the user to quickly navigate to areas of interest in the promise lifetime view (e.g.,
staircase patterns corresponding to instances of loopOverArrayWithAwait that may benefit
from refactoring).

Metrics View. This view, labeled D○, summarizes metrics: how many promises were
created, the total elapsed time, the average duration of promises, and counts for detected
anti-patterns. These can be compared before and after refactoring to see if redundant
promises have been eliminated, or if performance has changed.

Summary View and Filters. This view, labeled E○, shows of all promises and anti-
pattern instances; clicking on these will navigate to the associated promise in the promise
lifetime view, and will display the associated source code. For realistic applications, the
number of promises created at run-time can quickly become overwhelming, so DrAsync
provides various filtering facilities to focus on promises of interest. In particular, users can
focus on those promises that are related to file I/O or network I/O (see view labeled F○),
or on promises whose creation site matches a specified text string (see view labeled G)○).

4.6 Case Study

To evaluate if the anti-patterns reported by DrAsync represent useful information, we ran-
domly selected 10 instances of each anti-pattern and attempted to refactor them manually.

33

These 10 instances were chosen from the 20 subject applications that we will report fur-
ther on in Section 4.7. To ensure that our findings are not biased towards a particular
programming style, no more than three instances of each pattern were chosen from a single
application, and we only selected anti-pattern instances that DrAsync reported as being
executed by the application’s test suite, so that we could check that the refactoring did
not cause behavioral changes.

An overview of our findings can be found in Table 4.1. Below we report on some
noteworthy situations that we encountered. Many refactorings were simple and quick,
though others took more considerable time (e.g., some loop refactorings took ¿15 minutes
in order to understand possible data dependencies). Further details for all 80 cases can be
found in Appendix A.

asyncFunctionAwaitedReturn. As discussed in Section 4.4, this anti-pattern reflects in-
efficient code as it involves waiting for a promise to settle with some value v, and then
creating a new promise that is settled with the same value. The following function in
file /src/utils/readSpec.ts in openapi-typescript-codegen was flagged by DrAsync as an
instance of this anti-pattern:

112 export async function readSpec(input: string): Promise <string > {

113 if (input.startsWith(’https ://’)) {

114 return /* await*/ readSpecFromHttps(input);

115 }

116 if (input.startsWith(’http ://’)) {

117 return await readSpecFromHttp(input); // not executed

118 }

119 return /* await*/ readSpecFromDisk(input);

120 }

Here, await is redundantly used on each of the return paths and DrAsync informed us
that the first and third of these await-expressions were executed by the test suite. We
confirmed that the tests still passed after removing the await keywords.

loopOverArrayWithAwait. Section 4.3 already discussed an instance of this anti-pattern
in appcenter-cli that we were able to refactor successfully. However, some of the instances
reported by DrAsync could not be refactored, such as the the following code snippet on
lines 159–162 in file /src/TemplateLayout.js in eleventy :

121 for (let fn of fns) {

122 templateContent = await fn(data);

123 data = TemplateLayout

124 .augmentDataWithContent(data , templateContent);

125 }

34

Here, each loop iteration awaits the result of the call to fn(data) and then re-assigns data

on the next line. Since each loop iteration depends on a value computed in the previous
iteration, we are unable to parallellize the loop using Promise.all.

executorOneArgUsed. An interesting case of this anti-pattern occurs on lines 39-56 in
src/streaming/utils/CapabilitiesFilter.js in dash.js :

126 return new Promise ((resolve) => {

127 const promises = // details omitted

128 Promise.all(promises)

129 .then (() => { /* details omitted */ resolve (); })

130 .catch (() => { resolve (); });

131 });

Here, a new promise is created that is fulfilled (with the value undefined since no argument
is passed to resolve) in reactions on a promise that is created by a call to Promise.all. The
creation of a new promise can be avoided by refactoring the above code to:

132 const promises = // details omitted

133 return Promise.all(promises)

134 .then (() => { /* details omitted */ return; })

135 .catch (() => { return; });

After this refactoring, it is evident that the resulting code lacks proper error handling,
given that catch is used to register a no-op function to “absorb” errors that cause the
previous reaction in the promise chain to be rejected.

customPromisification For this anti-pattern, we found that we could successfully refactor
9 of 10 instances highlighted by the tool using the util.promisify library function. The
remaining case involved the use of an event handler with complex control flow.

In all but one of the successful cases, using promisify and refactoring the inner logic of
the callback into a reaction on a call to the promisified function was sufficient. For a more
interesting case, consider:

136 return async function (data) {

137 /* return new Promise(function (resolve , reject) {

138 tmpl.render(data , function (err , res) {

139 if (err) {

140 reject(err);

141 } else {

142 resolve(res);

143 }

144 });

145 }); */

146 const tmplRenderProm = util.promisify(tmpl.render);

147 return tmplRenderProm.call(tmpl , data);

148 };

35

This snippet is from lines 467-475 in eleventy’s file src/Engines/Nunjucks.js. Here,
tmplRenderProm must be invoked with Function.prototype. call to preserve the correct value
for this during its execution.

reactionReturnsPromise For this anti-pattern, 9 of the 10 cases we examined could be
refactored; the one unsuccessful case involved a promise reaction with complex event-
handlers, where the returned promise was fulfilled or rejected in response to external events.

For an example of a successful refactoring, consider this snippet from netlify-cms,
lines 428-433 of packages/netlify-cms- core/src/backend.ts:

149 const publishedEntry = await this.implementation

150 .getEntry(path)

151 .then (({ data }) => data)

152 .catch (() => {

153 // return Promise.resolve(false);

154 return false;

155 });

Here, .catch and .then return promises anyway, so explicitly returning a promise that is
immediately fulfilled or rejected is needless.

4.7 Evaluation

This evaluation aims to answer the following research questions:

RQ1: How often do the anti-patterns of Figure 4.3 occur in practice?

RQ2: How often can anti-patterns reported by DrAsync be eliminated using refactoring?

RQ3: Can the elimination of anti-patterns improve performance?

RQ4: What is the performance of DrAsync?

4.7.1 Experimental Setup

To identify a set of candidate projects, we first ran a CodeQL query (on a large set of
JavaScript GitHub repositories available to the CodeQL team) to find projects containing

36

Table 4.2: Subject Applications

Anti-Patterns
Project (links to repos @ SHA) SHA KLOC # / KLOC # Files # Funs Tests

appcenter-cli 2109d1 96 73 0.76 2645 8406 434
Boostnote 58c4a7 32 29 0.92 276 4572 81

browsertime 648e16 223 134 0.60 197 17557 13
CodeceptJS 68ad16 19 398 21.5 180 3583 34
dash.js 996e21 20 70 3.5 123 3598 18
eleventy 6776e8 53 65 1.2 358 5532 1070
erpjs 5ddcb7 30 139 4.6 295 4509 973

fastify aee28e 136 2 0.01 108 20461 54
flowcrypt-browser bc0d348 41 296 7.1 240 7119 5394

media-stream-library-js 4dd02a 37 184 5.0 117 4754 154
mercurius 97ee14 60 22 0.37 220 4969 959

netlify-cms 071b05 12 77 6.6 118 4009 73
openapi-typescript-codegen 715ddc 34 9 0.27 180 4529 1092

rmrk-tools 64c8cf 36 334 9.2 301 7916 247
stencil 0c2e95 193 265 1.4 326 45025 1619
strapi 1fe4b5e 80 198 2.5 292 4875 982

treeherder b70d3b 37 50 1.4 154 4004 300
ui5-builder 7490fb 44 77 1.8 216 4802 741

vscode-js-debug 2af8cb 78 150 1.9 300 11496 186
vuepress f077f7 14 19 1.3 276 7736 104

Table 4.3: Run Times

QLDB Test Time (Before/After) Overhead of
Project Build Time (s) Mean StDev Mean StDev Instrumentation

appcenter-cli 126.172 31.45 1.05 34.29 0.86 9.03%
Boostnote 40.069 41.50 0.80 43.59 2.23 5.03%

browsertime 29.61 0.55 0.01 0.66 0.01 20.59%
CodeceptJS 57.448 2.83 0.02 3.16 0.02 11.62%
dash.js 59.681 4.12 0.16 5.77 0.26 39.79%
eleventy 34.446 21.62 0.27 50.93 0.36 135.6%
erpjs 106.687 19.0 0.23 21.15 0.27 11.37%

fastify 42.472 118.58 0.67 127.43 1.02 7.47%
flowcrypt-browser 1064.285 1.77 0.03 2.27 0.05 1.28%

media-stream-library-js 63.543 122.88 0.85 131.52 1.36 7.03%
mercurius 42.099 55.17 0.51 65.44 0.65 18.62%

netlify-cms 94.35 504.42 2.30 605.48 1.69 20.04%
openapi-typescript-codegen 45.618 45.56 0.62 56.10 0.57 23.04%

rmrk-tools 326.839 38.01 0.32 41.42 0.39 8.97%
stencil 823.68 453.33 1.67 484.40 5.89 6.85%
strapi 77.734 164.89 0.95 195.13 2.06 18.33%

treeherder 43.12 209.79 1.06 229.93 2.60 9.60%
ui5-builder 44.462 31.82 0.23 69.14 0.49 117.31%

vscode-js-debug 127.798 1.39 0.02 2.31 0.06 65.48%
vuepress 81.301 6.97 0.20 22.64 0.96 224.79%

37

https://github.com/microsoft/appcenter-cli/commit/2109d1
https://github.com/BoostIO/BoostNote-Legacy/commit/58c4a7
https://github.com/sitespeedio/browsertime/commit/648e16
https://github.com/codeceptjs/CodeceptJS/commit/68ad16
https://github.com/Dash-Industry-Forum/dash.js/commit/996e21
https://github.com/11ty/eleventy/commit/6776e8
https://github.com/iDempiere-micro/erpjs/commit/5ddcb7
https://github.com/fastify/fastify/commit/aee28e
https://github.com/FlowCrypt/flowcrypt-browser/commit/bc0d348
https://github.com/AxisCommunications/media-stream-library-js/commit/4dd02a
https://github.com/mercurius-js/mercurius/commit/97ee14
https://github.com/netlify/netlify-cms/commit/071b05
https://github.com/ferdikoomen/openapi-typescript-codegen/commit/715ddc
https://github.com/rmrk-team/rmrk-tools/commit/64c8cf
https://github.com/ionic-team/stencil/commit/0c2e95
https://github.com/strapi/strapi/commit/1fe4b5e
https://github.com/mozilla/treeherder/commit/b70d3b
https://github.com/SAP/ui5-builder/commit/7490fb
https://github.com/microsoft/vscode-js-debug/commit/2af8cb
https://github.com/vuejs/vuepress/commit/f077f7
https://github.com/microsoft/appcenter-cli/commit/2109d1
https://github.com/BoostIO/BoostNote-Legacy/commit/58c4a7
https://github.com/sitespeedio/browsertime/commit/648e16
https://github.com/codeceptjs/CodeceptJS/commit/68ad16
https://github.com/Dash-Industry-Forum/dash.js/commit/996e21
https://github.com/11ty/eleventy/commit/6776e8
https://github.com/iDempiere-micro/erpjs/commit/5ddcb7
https://github.com/fastify/fastify/commit/aee28e
https://github.com/FlowCrypt/flowcrypt-browser/commit/bc0d348
https://github.com/AxisCommunications/media-stream-library-js/commit/4dd02a
https://github.com/mercurius-js/mercurius/commit/97ee14
https://github.com/netlify/netlify-cms/commit/071b05
https://github.com/ferdikoomen/openapi-typescript-codegen/commit/715ddc
https://github.com/rmrk-team/rmrk-tools/commit/64c8cf
https://github.com/ionic-team/stencil/commit/0c2e95
https://github.com/strapi/strapi/commit/1fe4b5e
https://github.com/mozilla/treeherder/commit/b70d3b
https://github.com/SAP/ui5-builder/commit/7490fb
https://github.com/microsoft/vscode-js-debug/commit/2af8cb
https://github.com/vuejs/vuepress/commit/f077f7

Table 4.4: Anti-pattern stats. Legend: P1 = asyncFunctionNoAwait, P2 = loopOverArrayWithAwait, P3
= asyncFunctionAwaitedReturn, P4 = explicitPromiseConstructor. ”S” stands for static occurrences; ”E”
stands for static occurrences that are dynamically executed ; ”D” stands for the total number of runtime
promises associated with this anti-pattern.

Project
P1 P2 P3 P4

S (E) D S (E) D S (E) D S (E) D

appcenter-cli 23 (1) 42 11 (0) 0 18 (0) 0 1 (0) 0
Boostnote 1 (0) 0 0 (0) 0 0 (0) 0 3 (3) 6

browsertime 105 (1) 3 21 (1) 47 0 (0) 0 1 (0) 0
CodeceptJS 357 (3) 39 33 (0) 0 1 (0) 0 0 (0) 0
dash.js 0 (0) 0 0 (0) 0 0 (0) 0 23 (8) 224
eleventy 39 (24) 4416 10 (10) 884 9 (7) 1271 0 (0) 0
erpjs 40 (0) 0 12 (0) 0 66 (1) 36 0 (0) 0

fastify 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0
flowcrypt-browser 79 (0) 0 50 (0) 0 150 (0) 0 2 (0) 0

media-stream-library-js 56 (0) 0 3 (0) 0 121 (1) 1 0 (0) 0
mercurius 14 (3) 72 4 (3) 322 0 (0) 0 0 (0) 0

netlify-cms 45 (3) 1261 8 (0) 0 5 (0) 0 0 (0) 0
openapi-typescript-codegen 2 (1) 2 3 (0) 0 2 (2) 28 0 (0) 0

rmrk-tools 241 (0) 0 43 (0) 0 18 (0) 0 0 (0) 0
stencil 123 (1) 74 33 (3) 217 20 (2) 35 1 (0) 0
strapi 81 (5) 179 45 (6) 100 26 (0) 0 4 (0) 0

treeherder 43 (7) 211 2 (2) 10 0 (0) 0 0 (0) 0
ui5-builder 51 (25) 1510 5 (3) 373 1 (1) 23 2 (2) 69

vscode-js-debug 94 (2) 84 7 (0) 0 20 (3) 749 1 (0) 0
vuepress 7 (0) 0 3 (2) 3448 1 (1) 1910 1 (0) 0
Summary 1401 (76) 7893 293 (30) 5401 458 (18) 4053 39 (13) 299

promise-related features6. Of the ¿100K projects that this turned up, we used the npm-
filter [50] tool to discard projects that did not have running test suites, resulting in 450
projects with at least one running test command. Of those projects, we randomly selected
20 projects meeting the following criteria: the project (i) was edited in the last year, (ii)
had over 20 stars, (iii) contained over 20 instances of promise-related features, and (iv)
running the application’s test suite results in the creation of at least 40 promises.

All experiments were performed on a CentOS Linux 7.8.2003 (Core) server, with 2x
32-core 2.35GHz processors, and 128GB RAM.

4.7.2 RQ1: How often do anti-patterns occur?

After discounting anti-patterns occurring in test code, compiled TypeScript, and distri-
butions, we found 2.6k anti-patterns instances in the 20 projects selected for evaluation.

6This includes: references to the Promise constructor, references to Promise.resolve,
Promise.reject, Promise.all, Promise.race, and Promise.any, references to methods with names
then or catch, async functions, and await expressions.

38

Table 4.5: Anti-pattern stats. Legend: P4 = explicitPromiseConstructor, P5 = customPromisification, P6
= promiseResolveThen, P7 = reactionReturnsPromise, P8 = executorOneArgUsed. ”S” stands for static
occurrences; ”E” stands for static occurrences that are dynamically executed ; ”D” stands for the total
number of runtime promises associated with this anti-pattern.

Project
P5 P6 P7 P8

S (E) D S (E) D S (E) D S (E) D

appcenter-cli 14 (3) 446 1 (0) 0 4 (1) 4 1 (0) 0
Boostnote 9 (5) 18 5 (2) 7 5 (0) 0 6 (1) 1

browsertime 1 (0) 0 2 (0) 0 0 (0) 0 4 (0) 0
CodeceptJS 1 (0) 0 3 (3) 1125 0 (0) 0 3 (0) 0
dash.js 2 (2) 55 0 (0) 0 27 (0) 0 18 (10) 188
eleventy 1 (1) 244 0 (0) 0 5 (4) 31 1 (1) 6
erpjs 14 (0) 0 6 (0) 0 0 (0) 0 1 (0) 0

fastify 0 (0) 0 0 (0) 0 0 (0) 0 2 (2) 25
flowcrypt-browser 3 (0) 0 0 (0) 0 0 (0) 0 12 (0) 0

media-stream-library-js 2 (0) 0 0 (0) 0 0 (0) 0 2 (1) 2
mercurius 3 (3) 409 1 (1) 10 0 (0) 0 0 (0) 0

netlify-cms 0 (0) 0 4 (1) 10 10 (2) 14 5 (1) 2286
openapi-typescript-codegen 1 (0) 0 0 (0) 0 0 (0) 0 1 (1) 4

rmrk-tools 8 (0) 0 2 (0) 0 0 (0) 0 22 (0) 0
stencil 17 (1) 3 21 (0) 0 1 (0) 0 49 (0) 0
strapi 19 (0) 0 8 (1) 20 12 (5) 5 3 (0) 0

treeherder 2 (0) 0 0 (0) 0 3 (3) 61 0 (0) 0
ui5-builder 5 (2) 56 5 (5) 896 2 (2) 310 6 (2) 50

vscode-js-debug 4 (0) 0 0 (0) 0 2 (0) 0 22 (2) 42
vuepress 0 (0) 0 5 (0) 0 1 (0) 0 1 (0) 0
Summary 106 (17) 1231 63 (13) 2068 72 (17) 425 159 (21) 2604

39

Moreover, DrAsync’s dynamic analysis detected that a total of 24K instances of these
anti-patterns were executed by the applications’ test suites. These results are tabulated
in Table 4.4, and provide strong evidence that anti-patterns commonly occur. The first
cells of the table read: appcenter-cli has 23 instances of the asyncFunctionNoAwait pat-
tern in its code (S), 1 instance is executed in the tests (E), and 42 runtime promises are
associated with this anti-pattern (D).

Anti-patterns commonly occur in asynchronous JavaScript code. We found a total of 2.6K
anti-patterns in 20 subject applications.

4.7.3 RQ2: Can detected anti-patterns be refactored?

Section 4.6 summarized findings of a case study wherein we tried to refactor 80 instances of
anti-patterns flagged by DrAsync. Of these 80 cases, we were able to successfully refactor
65. For the 15 that we were unable to refactor, not all are necessarily false positive,
because developers with more expert knowledge may have additional insights enabling
them to refactor the code. Each of the refactorings is reported on in Appendix A.

A case study involving 80 anti-patterns in real-world code suggests that the majority of
anti-patterns detected by DrAsync can be eliminated through refactoring.

4.7.4 RQ3: Can the elimination of anti-patterns improve perfor-
mance?

Generally speaking, we would expect the elimination of an anti-pattern to impact perfor-
mance only in significant ways if the anti-pattern is executed many times, if the refactoring
results in the elimination of a large number of promises at run-time, or if the refactoring en-
ables additional concurrency. We examined three refactorings in our case study that meet
some of these criteria, for which we crafted experiments that emphasize the performance
of the code fragment in question.

appcenter-cli/cpDir. This particular instance of the loopOverArrayWithAwait anti-pattern
was previously discussed in Section 4.3 and involves a function that copies one directory
to another. We chose this anti-pattern instance as the correctness of the refactoring was
easy to confirm, and we could easily craft a controlled experiment; in this experiment,

40

we executed cpDir 50 times on a large directory of 7.8G with 37 files, and found that the
refactored version ran 16.4% (4.8s vs 5.8s) faster on average than the original, and that the
variance between run times was 37.9% smaller (0.33s vs 0.54s), leading to more predictable
performance.

vuepress/apply. This function contains a loop exhibiting the loopOverArrayWithAwait
anti-pattern:

156 for (const { value , name: pluginName } of this.appliedItems) {

157 // details omitted

158 await ctx.writeTemp(‘${dirname }/${name}‘, ...);

We chose to focus on this anti-pattern instance because the correctness of the refactoring
was easy to check, and the code is frequently invoked by the test suite, so we can observe
performance in a realistic use-case. After refactoring this code fragment to use Promise.all,
we ran the application’s test suite 50 times on the versions before and after the refactoring.
The results show that the refactoring reduced the time needed to execute this code fragment
by 36.1% on average, and that run time variability was reduced by 16%.

strapi/evaluate. This instance of the promiseResolveThen anti-pattern occurs in the
strapi application:

159 // const evaluatedConditions = await Promise.resolve(conditions)

160 // .then(resolveConditions)

161 // .then(filterValidConditions)

162 // .then(evaluateConditions)

163 // .then(filterValidResults);

164 const evaluatedConditions = filterValidResults(await

165 evaluateConditions(filterValidConditions(

166 resolveConditions(conditions))));

We selected an instance of this anti-pattern to assess the performance impact of eliminating
more than just the loopOverArrayWithAwait anti-pattern, and we selected this instance
specifically as it is frequently executed by the test suite and involves many chained promises
(our refactoring eliminates 5 runtime promises per execution of this snippet). We refactored
this fragment to instead call the functions directly (the code exhibiting the anti-pattern
is commented). We ran the strapi test suite 50 times and observed that the refactoring
reduced the average time needed to execute this code fragment by 4%, and the standard
deviation by 7.4%.

Full Test Suite Refactorings We refactored every executed instance of an anti-pattern
in the eleventy project, and timed the execution of the test suite before and after. We

41

found that roughly 1.1k fewer user promises (39,978 to 38,748) were created, and found
no meaningful change in the run time of the test suite. We performed a similar case study
with vuepress. We again found no meaningful change in test suite execution time, and
found roughly 1.2k fewer user promises (32,264 to 31,021).

Note that we chose these projects to fully refactor as they had a few anti-patterns that
had many associated dynamic promises, and the refactorings were simple enough such that
we could verify their correctness.

Discussion Overall, it is difficult to measure the effect of the removal of runtime promises
on the overall performance of applications, due mostly to their asynchronous nature. Even
if thousands of redundant promises are eliminated, it is possible that the application was
waiting on another operation which takes longer than the sum total of the lifetimes of the
eliminated promises.

The elimination of anti-patterns reduces the number of promises created and enables ad-
ditional parallelism, which may speed up the execution of the affected code fragments.

4.7.5 RQ4: What is the performance of DrAsync?

There are three main components to the run time of DrAsync.

First, the time to build the QL databases is reported in column “QLDB Build Time”
in Table 4.2—the build times vary, but are only exceptionally high for flowcrypt-browser
and rmrk-tools. Note that this only needs to be done once per project (it needs to be
rebuilt when code changes, however), and the database can be reused for other CodeQL
queries; linting, by comparison, would be much faster but cannot detect all of the anti-
patterns detected by DrAsync. To put this number into context, the mean run time of the
test suites are found under the first Mean column.

Second, the time to run the anti-pattern detection queries is quite low: we ran 160
queries (8 anti-patterns × 20 projects) in sequence, and only 14 of the 160 query/project
combinations took over 30s, and the mean run time was 18.4s. The full query run times
are available in Appendix A.

Finally, DrAsync’s dynamic analysis adds roughly 27% performance overhead (har-
monic mean from column Overhead of Instrumentation). Note that, for the Mean
columns under Test Time (Before/After), the means reported are taken over 20 test
suite executions, and the standard deviation of those runs is reported in the StDev

42

columns. The overhead was calculated by dividing the mean test suite execution time
with instrumentation by the mean test suite execution time without instrumentation. Im-
portantly, note that the subject applications vary wildly in size, and DrAsync’s run time
is reasonable in all cases.

DrAsync runs quickly, and the performance of the tool scales well as code size increases.

4.8 Threats to Validity

There are several factors that threaten the validity of our results. First, the selection of
subject applications used for our evaluation may not be representative. We attempted
to mitigate this by randomly selecting applications that met specified criteria that made
them suitable subjects for analysis. Also, note that the subject applications include popu-
lar and well-maintained projects from major vendors such as Microsoft and SAP. Second,
the anti-pattern instances selected in our case study may not be representative. We at-
tempted to mitigate this by randomly selecting these instances, and selected no more than
three instances from any one project. Third, our experiences in manually refactoring the
anti-pattern instances may be subject to bias and errors. To mitigate the risk of mistakes
in the manual refactorings, we focused on anti-pattern instances that are executed by the
application’s test suite so that we could check for behavioral differences by running the
tests. As for bias, we were unfamiliar with the source code for the subject applications,
we made an effort to randomly select subjects for the case study, and we highlighted both
positive and negative refactoring experiences. Finally, regarding the performance implica-
tions of eliminating anti-patterns, one may object that the observed speedups are small
and only apply to code fragments in three selected subject applications, under idealized
conditions. This is correct, and we do not make broader claims in this regard.

4.9 Relation to Previous Research

Chapter 3 touches on general background for this work, namely static and dynamic anal-
ysis of JavaScript, program understanding, and refactoring. There are some branches of
the literature that relate specifically to this chapter, namely: detection of anti-patterns
in JavaScript software, profiling concurrent applications, and performance visualization.
These were not discussed as part of the general related work in Chapter 3, and will be
outlined here.

43

4.9.1 JavaScript Anti-Patterns

The detection and remediation of anti-patterns in software has long been a part of good
software development practices. Chapter 3 in Fowler’s seminal book on refactoring [92]
enumerates a number of “code smells” that can be addressed using the refactorings pre-
sented in the later chapters.

Several tools for static analysis and style have been developed [20, 2, 12] that check a
broad range of rules for identifying potential quality issues in JavaScript software. ESLint
[12] supports several rules concerned with async/await such as no-await-in-loop for detecting
the use of await in loops. Our research goes beyond ESLint by considering a broader range
of asynchronous anti-patterns, visualizing the behavior of asynchronous applications, and
combining more sophisticated static analysis and dynamic analysis. Further, ESLint only
detects three of the eight anti-patterns reported in this chapter: loopOverArrayWithAwait,
asyncFunctionAwaitedReturn, and asyncFunctionNoAwait (ESLint flags any loop with an
await inside, while our anti-pattern is specific to loops over arrays, which in our experience
is more likely to amenable to refactoring). ESLint also currently does not support the
data-flow analysis required to detect several anti-patterns described in the chapter.

Madsen et al. [142] defined the event-based call graph, which extends the traditional
notion of a call graph with nodes and edges that reflect the flow of control due to event-
handling. Recently, Arteca et al. [48] presented a statistical analysis for detecting event
listeners that are likely to be dead code due to bugs in event-handling code.

Madsen et al. [140] presented a formal semantics for JavaScript promises, and defined
the promise graph capturing relationships between promises, and use it to identify bugs
found on StackOverflow. Alimadadi et al. [43] present PromiseKeeper, a tool that con-
structs promise graphs using dynamic analysis, defining a number of dynamic anti-patterns
in promise graphs such as unhandled promise rejections. The work by Madsen et al. and
Alimadadi et al. predates JavaScript’s async/await feature. While our work and Promise-
Keeper are concerned with the visualization of execution behavior of promise-based code,
the visualizations are very different: PromiseKeeper provides a fine-grained visualization
of promises and the functions and values they interact with, whereas our work is focused
on a large-scale visualization that is focused on the performance aspects of promises and
await-expressions.

The academic community has also focused on the detection of code smells in JavaScript
code that are unrelated to asynchrony. Nguyen et al. [166] present a tool for detecting
embedded code smells in web applications using dynamic analysis. Fard and Mesbah [88]
identify 13 code smells that commonly arise in JavaScript software and present a technique

44

based on static and dynamic analysis to detect them. Johannes et al. [118] report on a
large-scale empirical study that investigates the relation between code smells in JavaScript
software and the fault-proneness of the program parts containing the code smells. Gong
et al. [101] present DLint, a tool for detecting code quality issues using dynamic analysis
rather than the traditional static analysis.

4.9.2 Profiling Concurrent Applications

Early work in this area by Waheed and Rover [226] considered techniques for visualizing
the performance of parallel programs at the processor level, using techniques from the
scientific visualization community. Miller et al. [156] present Paradyn, a tool for mea-
suring and visualizing the performance of large-scale parallel programs using an adaptive
instrumentation targeted at long-running applications. Paradyn differs from our work in
that it selectively instruments code and visualizes the program as a graph using a graph
coloring technique. Meira et al. [119] present Carnival, a performance measurement tool
for determining the underlying causes for waiting time in distributed memory systems,
again at the processor level. Carnival differs in that it measuring wait times that rely on
synchronization primitives used on multi-processor (as opposed to single core) systems.

Joao et al. [117] present a technique for detecting performance bottlenecks in multi-
threaded applications (critical sections, barriers, and slow pipeline stages) that have the
effect of serializing program execution. Unlike [117], our technique is implemented entirely
using source code instrumentation and our focus is on visualizing anti-patterns so that
users can remedy them manually.

Dutta et al. [72] present a technique for classifying performance bottlenecks in multi-
threaded applications, differentiating between on-chip and off-chip Unlike our approach,
Dutta’s only provides an overall assessment, and it does not identify specific regions in the
code that constitute the most significant performance bottlenecks.

4.9.3 Software Visualization

Recent work by Tominaga et al. [213] built a tool called AwaitViz to capture instances
of async/await in order to visualize execution order focus on improving programmer com-
prehension of the code. Additional visualizations on understanding async/await was done
by Sun et al. by generating Async Graphs [205]. The async graphs are used to help iden-
tify bugs related to asynchronous execution and primarily focus on when specific events

45

happen during the asynchronous flow of execution in Node.js applications for bug detec-
tion. Additional concurrency profiling tools with visualizations in IDEs have been created,
focusing on multi-threaded applications and resource utilization: JetBrains’s PyCharm
Thread Concurrency Visualization [25], Visual Studio’s Concurrency Visualizer [1], and
Intel’s VTune [26].

4.10 Conclusion

We identified 8 anti-patterns that commonly occur in JavaScript code that uses promises
and async/await. We presented DrAsync, a tool that relies on a combination of static and
dynamic analysis to detect instances of anti-patterns, and that provides an interactive visu-
alization to help programmers quickly diagnose quality issues and performance bottlenecks
in their asynchronous applications.

In an empirical evaluation, DrAsync detected 2.6K anti-patterns in 20 subject appli-
cations, which were executed 24K times in the aggregate. We report on a case study in
which we manually attempted to refactor 10 instances of each anti-pattern, concluding
that the majority of DrAsync’s findings are actionable, and that refactoring anti-patterns
may improve the performance of the affected code.

4.11 Discussion

In this chapter, we proposed a diagnostic tool for detecting misuses of promise-related
features in JavaScript. In a sense, the static analysis anti-pattern detection queries can
be thought of as “super linters”, in that that they identify code issues (like linters), but
use more sophisticated static analysis techniques like data flow analysis (unlike linters).
Broadly, it appears worth investigating how linters can be enhanced by incorporating more
precise static analysis techniques; in this work, a little data flow went a long way.

In Chapters 5 and 7, static analyses not only identified issues in the code, but also
generated information about the code fragments that were precise enough to be leveraged
to automatically suggest code transformations to fix issues. In contrast, the anti-patterns
detected by DrAsync are not as straightforward to fix; in Section 4.6, we found no general
formula that could be applied to fix every instance of any given anti-pattern. Instead,
programmers are invited to further investigate the highlighted issues, which is made easier
thanks to the visualization and profile information, and we showed that many anti-patterns

46

could be fixed by complete outsiders to the code bases, suggesting that the insights gleaned
from DrAsync are indeed actionable. One interesting avenue of future work in this space
would be to leverage the precise dynamic information from execution profiles to help con-
struct automated code transformations.

4.12 Data Availability

Experimental data associated with this research is available on Zenodo: https://doi.org/-
10.5281/zenodo.5428997. A software artifact is also available on Zenodo: https://doi.org/-
10.5281/zenodo.5915257.

47

https://doi.org/10.5281/zenodo.5428997
https://doi.org/10.5281/zenodo.5428997
https://doi.org/10.5281/zenodo.5915257
https://doi.org/10.5281/zenodo.5915257

Chapter 5

Database Usage Optimizations

Abstract

An Object-Relational Mapping (ORM) provides an object-oriented interface to a database and facil-

itates the development of database-backed applications. In an ORM, programmers do not need to write

queries in a separate query language such as SQL, they instead write ordinary method calls that are mapped

by the ORM to database queries. This added layer of abstraction hides the significant performance cost of

database operations, and misuse of ORMs can lead to far more queries being generated than necessary. Of

particular concern is the infamous “N+1 problem”, where an initial query yields N results that are used to

issue N subsequent queries. This anti-pattern is prevalent in applications that use ORMs, as it is natural

to iterate over collections in object-oriented languages. However, iterating over data that originates from

a database and calling an ORM method in each iteration may result in suboptimal performance. In such

cases, it is often possible to reduce the number of round-trips to the database by issuing a single, larger

query that fetches all desired results at once.

We propose an approach for automatically refactoring applications that use ORMs to eliminate in-

stances of the “N+1 problem”, which relies on static analysis to detect data flow between ORM API calls.

We implement this approach in a tool called reformulator, targeting the Sequelize ORM in JavaScript,

and evaluate it on 8 JavaScript projects. We found 44 N+1 query pairs in these projects, and reformula-

tor refactored all of them successfully, resulting in improved performance (up to 7.67x) while preserving

program behavior. Further experiments demonstrate that the relative performance improvements grew as

the database size was increased (up to 38.58x), and that front-end page load times were improved.

48

5.1 Introduction

An ORM (Object-Relational Mapping) provides an object-oriented facade for a database
enabling programmers to access it using ordinary method calls. The ORM maps such
method calls to database queries and converts query results to objects in the host language
so that programmers do not need to use a separate database query language like SQL to
interact with the database. However, the added layer of abstraction introduced by ORMs
may obscure the cost of database operations, and careless ORM usage may generate more
database queries than are necessary, causing poor performance.

Of particular concern is the infamous “N+1 problem” [61, 240, 58], which arises when
an initial database query yieldsN results that are then used to issueN subsequent database
queries. This can lead to significant performance problems because database queries are
typically high-latency operations. The “N+1 problem” anti-pattern frequently occurs in
applications that use ORMs, where it often arises in the following scenario:

• An initial call to the ORM’s Application Programming Interface (API) generates a
database query that results in a collection C of objects.

• Then, a loop iterates through C and, for each element c ∈ C, calls an ORM API
method with c as an argument, resulting in the generation of another new database
query.

We found that, in many of these cases, the “N+1 problem” can be remediated by
inserting a single ORM API call that has the effect of retrieving the information from the
database that was previously fetched by the N subsequent queries. This refactoring, by
significantly reducing the number of round-trips to the database, can drastically improve
performance.

We present an approach for automatically detecting instances of the “N+1 problem”
and generating code transformations that reduce the number of database queries. To
detect instances of the “N+1 problem”, a static data-flow analysis detects data flow from
the result of one ORM API call to an argument of another ORM API call, where the latter
call occurs within a loop. To repair these instances, we define a set of declarative rewrite
rules that specify how code should be transformed to reduce the number of generated
queries. These transformations result in code that: (i) issues a constant number of queries,
(ii) is behaviorally equivalent, and, importantly, (iii) performs better and scales as database
size increases.

49

We implement this technique in a tool called reformulator, targeting the Sequelize
ORM for the JavaScript programming language, and evaluate it on 8 JavaScript projects
that use Sequelize. In these projects, reformulator found 44 instances of the “N+1
problem”. Due to the highly dynamic nature of the JavaScript programming language,
sound static analysis for JavaScript remains elusive [175, 130, 125], and as a result, it
is possible for our implementation to propose refactorings that do not preserve behavior.
Therefore, following other recent work on refactoring for JavaScript [100, 49], reformula-
tor presents refactorings as suggestions that should be carefully vetted by a programmer,
e.g., by running tests.

In practice, reformulator successfully refactored all 44 instances of the “N+1 prob-
lem”, and in all cases performance was improved (up to 7.67x, even with small amounts
of data being processed). Additional experiments revealed speedups of up to 38.58x and
substantial improvements in scalability by demonstrating that the relative performance
improvements grew as the database size was increased. We also confirmed that these per-
formance gains translate to an improved user experience, by demonstrating reductions in
page load times by up to 90% with large database sizes.

In summary, this chapter describes:

• an approach in which instances of the “N+1 problem” are detected by tracking data
flow between ORM API calls, and where a set of declarative rewrite rules specifies
how code can be refactored to eliminate them;

• an implementation of this approach in a tool called reformulator, targeting the
popular Sequelize ORM in JavaScript;

• an evaluation of reformulator on 8 projects containing 44 instances of the “N+1
problem”, demonstrating that the suggested refactorings improve performance and
scalability, while preserving program behavior in all cases,

An artifact complete with the source code and the ability to re-run the experiments
discussed in this chapter is available [215].

The remainder of this chapter is organized as follows. § 5.2 establishes relevant back-
ground via motivating example; § 5.3 details the approach to finding and refactoring “N+1
problem” anti-patterns; § 5.4 describes the implementation of this approach in a tool
called reformulator; § 5.5 presents an evaluation of reformulator; § 5.6 identifies
some threats to the validity of our approach; § 5.7 positions this work in the context of
related literature; § 5.8 concludes; and finally § 5.9 presents a short retrospective of this

50

work, some promising follow-up work, and puts it into context with respect to the other
work in this thesis.

5.2 Background and Motivation

To illustrate how “N+1 problem” issues arise in practice, consider youtubeclone [144], a
popular open source video-sharing application emulating YouTube with over 125 stars and
nearly 600 forks.

Like many database-backed web applications, the three components of youtubeclone
are a front-end client-side interface, a back-end server, and a database. As users navigate
through the front-end, HTTP requests are made to the server which sends HTTP responses
once the requests have been processed. In some cases, the server will query the database
if data is needed to prepare the response.

youtubeclone is written in JavaScript, and uses Sequelize [31], a popular ORM that
enables JavaScript applications to interact with relational databases. The database backing
youtubeclone has tables for videos, users, subscriptions, and views, and Figure 5.1 shows
the Sequelize code modeling the video and user tables (simplified for brevity). The model
corresponding to the video table is defined on lines 167-178, with the primary key “vid”
defined on lines 168-173, and the model corresponding to the user table is defined on
lines 179-190, with the primary key “uid” defined on lines 180-185. The association between
the two models is made using a foreign key, i.e., a table column that contains the primary
key of another table. Line 192 specifies “uploader” as a foreign key into the video table.
This foreign key allows joins to be executed on the video and user tables, which fetches
the user information associated with a video. E.g., a list of videos with “Alexi Thesis”
in the title and information related to the uploader is obtained by the following Sequelize
API call:

Video.findAll ({ include: {model:User},

where: {[Op.substring]: {title: "Alexi␣Thesis"}}})

which would be translated into the following SQL query:

SELECT * FROM VIDEO LEFT JOIN USER ON USER.uid = VIDEO.uploader

WHERE VIDEO.title LIKE "%Alexi Thesis%"

Video.findAll performs a SELECT from Video (since no attributes were specified, this is
translated to SELECT *), include indicates that the generated query should include the

51

167 const Video = sequelize.define("Video", {

168 vid: {

169 type: DataTypes.UUID ,

170 allowNull: false ,

171 primaryKey: true ,

172 defaultValue: Sequelize.UUIDV4 ,

173 },

174 title: {

175 type: DataTypes.STRING ,

176 allowNull: false ,

177 },

178 });

179 const User = sequelize.define("User", {

180 uid: {

181 type: DataTypes.UUID ,

182 allowNull: false ,

183 primaryKey: true ,

184 defaultValue: Sequelize.UUIDV4 ,

185 },

186 username: {

187 type: DataTypes.STRING ,

188 allowNull: false ,

189 },

190 });

191 // Establish association between Video and User

192 Video.belongsTo(User , {foreignKey: "uploader"});

Figure 5.1: Example database definition in Sequelize.

52

195 async function recommendChannels(req , res)

{

196 const channels = await User.findAll ({

197 limit: 10,

198 attributes: ["id", "username", "avatar

", "channelDescription"],

199 where: { id: { [Op.not]: req.user.id }

}

200 });

201 channels.forEach(async (channel , index)

=> {

202 const isSubscribed = await

Subscription.findOne ({

203 where: {

204 subscriber: req.user.id,

205 subscribeTo: channel.id,

206 },

207 });

208 channel.setDataValue("isSubscribed",

!! isSubscribed);

209 // send HTTP response after processing

the last channel

210 });

211 }

212 async function recommendChannels(req , res) {

213 const channels = await User.findAll ({

214 limit: 10,

215 attributes: ["id", "username", "avatar",

"channelDescription"],

216 where: { id: { [Op.not]: req.user.id } }

217 });

218 const subscriptions = await Subscription.

findAll ({

219 where: {

220 subscriber: req.user.id,

221 subscribeTo: channels.map(chan => chan

.id)

222 }

223 });

224 channels.forEach(async (channel , index) =>

{

225 const isSubscribed = subscriptions.find(

data => data.subscribeTo === channel.id)

;

226 channel.setDataValue("isSubscribed", !!

isSubscribed);

227 // send HTTP response after processing

the last channel

228 })

229 }

Figure 5.2: (a) Functionality for recommending channels in Youtube Clone, exhibiting the “select N+1
problem”. (b) Refactored version of the code, which generates fewer SQL queries.

associated User table by performing a LEFT JOIN, and where specifies that the query should
only return videos with “Alexi Thesis” in the title.

SQL and many other query languages (and, by extension, Sequelize) also allows queries
to specify a grouping clause, and aggregations over groups. If a query includes GROUP

BY ColumnName, the results will be grouped according to unique values of ColumnName.
Aggregate functions (such as COUNT) can be included in grouped queries, and the function
is performed over the group. For example, the query SELECT title, COUNT(title) FROM

VIDEOS GROUP BY title will yield all unique video titles as well as how many videos had
that title.

To illustrate how ORMs may be misused, consider Figure 5.2(a), which shows some
key fragments of a function recommendChannels from the back-end of youtubeclone. The
function takes a parameter req representing a user request, and eventually produces an
HTTP response that includes other channels that the current user (identified by req.id)
might be interested in. This function first executes a call to User.findAll on lines 196–200
to determine a set of up to 10 channels for which the id is not the same as the current user

53

(i.e., the current user does not own the channel). This call is mapped by the ORM to a
SQL query of the form SELECT · · · FROM User LIMIT 10.

Later, execution enters a loop (lines 201–210) that calls Subscription.findOne(· · ·) to
determine if the current user is already subscribed to each channel. Each of these calls is
mapped by the ORM to an SQL query that looks as follows: SELECT · · · FROM Subscription

WHERE (Subscription.subscriber = · · · AND Subscription.subcribeTo = · · ·) LIMIT 1. In other
words, an initial query creates N results (here, N = 10) and subsequently, a query is issued
for each of these N results, requiring a total of N + 1 database round-trips. The ORM
community has recognized that, in such situations (referred to as the “N+1 problem”), it
is often possible to modify the code to issue a lower, constant number of queries.

Figure 5.2(b) shows how the code of Figure 5.2(a) can be refactored to accomplish
this. Here, an additional query is added on lines 218–223 to obtain an array subscriptions

containing the channels from channels that the current user is subscribed to; on line 221,
the channels.map(...) retrieves all of the ids for each channel so that the ORM can fetch
the subscription status for all of the channels at once. In addition, in the loop over all
channels (lines 224–228), the subscription status for a given channel is now looked up by
calling the standard find method on arrays instead of querying the database. As a result,
only 2 SQL queries are needed instead of the original N+1 queries.

recommendChannels contains two additional instances of the “N+1 problem” and both
could be refactored similarly. The refactored code outperforms the original by a factor of
nearly 3x.

Note the await on line 196: calls to Sequelize are asynchronous operations implemented
using promises [11]. Refer to Chapter 2.2.3 for more information on promises.

The next section presents how the refactoring opportunities discussed in this section
can be detected, and how code transformations can be generated automatically.

5.3 Approach

Our technique for suggesting refactorings that have the effect of eliminating the “N+1
problem” has two components:

1. a data flow analysis to locate pairs of ORM API calls involved in an “N+1 problem”,
discussed in § 5.3.1, and

2. a set of declarative rewrite rules describing how pairs of N+1-related ORM API calls
are transformed to eliminate the problematic pattern, discussed in § 5.3.2.

54

5.3.1 Data-Flow Analysis

The main question the data-flow analysis is looking to answer is: does data-flow exist
between two ORM API calls? Put differently, for every ORM API call C, the analysis
should determine the existence of data-flow between the result of a previous ORM API
call and any of C’s arguments. This is achieved with a taint analysis [214, 121, 105],
where ORM API calls are defined as sources of taint, and ORM API call arguments are
defined as sinks. Concretely, we rely on a standard taint analysis framework available in
CodeQL [152] to detect taint flows from sources to sinks.

For example, consider the code snippet in Fig 5.2(a). Here, the call to findAll returns a
promise that will be resolved with the data from the database, and that value will flow into
channels. Thus, there exists data-flow between findAll and channels through the promise
created by findAll. The forEach-loop on lines 201-210 iterates over these values, and thus
there is data-flow from elements of channels into the channel callback parameter (line 201).
Finally, there is data-flow from channel into the argument of Subscription.findOne through
the field access channel.id (line 205).

In order to generate code transformations, the approach needs the property names that
are the target of data-flow (e.g., the analysis will report that data-flow exists between
subscribeTo : channel.id and channels). Thus, the analysis notes exactly which proper-
ty/value pairs p : v in an ORM API call object O had values v that that were the target
of data-flow from the result m of a previous ORM API call; in the following section, this
process is encapsulated in the function getAllPropertiesWithDataF low(O,m).

5.3.2 Refactoring

Code transformations are presented as a set of declarative rewrite rules that can be found
in Figure 5.3. The anatomy of the rules is:

conditions

(code before)⇝ (code after)

findAll-findOne This rule depicts the transformation for a flow from findAll through
a loop into findOne. An example applying this rule to the code in Figure 5.2 follows this
description.

1. First, the list of properties (props) of the argument to the findOne call (O2) that
are the targets of data-flow from the result of a call to findAll (m1s) is obtained
through the helper function getAllPropertiesWithDataFlow .

55

props = getAllPropertiesWithDataF low(O2, m1s)
O′2 = updatePropReferences(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s fresh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O

′
2)

loop { ⇝ loop {
var m2 = await M2.findOne(O2) var m2 = m2s.find(m2 => BE)

} }
(findAll-findOne)

props = getAllPropertiesWithDataF low(O2, m1s)
O′2 = addAggregationAndCount(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s fresh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O

′
2)

loop { ⇝ loop {
var m2 = await M2.count(O2) var m2 = m2s.find(m2 => BE).count

} }
(findAll-count)

∃ dataF low(m1s, x) pk primary key of M2
O′2 = {where : {pk : m1s.map(m1 => m1.f)}} m2s fresh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O

′
2)

loop { ⇝ loop {
var m2 = await M2.findByPk(x.f) var m2 = m2s.find(m2 => x.f == m2.pk)

} }
(findAll-findByPk)

props = getAllPropertiesWithDataF low(O2, m1s)
O′2 = updatePropReferences(props, O2, m1s, M1)
BE = createArrayLookup(props) m2s fresh

var m1s = await M1.findAll(O1) var m1s = await M1.findAll(O1)
var m2s = await M2.findAll(O

′
2)

loop { ⇝ loop {
var m2 = await M2.findAll(O2) var m2 = m2s.filter(m2 => BE)

} }
(findAll-findAll)

Figure 5.3: Declarative rewrite rule definitions. ORM API calls are underlined—these calls generate
queries. The calls to find in the refactored code are essentially maps over the arrays m2s that return the
element matching the boolean expression specified in the callback. Helper function descriptions can be
found in § 5.3.3. All are discussed in detail in § 5.3.

56

2. The goal of this transformation is to insert a new ORM API call to findAll replacing
the old call to findOne, and so the argument to that new call must be constructed.
The idea is adapt the argument to the old call (O2); since the new call will be placed
before the loop, any properties in O2 that were targets of data-flow must be updated
to map directly over the result of the previous API call (m1s).

To achieve this, a new object O′2 is adapted from O2 by updating all of the val-
ues of the properties in O2 referred to by props to be maps over m1s, through the
updatePropReferences helper function. For all properties p : v in props, the property
f of the model M1 referred to by v, either directly in v itself (e.g., if v is of the form
x.f) or indirectly (e.g., if v = x.f earlier in the code) is obtained, and v is replaced
with m1s.map(m1 => m1.f) in O′2

3. As the goal of this refactoring is to replace many calls to findOne with a single call to
findAll, the result m2s of that new call will need to be iterated over to pick out the
same data that was returned by the original call to findOne. m2s contains all of the
data that would have been fetched in the loop, and the idea here is to map whatever
comparisons were being made in the original call to findOne to some new boolean
expression (BE) that can be used to pick out the datum of interest from the array of
results (m2s). This is achieved through the createArrayLookup helper function: for
each property/value pair p : v in props, a boolean expression m1.p === v is added
to BE (here, m1 is the parameter name of a callback that will be inserted by the
transformation). In constructing BE in this manner, the same comparisons that were
being made in the old findOne are performed in BE.

4. To enact the transformation, a fresh variable m2s is declared and set to the return
value of a new call to M2.findAll(O′2), and is placed immediately before the loop;
the old call to M2.findOne(O2) is replaced with a lookup over the m2s array, and the
entry matching BE is picked out.

findAll-findOne (Walk-through) To help illustrate the rewrite rule, consider the
transformation in Figure 5.2.

1. First, there is data-flow between channels and the argument to Subscription.findOne

in the subscribeTo: channel.id property; mapping to the findAll-findOne rewrite
rule, this property will be the sole element of props .

2. The new ORM API call object (lines 218-223) is obtained from the existing call
object (lines 202-207), where the value of the property with data flow (subscribeTo:

57

channel.id) is updated to map over channels (channels.map(chan => chan.id); this is
O′2.

3. A new boolean expression BE is built from the properties that had data from channels

flow into them, in this case the sole property with data flow subscribeTo: channel.id

populates BE with the boolean expression data.subscribeTo === channel.id.

4. Putting it all together: the new call to Subscription.findAll is placed before the loop
(lines 218-223), and the old call to Subscription.findOne is replaced with a find over
the array of subscriptions returned by Subscription.findAll (line 225).

findAll-count This rule depicts the transformation for data-flow into a call to count.
The list of properties with data flow from m1s is obtained with getAllPropertiesWithDataFlow
as in findAll-findOne. The new ORM API call object O′2 is created in much the same
way as well, except that in this case grouping and aggregation is added to O′2: each prop-
erty name referred to in props is added to a grouping clause in O′2, and also to a count
aggregation over those same properties (and that count is saved on the “count” field of the
result). I.e., the results of the new call to findAll will be grouped by the properties with
data flow, and total counts will be computed for each group. The rest of the rewrite rule is
the same as findAll-findOne, except that the new access in the loop also specifies that
the count field should be accessed.

For an example of this transformation, consider the snippets in Figure 5.4. There is data
flow from the video id property to the view videoId property (line 243), and so the trans-
formed code includes a grouping clause on videoId (line 264), and count over videoId

as well (line 266). To break it down further, the Sequelize line [Sequelize.fn("COUNT",

Sequelize.col("View.videoId")), "count"] is specifying that a count over View.videoId should
be issued, and saved under the count property of the result. That property is referenced in
the loop in the transformed code, on line 269.

findAll-findByPk Calls to findByPk take a single argument that is implicitly com-
pared against the primary key of the model being queried. That implicit comparison needs
to be made explicit in the new findAll query, and so the primary key pk of model M2
is obtained from the model definition. Then, the new call object O′

2 can be constructed
with a where clause that compares the primary key pk with a map over the sources m1s
extracting the relevant field f (i.e., the field from the data-flow into the call to findByPk).
The primary key pk is also needed to construct the boolean expression in the find that
replaces the old call to findOne.

58

230 exports.searchVideo = asyncHandler(async (req , res , next) => {

231 const videos = await Video.findAll ({

232 include: {

233 model: User ,

234 attributes: ["id", "avatar", "username"]

235 },

236 where: {

237 title: {

238 [Op.substring]: req.query.searchterm

239 }}});

240 videos.forEach(async (video , index) => {

241 const views = await View.count({

242 where: {

243 videoId: video.id

244 }

245 });

246 // ...

247 });

248 });

249

250 exports.searchVideo = asyncHandler(async (req , res , next) => {

251 const videos = await Video.findAll ({

252 include: {

253 model: User ,

254 attributes: ["id", "avatar", "username"]

255 },

256 where: {

257 title: {

258 [Op.substring]: req.query.searchterm

259 }}});

260 const viewCounts = await View.findAll ({

261 where: {

262 videoId: videos.map(data => data.id)

263 },

264 group: ["View.videoId"],

265 attributes: ["videoId", [Sequelize.fn("COUNT",

266 Sequelize.col("View.videoId")), "count"]]

267 });

268 videos.forEach(async (video , index) => {

269 const views = viewCounts.find(x => x.videoId === video.id).count;

270 // ...

271 });

272 });

273

Figure 5.4: (a) Functionality for search for a video in youtube-clone, where the views for each video are
counted in the loop. (b) Refactored version of the code, which generates fewer SQL queries. Note the
grouping clause on line 264, and the count attribute on line 266 which sums up the number of elements in
each group.

59

findAll-findAll Finally, this rule is nearly identical to the findAll-findOne rule,
the only difference is that instead of performing a find over the m2s array, a filter is
performed instead.

Note The idea that data-flow between ORMAPI calls is problematic is language-agnostic,
and while the rewrite rules use Sequelize API names in them, that is more for readability;
the rules represent broader issues in ORMs like finding and then finding again (findAll-
findOne, findAll-findAll, findAll-findByPk), or finding and then counting (findAll-
count). This is essential functionality to any effective ORM.

5.3.3 Helper Function Reference

This section contains in-depth descriptions of the helper functions used in Fig. 5.3.

getAllPropertiesWithDataFlow(O ,m) returns all of the properties in an object O that
are targets of data-flow from some value m. This will yield a set of property name, value
pairs p : v for which there exists data-flow between m and the value v.

updatePropReferences(props ,O ,ms ,M) creates an object where all of the properties in
an object O specified by the list of properties props are updated to refer to a map over the
array ms. I.e., for all property/value pairs p : v in props, the matching property in O′ will
be p : ms.map(m => m.f), where f is the property of the model M referred to by v, either
directly in v itself (e.g., if v is of the form x.f) or indirectly in some alias (e.g., if v = x.f
earlier in the code).

addAggregationAndCount(props ,O ,ms ,M) creates a new object wherein all of the
properties in the object O specified by the list of properties props are updated to refer
to a map over the array ms, like updatePropReferences . Additionally: (1) a clause is
added grouping by all property names p in props, and (2) a count aggregation clause is
added to total the number of entries in each group.

createArrayLookup(props) builds a boolean expression BE to select from the array of
results the value that was previously obtained by the query. A property p : v has the
ORM compare the value of v against property p, and so a boolean expression m1.p == v

is created and added with a boolean & to BE.

60

5.4 Implementation

The approach described in § 5.3 is implemented in a tool called reformulator. The
static data flow analysis is implemented as a taint analysis in CodeQL [152], wherein a taint
configuration [153] specifies values returned by ORM API calls as sources, and arguments
passed to ORM API calls as sinks. The rewrite rules were implemented using BabelJS [52],
a popular JavaScript parser and code generator. Taint flows identified by the analysis are
input to the refactoring tool. Sound and scalable static analysis of JavaScript is beyond
the current state-of-the-art, and so the code transformations generated by reformulator
are presented to the programmer as suggestions that should be vetted carefully, e.g., by
running tests. The code is available in the accompanying artifact [215], which is a Docker
image equipped with the ability to re-run the entire evaluation, which is discussed next.

5.5 Evaluation

This evaluation of reformulator aims to answer the following research questions:

RQ1. How many refactoring opportunities does reformulator detect?

RQ2. How often are unwanted behavioral changes introduced by the refactorings suggested
by reformulator?

RQ3. How do the refactorings affect performance?

RQ4. How much do the refactorings affect page load times?

RQ5. What is the running time of reformulator?

Experimental Setup We randomly selected 100k JavaScript GitHub repositories that
listed Sequelize as an explicit dependency. We then ran the npm-filter [50] tool on
these repositories to determine how many of them could be automatically installed and
built; 37,074 projects satisfied these criteria. We then ran the CodeQL taint analysis on
these projects and found 427 projects with N+1 anti-pattern query pairs. From those, we
randomly selected projects until we found 8 that we could set up and run with databases
populated with meaningful data. Project statistics are listed in Table 5.1.

61

Table 5.1: Information about subject applications. The first row reads: the first application is called
youtubeclone, and commit hash 47002fc was used for the evaluation; youtubeclone has 10,551 lines
of code spread across 117 files. reformulator detected 12 N+1 pattern query pairs in this application
across 7 HTTP request handlers. This is a video-sharing application.

Commit Num. Num. Num.
Project Name Hash LOC Files N+1 Handlers Short Description

youtubeclone [144] 47002fc 10,551 117 12 7 Video sharing.
eventbright [219] e417020 12,085 122 15 7 Event search and attendance.
property-manage [155] 33f92a9 13,959 154 2 2 Property management app.
Math Fluency App [180] 5c1658e 12,473 114 6 3 Math testing for teachers.
employee-tracker [65] ba4a195 10,336 112 3 2 Human resources server API.
Graceshopper-Elektra [76] c327530 12,342 141 1 1 Shopping application.
wall [34] ae6c815 11,152 134 2 2 Image hosting and tagging app.
NetSteam [207] 5b1cd86 12,485 136 4 4 Video game trailer viewing app.

Sum 44 27

Experiment Infrastructure Experiments were conducted on a 2016 MacBook Pro with
16GB RAM and 2.6 GHz Quad-Core Intel Core i7 processor running MacOS Catalina
v10.15.7. The Chrome browser v100.0.4896.127 was used in incognito mode so as to mini-
mize interference from caching and browser extensions.

RQ1: How many refactoring opportunities does reformulator
detect?

To answer this research question, we examined the number of projects in which refor-
mulator identified anti-patterns. Overall, 427 contained at least one instance of an N+1
anti-pattern from those that built. We examined the distribution of N+1 anti-patterns
across the projects; the median number of anti-patterns is 2, and a total of 1,872 anti-
pattern instances were detected by the tool. While this is not a huge percentage of the
projects (1.1%), the analysis is quite conservative in order to maximize the likelihood of
the transformation succeeding.

reformulator identified refactoring opportunities in hundreds of GitHub repositories.

RQ2: How often are unwanted behavioral changes introduced by
the refactorings suggested by reformulator?

To answer this research question, we identified which HTTP request handlers in each of the
projects contained a refactoring opportunity detected by reformulator. Every refac-

62

toring suggestion was applied to the code. We focused on these handlers as they are the
manner in which a front-end would interact with the server; if the handler produces the
same response, we deem the behavior to be preserved. There were 44 refactoring oppor-
tunities spread across 27 handlers as outlined by columns # N+1 and # Handlers in
Table 5.1. The findAll-findAll rewrite rule was applied 10 times, findAll-findByPk
9 times, findAll-findOne 5 times, and findAll-count 20 times. Note that for this
experiment, the databases were populated with test data according to the instructions
provided by the repositories.

To conduct the experiment, the UI for each page issuing the HTTP requests and the
actual content of the HTTP response was closely examined and compared before and after
refactoring. No discrepancies were found, and no refactoring introduced a crash.

reformulator did not introduce any unwanted behavioral changes in the applications
we studied.

RQ3: How do the refactorings affect performance?

To answer this research question, we inserted profiling code in the aforementioned HTTP
request handlers to collect the time it took the server to prepare a response. We manually
interacted with the front-end of each of the subject applications to locate the part of the
front-end that sent the request triggering the anti-pattern code. We then restarted the
server to empty any server-side caches, triggered the HTTP request again, and collected
the time reported by the aforementioned profiling code. We repeated this process ten times
before applying the code transformations, and ten more times after: averages and standard
deviations of these results are reported in Figure 5.5 (the error bars represent the average
+/- one standard deviation), with each pair of bars corresponding to the time before and
after refactoring for a particular HTTP request handler. There are 27 total pairs of bars,
corresponding to each of the affected HTTP request handlers, and a link from each “HTTP
Request Handler ID” to the code is included in Appendix B.

We found that a low, constant number of queries were issued post-refactoring in all
cases, and that every refactoring improved performance. Specifically, we performed a
paired two-tailed T-test comparing the 10 run times before and after at 95% confidence
and found all differences to be statistically significant. The largest performance gain was
in eventbright’s handler for getting all events (ID 10, from 279.77ms before to 36.48ms
after, an improvement of 7.67x). All HTTP request handlers in youtubeclone (IDs 0
through 6) had pronounced improvements, with a median performance improvement of a

63

Table 5.2: Information about the run time of reformulator, with project installation time given for
reference. The first row of the table reads: youtubeclone took 5.42s to install; it took 24.96s to build
the CodeQL database; it took 30.10s to run the N+1 detection query. In total, from a freshly installed
youtubeclone, reformulator can run in 55.06s.

Install QLDB Build Query Run
Project Name Time (s) Time (s) Time (s) Build + Query (s)

youtubeclone [144] 5.42 24.96 30.10 55.06
eventbright [219] 11.42 28.64 32.39 61.03
property-manage [155] 14.68 30.91 33.17 64.08
Math Fluency App [180] 4.87 24.41 33.62 58.03
employee-tracker [65] 4.20 23.43 29.41 52.84
Graceshopper-Elektra [76] 24.29 26.69 30.33 57.02
wall [34] 17.29 26.35 29.88 56.23
NetSteam [207] 14.50 29.02 31.79 60.83
Mean 12.08 26.80 31.34 58.14

factor of 2.81x. The smallest benefits were in the Math Fluency App application (IDs
17 through 19), with a median improvement factor of 1.07x—this is because the number
of queries was very small even before refactoring (the number of queries was reduced from
5 to 3, as N was small for this application).

To further understand the performance implications of the refactorings, particularly as
database size increased, we conducted a case study involving five request handlers from
the 27 in which we refactored instances of the “N+1 problem”. In this case study, we
created three databases of size 10, 100, and 1000 (henceforth referred to as the “10 scale”,
“100 scale”, and “1000 scale” configurations) so that the HTTP request handler needs to
process that much data, and measure the performance of the handlers before and after
refactoring at each database size.

The functionality being examined in each application is:

• youtubeclone: search for users;

• eventbright: main events display;

• property-manage: properties dashboard;

• employee-tracker: view all employees;

• NetSteam: view all reviews for a trailer.

The results of this case study are summarized in Table 5.3, which reports averages over
10 runs for each database size for each request handler. youtubeclone, eventbright, and

64

0

200

400

600

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26
HTTP Request Handler ID

A
ve

ra
ge

 (
m

s)

Refactored?

no

yes

HTTP Request Handler Time Before/After Refactoring (average over 10 runs)

Figure 5.5: Summary of effect of refactoring on 27 HTTP request handlers. Lower is better. Each pair of
bars corresponds to an HTTP request handler. Error bars indicate +/- one standard deviation.

Table 5.3: Results of case study on 5 applications comparing the scalability of original and refactored
code. All times are in ms. The differences were all statistically significant (paired two-tailed T-test at 95%
confidence); standard deviations are omitted for brevity, and can be found in supplemental material. The
first row of the table reads: for test ID 1 in the youtubeclone application, with a database size of 10,
the mean before refactoring is 360.30ms, and after refactoring is 118.06ms; this represents a performance
improvement with a factor of 3.05x (= 360.30 ÷118.06).

DB Size = 10 DB Size = 100 DB Size = 1000
Project Name ID Before After Scale Before After Scale Before After Scale

youtubeclone 1 360.30 118.06 3.05x 1937.42 152.96 12.67x 18171.86 471.07 38.58x
eventbright 10 111.38 31.94 3.49x 797.35 49.53 16.10x 7001.48 214.61 32.62x
property-manage 20 56.91 33.71 1.69x 246.06 111.05 2.22x 1333.64 786.44 1.70x
employee-tracker 14 57.15 34.32 1.67x 374.73 153.97 2.43x 2495.92 1010.47 2.47x
NetSteam 21 77.05 39.01 1.98x 337.67 41.62 8.11x 2129.34 108.06 19.71x

65

NetSteam show dramatic improvements in the relative performance benefits of the refac-
tored code as databases size increases (up to 38.58x at the 1000 scale for youtubeclone).
In contrast, the relative performance difference for property-manage and employee-
tracker is not as pronounced with large database sizes; in these applications, most of the
time spent serving requests is in processing the data from the database once it is available,
rather than waiting for it to become available. Nevertheless, the absolute difference be-
tween original and refactored code is substantial at large database sizes even for those two
applications, with a 550ms difference for property-manage and a nearly 1.5s difference
for employee-tracker.

All transformations yield statistically significant performance improvements at 95% confi-
dence. Performance gains increase as the size of the database grows; we observed speedups
of up to 38.58x.

RQ4: How much do the refactorings affect page load times?

In this research question, we aim to connect the performance improvements observed in
serving HTTP requests to measurable improvements in page load time on the client-side.

We conducted a case study on the client-side pages making the HTTP requests studied
in the context of RQ3. Note: there is no front-end for employee-tracker, thus we focus
on the other four. The manner in which pages load varies significantly from one application
to another, and we found no reliable way to universally time each page load. For example,
the NetSteam page under study is a pop-up that displays over the main dashboard, and
has no URL associated with it, making refresh-based profiling impossible. Further, most
web profiling tools rely on the collection of a trace as a page loads, and that trace includes
a variable number of frames before the page begins to refresh, leading to unfortunate
variability and inaccuracies in performance numbers collected automatically.

In light of this, we opted to manually study the behavior of each page with Chrome
DevTools [102] to obtain rich information about how each page behaves, paying particular
attention to the “Performance” and “Network” tabs. The times reported are estimations
based on the trace timeline displayed by the “Performance” tab of the Chrome DevTools
(label (E) in Figure 5.6) that displays a timeline of screenshots of a page, which we believe
corresponds most closely with the observable user experience. Specifically, as in our study
of RQ3, we triggered each HTTP request 10 times and estimated the time between when
the request was triggered and when the page was visibly populated with data; we drew
these estimates from the time markers in the timeline, and rounded to the nearest quarter

66

second, and averages are reported throughout this section. We examined the behavior of
each page at three database scales (10, 100, and 1000), and report on our findings below.
Screenshots of the DevTools profiles used in this study as well as raw observations are
included in Appendix B.

youtubeclone (search for users) In this application, we found the network time to
be the limiting factor in the client page being fully rendered, as the page was quickly
populated once all the data was returned from the server. At the 1000 scale, the difference
in load time was dramatic (19.88s with the original code vs. 1.9s with the refactored code,
a ∼10x improvement). The difference in load time is also very noticeable at the 100 scale,
and a screenshot comparing the effect of the transformation on the load time can be found
in Figure 5.6 (3.8s before refactoring vs. 0.8s with refactoring). Even at the smaller 10
scale, appreciable load time improvements were observed (from 1.2s to 0.5s).

eventbright (main events display) The front-end is quickly populated with data once
it is received from the server. We noted dramatic load time improvements at the 1000 scale
(7.7s with original code vs. 1.4s with refactored code), and a noticeable improvement at the
100 scale (1s with original code vs. 0.3s with refactored code), and a very small difference
at the 10 scale (0.4s before vs. 0.3s after).

property-manage (property dashboard) In this application, the refactoring did not
appear to affect the load time of the page. Even at the 1000 scale, the dashboard took
nearly 3s to be populated with data, even though the server finished fully processing the
request 1.5s faster in the refactored version. This is because the information computed
by the ORM API call in the loop is used internally by the server, and is not part of the
response.

In spite of this, the refactoring is still beneficial: as applications move away from
locally-hosted databases, the number of concurrent database requests becomes a concern,
as many remote database management systems only allow up to a certain number of
requests simultaneously, after which point requests are refused. The refactoring proposed
by reformulator reduces the number of requests here from N+1 (with N being the
number of properties) to two.

NetSteam (reviews for trailer) Here, a dashboard presents many video game titles
to the user, and the user may select one of them to bring up an animated pop-up with

67

Figure 5.6: Two screenshots from the Chrome DevTools’ Performance Tab profiling a search turning up
100 users in youtubeclone. The profile corresponding to the original code is on top, and the refactored
one is on the bottom. The two (E) labels show time series of application activity, where higher values
correspond to more CPU cycles. (C) and (D) show spikes in activity when the HTTP response was received
by the client before and after refactoring, resp. The two (F) labels show a series of screenshots taken of
the front-end as it loads and is populated by data. (A) and (B) show the period that the screen was idle
before and after refactoring, resp., and the two boxes in the timelines highlight that the screen is empty
during that span.

68

the trailer and reviews for the game. At the 1000 scale, it took 3.8s on average for the
reviews to load with the original code vs. 2s with the refactored code. At the 100 and 10
scales, the animation displaying the trailer and reviews masked any performance difference
between original and refactored code, as the animation completes before the reviews load
at both scales before and after refactoring.

In several cases, the refactoring suggested by reformulator results in dramatic speedups
(of up to 90%).

RQ5: What is the running time of reformulator?

Table 5.2 shows the time it takes npm install to install the project’s dependencies (given
for reference, column Install Time), the time it takes to build the CodeQL database,
which is needed to run any CodeQL queries on the code (QLDB Build Time), and the
time to run reformulator’s anti-pattern detection query (Query Run Time). The
time taken to build the QLDBs and also run the queries is consistently between 50 and 65
seconds. The time to run the actual code transformation is less less than a second in all
cases and is not reported in the table.

The running time of reformulator on a fresh installation of a project is 58.14s on
average.

5.6 Threats to Validity

We have identified some threats to the validity of our work.

The primary threat to validity is the fact that the transformations proposed by our
tool may not preserve program behavior. Static analysis of JavaScript is unsound due
to the extreme dynamicity of the language, as rampant dynamic property redefinition,
event-driven programming, and promise-based asynchrony have made precise and scalable
analysis elusive. reformulator is a tool that leverages static program analysis, and
is thus unsound; we have accepted this in designing reformulator, and focused on
developing a tool that is practical. During the course of our evaluation, we found that no
behavior-altering transformations were suggested.

It is also possible that our selection of projects for evaluation is not representative. We
mitigate this by selecting projects randomly from those that explicitly declare Sequelize as

69

a dependency. This list was pruned to find projects that could be successfully built and for
which we could configure and populate databases, but this was entirely so that the effect
of the transformations could be studied.

5.7 Relation to Previous Work

There is a large body of existing research aimed at improving the performance of database-
backed applications, including database refactoring, bug detection, and query optimization.

Database refactoring. Existing work has considered refactoring database schemas
to improve performance. Ambler and Sadalage [44] catalogue database refactorings, i.e.,
behavior-preserving changes to a database schema such as moving a column from one table
to another. Similarly, Xie et al. [238] and Wang et al. [230] study how application code
must be updated in response to schema changes. Rahmani et al. [179] present an approach
for avoiding serializability violations in database applications by transforming a program’s
data layout. This nature of work provides insight into the relationship between database
structure and performance, but does not consider query-based performance bugs like the
“N+1 Problem”.

Identifying the “N+1 Problem” in database code. Yang et al. [240] use dy-
namic analysis to detect performance anti-patterns in Ruby on Rails [187] applications and
manually refactor them to assess performance impact. One of these anti-patterns, “ineffi-
cient lazy loading”, is a variant of the “N+1 Problem” they report to be prevalent in their
experiments. Chen et al. [58] report on industrial experience, observing 17 ORM-related
performance problems in PHP applications that use the Laravel ORM [30], including the
same “inefficient lazy loading” anti-pattern. Chen et al. [59] use static analysis to detect
anti-patterns in JPA, a popular ORM for Java, including “one-by-one processing” where
a list of objects of one class is iterated over, and objects from another class are found
by issuing a SELECT query. Their proposed resolution involves introducing batching (i.e.,
waiting for several queries to be created before issuing them all at once). Cheung et al. [61]
created a “lazy-ifying” compiler that also batches queries to reduce the number of round
trips to the database. Batching queries does alleviate the “N+1 Problem” by reducing the
amount of database round-trips, but it does not eliminate the problem through permanent
refactoring. Also, much prior work [240, 58, 59] detects the “N+1 Problem” but does not
automatically refactor it as we have in reformulator.

Identifying other performance bugs in database code. Chen et al. [60] consider
situations where calling the API of the Hibernate ORM [108] for Java results in accessing

70

redundant data (e.g., some columns in a table need to be updated, but a query is generated
that updates all of them). They assess performance impact by manually rewriting subject
applications. Yan et al. [239] identify optimization opportunities in Ruby on Rails [187]
applications using static analysis and profiling, including a “Fusing queries” optimization
targeting situations where the result of a query flows into another query. Yang et al. [242]
present a framework in which static analysis and dynamic profiling are used to visualize, for
each HTML tag, the set of database queries needed to generate the data needed to render
it. Their framework also suggests view-changing refactorings (e.g., introducing pagination)
to improve performance. While there is much work on detecting query-based performance
bugs, including the “N+1 Problem”, using static and dynamic analysis, this work leaves
actual optimization to manual refactoring.

We know of two research efforts to use static analysis to automatically refactor source
code to remove database bugs. Yang et al. [241] design a RubyMine IDE plugin named
PowerStation which uses static analysis to identify and refactor common ORM performance
inefficiencies. While this work relates most closely to ours, PowerStation does not identify
or refactor the “N+1 Problem”. Instead, PowerStation tackles other inefficiencies like
dead stores, redundant loads, and Ruby-specific API misuses. Lyu et al. [139] present
an automatic refactoring technique for repetitive autocommit transactions, using static
analysis to detect this database ineffiency common to the Android platform. However,
repetitive autocommit transactions refer to writes, whereas the “N+1 Problem” concerns
reads.

In sum, previous work explored database-related refactorings and the detection of ORM
anti-patterns. However, we are not aware of automated refactoring tools for eliminating
the “N+1 Problem”.

5.8 Conclusion

ORMs provide an object-oriented interface to databases and facilitate the development
of database-backed applications. In an ORM, databases can be accessed using method
calls to the ORM, which maps those calls into database queries. While convenient, this
added layer of abstraction hides the significant performance cost of database operations,
and misuse of ORMs can lead to far more queries being generated than necessary. In
particular, the “N+1 problem” is prevalent in ORM-backed applications. It is natural to
iterate over collections in object-oriented languages, but iterating over data that originates
from a database and calling an ORM method in each iteration may result in suboptimal

71

performance. In such cases, it is often possible to reduce the number of round-trips to the
database by issuing a single query that fetches all desired results at once.

In this work, we presented an approach for automatically refactoring applications that
use ORMs to eliminate instances of the “N+1 problem”, which relies on static analysis to
detect data flow between ORM API calls. We implemented this approach in reformula-
tor, a tool targeting the Sequelize ORM in JavaScript, and evaluated it on 8 JavaScript
projects. We found 44 N+1 query pairs in these projects, and reformulator refactored
all of them successfully, resulting in improved performance while preserving program be-
havior. At a small scale, performance improvements of up to 7.67x were observed, and
improvements of up to 38.58x were observed at scale. Further, a detailed study of the
front-ends of these applications revealed page load time improvements of up to 90%.

5.9 Discussion

In this chapter, we proposed an approach to automatically detecting and repairing instances
of the “N+1 Problem” in ORM-backed applications. We implemented this approach in
reformulator, which relies on an unsound static data flow analysis to identify pairs
of data-related ORM API calls as candidates for refactoring. This goes one step further
than DrAsync in suggesting fixes automatically, enabled in part by the narrower scope
of this work; DrAsync was concerned with general anti-patterns, while this work is fo-
cused on a specific misuse of ORM APIs in which far more precise information available.
First, source API calls always return arrays of objects with a predictable shape: a call like
Video.findAll(...) will return a Video array, and the shape of Video is known thanks to the
statically available ORM model files. Further, ORM API calls are very strict in the shape
of their arguments: in Sequelize and TypeORM, for instance, calls to the ORM are supplied
with objects who’s properties are either from a pre-defined set or correspond to columns in
the underlying database. E.g., in Video.findAll({where: { name: "Alexi Thesis Defense",

length: 1800 }}), name and length are properties of the Video model, and where specifies a
where clause in the generated query. These are just a few sources of information that im-
precise analysis can take advantage of. (The narrower scope also benefited the approaches
that will be discussed in Chapters 6 and 7, where automated program transformations
were feasible.)

For a bit of history, we initially identified pairs of data-related ORM API calls via
dynamic analysis, but found that the vast majority of the data-related ORM API calls
that could be refactored were intraprocedural and good candidates for detection through
lightweight static analysis instead. Besides that, additional information was required in

72

order to automate refactoring (e.g., variable names, parsing the ORM API calls to deter-
mine information about the query, etc.), and so static analysis was required anyway. The
main advantage of a dynamic vs. static approach would be a substantial increase in preci-
sion, although that precision would be wasted here since (a) there is plenty of information
available for imprecise analysis, and moreover (b) interprocedural data-related ORM API
calls are quite complex to refactor.

The work in this chapter focused on the “N+1 Problem”, but most data-related ORM
API calls are unnecessary as databases are well-equipped to resolve relationships. We
observed many situations where non-N+1 related ORM API calls could be optimized:

274 const user = await User.findByPk(req.params.id);

275

276 if (!user) {

277 return next({

278 message: ‘No user found for ID - ’${req.params.id}’‘,
279 statusCode: 404,

280 });

281 }

282

283 const isSubscribed = await Subscription.findOne ({

284 where: {

285 subscriber: req.user.id,

286 subscribeTo: req.params.id,

287 },

288 });

In this snippet, the programmer determines if the requesting user (identified by req.user.id)
is subscribed to another user (identified by req.param.id). Here, req.params.id is used
to select both a User and a Subscription. From the models, we know that User has
a has many relationship with Subscription through the subscribeTo foreign key, so all
Subscription.subscribeTo values will be User primary keys. Given that, we can reduce
the number of ORM API calls and database round trips by:

289 const user = await User.findByPk(req.params.id, {

290 include: [

291 {

292 model: Subscription ,

293 required: false ,

294 where: {

295 subscriber: req.user.id,

296 subscribeTo: req.params.id

297 }

298 }

299]

300 });

301

302 if (!user) { /* ... */ }

303

304 const isSubscribed = user.Subscriptions.length > 0;

73

Here, the fact that the User and Subscription models are associated is exploited to fetch the
relevant subscription when the user is fetched (thanks to the include clause on lines 290-
299). Then, whether or not there is a subscription turns into a simple offline check on
line 304. In a small test, we found that the refactored code improves the performance of sub-
scribing to a user from 99.2ms to 84.7ms (10 run times recorded pre- and post-refactoring,
statistically significant difference at 95% confidence with a two-tailed homoscedastic T
test). There are many refactoring opportunities like this in the youtubeclone application
that was referenced throughout this chapter.

74

Chapter 6

Software Debloating

Abstract

JavaScript is an increasingly popular language for server-side development, thanks in part to the

Node.js runtime environment and its vast ecosystem of modules. With the Node.js package manager npm,

users are able to easily include external modules as dependencies in their projects. However, npm installs

modules with all of their functionality, even if only a fraction is needed, which causes an undue increase

in code size. Eliminating this unused functionality from distributions is desirable, but the sound analysis

required to find unused code is difficult due to JavaScript’s extreme dynamicity.

We present a fully automatic technique that identifies unused code by constructing static or dy-

namic call graphs from the application’s tests, and replacing code deemed unreachable with either file-

or function-level stubs. Due to JavaScript’s highly dynamic nature, call graph construction may suffer

from unsoundness, i.e., code identified as unused may in fact be reachable. To handle such cases, if a

stub is called, it will fetch and execute the original code on-demand to preserve the application’s behavior.

The technique also provides an optional guarded execution mode to guard application against injection

vulnerabilities in untested code that resulted from stub expansion.

This technique is implemented in an open source tool called Stubbifier , designed to help package

developers to produce a minimal production distribution. Stubbifier supports the ECMAScript 2019

standard. In an empirical evaluation on 15 Node.js applications and 75 clients of these applications,

Stubbifier reduced application size by 56% on average while incurring only minor performance overhead.

The evaluation also shows that Stubbifier ’s guarded execution mode is capable of preventing several known

injection vulnerabilities that are manifested in stubbed-out code. Finally, Stubbifier can work alongside

bundlers, popular JavaScript tools for bundling an application with its dependencies. For the considered

subject applications, we measured an average size reduction of 37% in bundled distributions.

75

6.1 Introduction

JavaScript is one of the most popular programming languages, and has been the lingua
franca of client-side web development for years [96, 200]. More recently, platforms such
as Node.js [173] have made it possible to use JavaScript outside of the browser. Node.js
provides a light-weight, fast, and scalable platform for writing network-based applications,
enabling web developers to use the same language for both front- and back-end devel-
opment. As a result, server-side JavaScript development has experienced an exponential
growth in recent years.

This has given rise to a flourishing ecosystem of libraries, known as Node modules, that
are freely available and widely used. The npm [170] package-management system in partic-
ular has fostered higher developer productivity and increased code reuse by unburdening
the programmers from many routine development tasks. As such, a typical Node module
m can directly and indirectly rely on myriad other modules. While an essential attribute
of this ecosystem, in practice, m typically uses only a small fraction of the functionality
of its dependencies, while still encompassing all of their code. In turn, clients of m inherit
the unused functionality of m and its dependencies, as well as that of its own dependen-
cies. The problem of accumulating code that in practice is never invoked is known as code
“bloat”.

While eliminating code bloat is desirable, “debloating” Node.js applications is chal-
lenging since it is nearly impossible to perform sound static analysis on JavaScript due to
the high dynamism of the language. Despite the popularity of Node.js development and
the severity of this issue, there is currently no technique available that can significantly
debloat a modern Node.js application while fully preserving its original behavior.

Previous work on debloating JavaScript applications has been done in the context of
JavaScript bundlers [185, 231]. The primary goal of bundlers is to create self-contained
application distributions, but they typically perform an optimization known as “tree-
shaking” [149] on imported external modules, by removing modules or functions that are
unreachable in an application’s import graph. Unfortunately, the size reduction achieved
by bundlers is limited by the all-or-nothing nature of their code minimization technique:
code that the bundler removes must never be called, else the bundled application will
crash. Moreover, tree-shaking can only be applied to modern JavaScript code that uses
the ECMAScript module system [149].

Another approach to debloating JavaScript applications was developed by Koishybayev
and Kapravelos [126], who developed Mininode, a tool for reducing the size of development
distributions of Node.js applications. In the JavaScript npm package ecosystem, a dis-

76

tinction is made between an application’s dependencies and development dependencies: A
dependency is another package that the application needs to function (e.g., a utility library
such as lodash), whereas a development dependency is only needed during development
(e.g., a test runner such as mocha that is needed to run the application’s tests) and is
not normally part of a production distribution. Mininode assumes an application’s de-
velopment distribution as the starting point and considers development dependencies and
package tests as targets for removal. Further, Mininode completely removes code deemed
unreachable through (unsound) static analysis and it only supports the ECMAScript 5
version of JavaScript (which dates back to 2009), which lacks modern JS features such as
ES6 modules, classes, and async/await. Section 6.4.3 reports on an experiment in which
we applied Mininode to the subject applications that we used to evaluate Stubbifier .

Previous work on debloating in the context of other languages has focused on the
use of static analysis to determine unreachable code [37, 112, 174, 211]. In many ex-
isting techniques, the application stops executing when trying to invoke code that has
been removed by the debloating algorithm and deviates from the intended behavior of the
original application. Despite more recent advances for analyzing client-side web applica-
tions [138, 45, 115, 132, 133, 199], the development of a static analysis for Node.js that is
simultaneously sound, precise, and scalable remains beyond the current state of the art.

This chapter presents a practical technique for reducing the size of production distri-
butions of Node.js applications while preserving their original behavior. Core application
functionality, as well as the extent to which an application uses its dependencies, is in-
ferred automatically from dynamic or static call graphs constructed from the application’s
own test suites (which can be comprehensive, end-to-end test suites). Rather than using
a sound call graph analysis and removing the code entirely, our approach relies on a fast,
scalable, unsound call graph analysis, and untested, unreachable code is replaced by stub
versions in a technique known as code splitting, pioneered by the Doloto tool [138]. If
a function or file stub is executed, it will dynamically fetch and execute the original code
so as to preserve application functionality. The technique has been implemented in a tool
called Stubbifier , designed to be used by package developers looking to prepare a minimal
production distribution for their package. Stubbifier improves on Doloto by: (i) sup-
porting all features of modern JavaScript [74], including classes, promises, async/await,
generators, and modules, (ii) introducing file-level stubs in addition to function-level stubs
(so as to achieve additional debloating by stubbing all code in files where no code is used,
instead of stubbing each of the functions in these files individually), and (iii) providing an
(optional) guarded execution mode, where stubbed-out code is automatically instrumented
to intercept calls to functions such as eval and exec that may introduce injection vulnera-
bilities. Most importantly, (iv) Stubbifier is fully automatic by relying on static analysis or

77

dynamic analysis of the application’s test suite to identify code that is likely to be unreach-
able, whereas Doloto required traces of users interacting with the subject application to
establish core application functionality.

Stubbifier was evaluated on 15 of the most popular Node.js applications, using five
clients for each subject application to evaluate how much code is loaded dynamically. This
evaluation found that Stubbifier achieves significant size reductions (56% on average), that
the number of stubs expanded during the execution of client applications is relatively small,
and that minimal performance overhead is incurred. Further, experiments with Stubbifier ’s
guarded execution mode confirmed that it is capable of preventing known injection vul-
nerabilities. Finally, we confirmed experimentally that, when used in conjunction with
the popular Rollup bundler, Stubbifier achieves significant additional size reductions on
previously bundled applications (37% on average).

In summary, this chapter describes:

• A fully automated technique for reducing the size of Node.js applications while pre-
serving their original behavior, based on a combination of static or dynamic analysis
and code splitting.

• The implementation of this technique in a tool called Stubbifier that supports mod-
ern JavaScript [74]. Stubbifier is publicly available as an open-source tool1, and a
self-contained code artifact including reproducible experiments is also available on
Zenodo [217].

• An empirical evaluation of Stubbifier on 15 open source Node.js applications and 75
clients of these subject applications (five clients per subject), showing that Stubbifier
reduces the size of Node.js applications by 56% on average while incurring only
minor performance overhead. The evaluation also shows that Stubbifier ’s guarded
execution mode is capable of preventing several known injection vulnerabilities that
are manifested in stubbed-out code.

The remainder of the chapter is organized as follows: § 6.2 discusses and/or directs
readers to relevant background, and presents motivation for the work; § 6.3 discusses the
code splitting approach in detail; § 6.4 presents an evaluation of the tool, and compares
Stubbifier to a related tool called Mininode [126] in § 6.4.3; § 6.5 establishes some threats
to validity; § 6.6 puts this chapter into context with respect to the related literature; § 6.7
concludes the presentation of code splitting; and finally § 6.8 relates this chapter to the
others in the thesis.

1See https://github.com/emarteca/stubbifier.

78

https://github.com/emarteca/stubbifier

6.2 Background and Motivation

The npm ecosystem includes more than 1.7 million modules2 that provide a wealth of conve-
nient features. By importing these libraries and reusing their functionality, programmers
can focus their efforts on features that are unique to their application. However, this con-
venience does not come without its price: importing modules can cause projects to become
excessively large due to the transitive importing of other projects that they depend on. In
practice, it is often the case that a module only uses a small subset of the functions in the
transitive closure of its dependencies.

To illustrate this, consider the example of a popular node application css-loader [233],
a utility package for loading, parsing, and transforming CSS files and further supporting
applications designed to use CSS. css-loader is one of the most popular modules on npm,
with nearly 15 million weekly downloads, and it is imported by over 15,000 modules.

css-loader has 13 third-party production dependencies3 (i.e., modules upon which
its functionality depends). The stand-alone css-loader module contains only 16 files
comprising 110KB. However, installing css-loader with direct and transitive production
dependencies creates a package with 1299 files and total code size of 2764KB. This is a
>81x and >25x increase in number of files and code size respectively.

To determine what part of the resulting installation constitutes application bloat, we
examined css-loader to determine which functions and files are reachable from the appli-
cation’s test suite. Using a simple static analysis that traces function calls to build a list
of unreachable functions and files, 209 files were found to be potentially unreachable, and
6 unreachable functions were identified in otherwise reachable files. Given the extreme dy-
namicity of JavaScript, sound static analysis is not possible [183, 199, 114, 142, 203]. Since
in practice all static analyses for JavaScript suffer from unsoundness, some of the functions
and files that they identify as being unreachable may indeed be reachable. Nevertheless,
if one could devise a technique to remove all of this code, the application’s size would be
reduced by 80%.

Consider semver [171], a package that css-loader depends on. Only two functions
from semver are used in css-loader: The satisfies function is imported specifically
as part of the primary css-loader functionality, and the inc function is used once as a

2See http://www.modulecounts.com/.
3Many npm modules rely on additional development dependencies (sometimes referred to as “devDe-

pendencies”) that are needed only for development purposes, e.g., for running tests. These dependencies
are typically not installed by clients.

79

http://www.modulecounts.com/

helper in the css-loader tests. Given that, it seems wasteful to include the entire semver
code in css-loader.

In subsequent sections, we will describe our approach to addressing this issue of code
bloat, and describe our implementation of this approach in a tool called Stubbifier . The
intended user of our tool is a package developer looking to prepare a minimal production
distribution for their package, e.g., a developer of css-loader might run Stubbifier on the
package before a release. Stubbifier identifies the extent to which css-loader’s dependen-
cies are used. For example, one of css-loader’s dependencies is semver: this developer
would note that Stubbifier identifies 27 of semver’s files and six semver functions inside
of css-loader to be potentially unreachable, i.e., css-loader imports semver but only
uses a subset of imported functionality 4. The six unreachable functions are in the file that
exports the inc function. After debloating, the code in the semver package is reduced
from 57KB to 35KB, a 38% size reduction. Overall, the size of css-loader as a whole is
reduced by 80%, from 2.8MB to 0.6MB.

Note that the majority of the code removal is in the dependencies of css-loader.
To illustrate, note that the initial size of css-loader, before installing any dependen-
cies, is 110KB. The size of css-loader with all dependencies installed is 2.8MB, and
Stubbifier reduces this to 0.6MB. This is 2.2MB of reduction, and since the original size of
css-loader is just 110KB, Stubbifier must have mostly removed code in the dependencies
of css-loader.

css-loader has approximately 14.8 million weekly downloads, so an 80% size reduction
would translate to a reduction in weekly data transfer from 41.4TB to 8.8TB. We will
elaborate on this in Section 6.4.

The next sections will present our debloating technique and its evaluation.

6.3 Approach

The debloating technique presented in this chapter involves several key steps, illustrated
in the diagram in Figure 6.1. First, a call graph is computed for the project using its
own tests as entry points, either dynamically by running the tests with instrumentation,
or statically by running a static analysis. The project source code and call graph are input
to the debloating algorithm: the technique essentially replaces functions and files that are
not in the call graph with stubs, which are smaller but are equipped to fetch and load the

4There is more unreachable code in css-loader, but we focus on semver for the sake of illustration

80

Figure 6.1: Overview of approach. A call graph is computed from a project using its tests as entry
points. A call graph construction algorithm maps call sites to functions; e.g., here the runTests function
contains two function calls foo(1, 2) and foo(3, 4), both of which are mapped to the foo function,
which contains a call bar(z, y) that is mapped to bar. Then, our debloating technique performs a code
transformation to replace unreachable code (according to the call graph) with stubs that can dynamically
load the code on-demand. Function baz is deemed unreachable since it does not appear in the call graph,
and hence is replaced with a stub.

code dynamically if they are invoked. The end result is a debloated project that is ready
to deploy.

We envision this technique to be used by developers that wish to create minimal distri-
butions for their applications. The purpose of using an application’s tests to infer unused
functionality is to automatically determine the extent to which the application exercises
its direct and transitive dependencies: If application tests had 100% coverage and the ap-
plication fully exercised its dependencies, then no stubs would be introduced. In practice,
however, a package will not use all of the code in its dependencies (e.g., css-loader in-
cludes semver but uses only a few of its functions). Note that the ideal scenario is when an
application’s tests have 100% application code coverage: in such cases, the unused parts
of the application’s dependencies would be replaced with stubs and nothing would ever be
loaded dynamically.

The remainder of this section will discuss each step of the approach in detail.

81

6.3.1 Call Graph Construction

In principle, any call graph can be used to determine which files and functions should be
replaced with stubs. The soundness and precision of the call graph will impact the size of
the initial distribution and the amount of code that needs to be loaded dynamically.

The implementation of Stubbifier includes mechanisms for constructing a static or dy-
namic call graph. In each case, Stubbifier uses the test suite of the input application as the
entry point for the analysis, and so the call graph represents the tested code. Any function
that is not in the call graph is deemed unreachable and untested and will be replaced with a
(function-level or file-level) stub. Both analyses are configured to consider depended-upon
modules (in the node modules directory), though note that development dependencies are
excluded as they are typically not packaged and shipped with the subject application.

Below, we provide some further detail on the specific static and dynamic call graph
construction techniques that Stubbifier supports.

Dynamic Call Graphs. To compute dynamic call graphs, code coverage is determined
using Istanbul’s command line tool nyc [113], that computes statement, line, branch, and
function coverage for Node.js applications. By default, nyc ignores a project’s dependen-
cies, but Stubbifier automatically generates a configuration file that specifies that coverage
of non-development, production dependencies should be computed. Stubbifier then runs
nyc on the application’s tests, to determine which functions and files are invoked during
testing (and by exclusion, which were not invoked).

Static Call Graphs. To compute the static call graphs, we developed an analysis using
CodeQL [51], GitHub’s declarative language for static analysis, using its extensive libraries
for writing static analyzers [97]. In particular, CodeQL’s dataflow library contains function-
ality for tracking calls through local module imports, and we implemented an extension to
recognize modules in a project’s node modules directory, and extended CodeQL’s libraries
to track data flow through these modules. Then, a call graph construction algorithm was
implemented on top of this analysis, which uses the application’s tests as entry points for
the analysis.

This is an unsound analysis, as the use of dynamic features such as eval and dynamic
property access expressions may give rise to missing edges in the call graph. We found
that these dynamic features are so prevalent in modern JavaScript applications that using
a sound, conservative call graph analysis is impractical (making conservative assumptions
in the presence of these dynamic features would result in almost all code to be deemed

82

reachable). In our approach, reachable code mistakenly classified as unreachable due to the
unsoundness of the analysis does not result in an error when called: rather, it is dynamically
loaded via the stub.

6.3.2 Introducing Stubs

After constructing a call graph, Stubbifier creates lists of unreachable functions and files.
Here, unreachable files are those in which none of the functions are reachable, and un-
reachable functions are those functions that are not reachable but that are in a file where
at least one other function is reachable.

Next, Stubbifier parses the application’s source code, including any dependencies, and
replaces unreachable functions and files with stubs via transformations on the program’s
Abstract Syntax Tree (AST). Note that Stubbifier does not replace functions or files with
stubs if they are shorter than the stubs that would replace them.

File Stubs. Each unreachable file is replaced with a file stub. The code in this stub
implements Algorithm 1, which depicts the general logic for file stub expansion.

Algorithm 1: ExpandFileStub

1 perform all imports;
2 let fileo := fetchOriginalFileCode();
3 let filee := eval(fileo);
4 replace this file with fileo ;
5 perform all exports;

At a high level, file stub expansion amounts to: (i) performing all imports that were
in the original code (line 1), (ii) fetching the original code and evaluating it (lines 2-3),
(iii) replacing the contents of the stubbed file with the original file (line 4), and finally (iv)
performing necessary exports (line 5). More specifically, in files that rely on the CommonJS
mechanisms (i.e., require for importing and module.exports for exporting), simply storing
the original code elsewhere and eval-ing it as needed suffices, as these mechanisms can be
used anywhere in a source file. However, the ECMAScript Module System (ESM) [75]’s
static import/export constructs cannot be executed in an eval (see ECMAScript 2019,
section 15.2 [74]), so all import and export statements are hoisted out of the original code

83

305 // file.js before stubs are introduced

306 export function foo() { /* ... */ }

307 import { A };

308 function bar() { /* ... */ }

309 export default bar;

310

311

312 // file.js after stubs are introduced

313 import { A };

314 exportObj = eval(stubs.getCodeForFile("file.js"));

315

316 let foo_UID = exportObj["foo"];

317 export {foo_UID as foo};

318 export default exportObj["default"]

Figure 6.2: File before and after stubs are introduced.

and into the stub. The original code is then transformed to properly produce the values
of the exports. To illustrate, consider the example in Figure 6.2.

In Figure 6.2, we see import and export statements interspersed through the file before
stubs are introduced. In the lower part of the figure, we see that the file stub generated by
Stubbifier contains all import statements as-is, and export statements are modified (lines 317
and 318) to get their values from the dynamically executed code (i.e., from exportObj,
line 314).

To allow this exporting, the original code from Figure 6.2 is modified to construct an
object containing all of the original exports. This constructed object is the last statement
that will be executed when the code is passed to eval, and is therefore the return value of
eval. This is illustrated in Figure 6.3.

319 function foo() { /* ... */ }

320 function bar() { /* ... */ }

321

322 { foo: foo ,

323 default: bar };

Figure 6.3: Modified original code with ES6 imports and exports (this is what would be eval’d).

Here, we see that the export was removed from the definition of foo, and that foo was
added to an object on line 322, which also includes an entry for bar, the default export.
The last statement in an eval-ed code block is implicitly returned—here, that is an object

84

containing the exports—allowing the stub to retrieve the exported values (as in line 314 of
Figure 6.2).

Function Stubs. Functions deemed unreachable are replaced with function stubs. These
stubs implement Algorithm 2, which depicts the general logic for dynamically loading and
executing code upon stub expansion. When a stub is expanded, it first fetches the code,

Algorithm 2: ExpandFunctionStub

Data: args: function arguments
Data: uid : unique ID for this function stub

1 if uid cached then
2 let funstr := code cached at uid ;
3 else
4 let funstr := fetch original function code;

5 let fune := eval(funstr);
6 copy function properties to fune ;
7 if can replace function definition then
8 replace stub with fune ;
9 else

10 cache funstr ;

11 call fune with args;
12 return result;

either by retrieving it from a cache, fetching it from a server, or otherwise retrieving it
from storage. Either way, the code is evaluated into a function, and function properties are
copied from the stub version to the newly created function object. If possible, Stubbifier
will replace the stub with the freshly evaluated original function (the conditions where this
is or is not possible are discussed below). If not, the code is cached, and then the function
is executed.

Stubbifier ’s caching strategy differs from Doloto’s [138]: where Doloto caches func-
tion objects, Stubbifier caches the code, and we discuss the reasoning behind this shortly.

A concrete example of a function stub can be found in Figure 6.4, where we show the
stub for getValidHeaders from the node-blend [22] project.

First, note that Stubbifier outfits each file with a global stubs object containing the
code cache and functionality to fetch code. We see a call to stub.getCode("UID for LOC")

85

324 function getValidHeaders(headers) {

325 let toExec = eval(stubs.getCode("UID_for_LOC"));

326 stubs.cpFunProps(getValidHeaders , toExec);

327 getValidHeaders = toExec;

328 return toExec.apply(this , arguments);

329 }

Figure 6.4: Example of a stubbed function.

on line 325, which fetches the original function definition (found through "UID for LOC",
a unique ID for the function that Stubbifier generates from the code location when the
stub is created). That code is then passed to eval, which will return a function object
containing the original code. Line 326 copies any function properties from getValidHeaders

to the fresh function5. Finally, line 327 redefines the getValidHeaders with the expanded
stub, and line 328 calls the function with its original arguments6. Since getValidHeaders has
reassigned itself on line 327, any subsequent calls to this function will call the expanded
stub, with no need to re-eval the code.

The above discussion covered the general approach for introducing function stubs. How-
ever, several types of functions require special treatment, as will be discussed next.

Anonymous Functions. In JavaScript it is possible to create a function without a
name, an idiom that is commonly seen when functions are passed as callback arguments
to higher-order functions. In these cases, the function cannot reassign itself as is done on
line 327 in the above example (since it has no name to refer to itself by), so the loaded
code is cached, and future stub expansions eval the cached code. For example, Figure 6.5
displays the getValidHeaders stub that we would create if this function did not have a name.
Here, rather than immediately passing the code loaded with stubs.getCode("UID for LOC")

to eval, the stubs cache is accessed on line 331. Code is only loaded on a cache miss, in
which case the loaded code is immediately cached.

One might wonder why the function stub expansion caches the loaded code, evaluating
it every time the stub is invoked, rather than caching the expanded function object. This
is necessary because, in JavaScript, functions are closures that close variables from sur-
rounding scopes directly into the object. Therefore, generating a stub for a function that

5Recall that in JavaScript functions are objects, and can have properties assigned dynamically.
6apply calls its receiver as a function, binding its first argument to this inside the function, and passing

the other arguments as function arguments. arguments is a metavariable available inside functions that
refers to its arguments.

86

330 function(headers) {

331 let toExecString = stubs.getStub("UID_for_LOC");

332 if (! toExecString) {

333 toExecString = stubs.getCode("UID_for_LOC");

334 stubs.setStub("UID_for_LOC", toExecString);

335 }

336 let toExec = eval(toExecString);

337 toExec = stubs.cpFunProps(this , toExec);

338 return toExec.apply(this , arguments);

339 }

Figure 6.5: Example of stubbed anonymous function.

is nested inside another would include the function arguments of the latter in its closure.
If we were to cache this object, any subsequent call to the function would refer to the val-
ues of function arguments when the stub was first expanded, which may lead to incorrect
program behavior. Thus, we have to eval every time. Note that this problem does not
arise for functions with a name, as the function reassigning itself does not store a closure.

Doloto cached function closures, which is problematic for the reasons discussed above;
we conjecture that the authors did not evaluate their tool on code where this issue would
arise.

Class and Object Methods. When replacing object or class methods with stubs, an
issue arises that relates to references to this. In functions outside a class or object, this
refers to the function object itself, while in a class/object, this refers to the object instance
on which the function was invoked. These class methods need to be referenced in a different
way to allow for function property copying and reassignment.

Fortunately, class and object methods can be accessed as properties of this, and so if
getValidHeaders were a method in a class, the following replacements would be made:

340 // outside a class/object

341 stubs.cpFunProps(getValidHeaders , toExec);

342 getValidHeaders = toExec;

343

344 // inside a class/object

345 stubs.cpFunProps(this.getValidHeaders , toExec);

346 this.getValidHeaders = toExec;

For class/object methods with no ID, we generate a dynamic property access on this

to reassign the function object as at code generation time, we know the key corresponding
to nameless object properties. Specifically, this means that instead of this.functionName

we use this[${generate(key)}$], where ${generate(key)}$ is a string generated at parsing
runtime, to reference the function as a dynamic property access on this.

87

Classes and objects can also have getter and setter methods, as is illustrated in the
example below:

347 class A {

348 get propName () { console.log("getter"); }

349 set propName () { console.log("setter"); }

350 }

351 let x = new A();

352 x.a; // prints "getter"

353 x.a = 5; // prints "setter"

Getter and setter stubs are generated with special reassignment code. Dynamically ac-
cessing and defining a getter for some property "p" is done using this. lookupGetter ("p")

and this. defineGetter ("p") respectively (and similarly for setters); these calls are used
in place of direct accesses as properties of this in the stub.

Arrow Functions. Arrow functions were introduced in ECMAScript 2015, and provide
a more concise syntax for functions. When creating stubs for arrow functions, we run into
an issue as the metavariable arguments cannot be used to reference the function arguments.
To get around this, we make use of the rest parameter [161], also introduced with ES6.
By replacing the original function parameters with a rest parameter, we have essentially
recreated the functionality of arguments. For example, if getValidHeaders were an arrow
function, it would be written as:

354 let getValidHeaders = (headers) => { /* elided function body */ }

and its stub would resemble:

355 let getValidHeaders = (... args_UID) => {

356 // only change the last line of the stub

357 getValidHeaders.apply(this , args_UID);

358 }

Unstubbable Functions. Stubbifier does not transform generators, as yield cannot be
present inside of an eval, nor does it transform constructors. Constructors necessitate that
super be called before any use of the this keyword. Generating constructor stubs would
require a more sophisticated analysis of constructor code, and as sound static analysis of
JavaScript is still very challenging, we decided against stubbifying them altogether. We
do not consider this to be a big issue, as these types of functions are fairly rare; we only
encountered a few instances of unreachable constructors or generators in our evaluation.

88

Manually specifying functions not to stub. Users may be interested in specifying
some functions that should never be replaced with stubs, regardless of their classification
in the generated call graph. To accommodate this, we added functionality to allow users to
manually flag a function so it will be ignored by Stubbifier . To illustrate the usefulness of
this feature, consider a developer that has been using Stubbifier for some time. This devel-
oper may note that Stubbifier classified some function as unreachable, but that function is
nearly always loaded dynamically in clients of the developer’s package. Instead of writing
tests for this function (e.g., perhaps the function is difficult to write unit tests for), the
developer can configure Stubbifier to ignore that function to avoid it needing to be loaded
dynamically.

6.3.3 Guarded Execution Mode

Since Stubbifier builds the input call graph using the application’s tests, the stubbed code is
also the untested code. Dynamically loading and executing this code could pose a security
risk, as it may include injection vulnerabilities that were not encountered during testing.

To address such concerns, Stubbifier includes an option to detect calls to a pre-specified
list of “dangerous” functions in expanded code. This is achieved by intercepting all func-
tion calls and checking whether or not the function is (perhaps an alias of) one of these
dangerous functions. In our current implementation, the list of these functions consists
of: eval, process.exec, and child process.{fork, exec, execSync, spawn}, common functions
that enable the execution of arbitrary code. It is trivial to include other functions to
this list, so users can customize what functions they want guard against. We include an
example of the code with guards in Appendix C.

These checks can be configured to generate a warning, or exit the application if a
dangerous function is about to be called. This transformation is run on the original code
so that, when a stub is expanded, the loaded code includes guards.

Since these functions could be aliased, we must wrap every function call with these
checks. As such, the size of the loaded code (i.e., the expanded stubs) is increased dramat-
ically. The guards also incur more runtime overhead, as will be discuss in Section 6.4.

6.3.4 Asynchrony

JavaScript is a single-threaded language, and so our approach need not deal with the multi-
threaded setting. That said, JavaScript does provide several mechanisms for asynchronous

89

programming (event-driven programming, promises and async/await), and the use of these
features may give rise to imprecision and unsoundness during call graph construction. Our
approach addresses this by not assuming soundness in the first place–stubs are introduced
in cases where the analysis has identified a function as being unreachable. Unsoundness
will cause more stubs to be introduced, which increases runtime overhead when they are
expanded.

6.3.5 Bundler Integration

Many JavaScript projects use bundlers such as webpack [231] and Rollup [185] to package
an application along with all the modules that it depends on into a single-file distribution
that includes all required functionality. Such a bundle can be included in another applica-
tion using require or import, so that users do not need to go through additional installation
steps.

Bundlers perform a limited form of code debloating known as “tree-shaking”, which
identifies functions and classes that are unused based on a static analysis of the import
relationships between modules. If the project relies on require statements to import ex-
ternal functionality, the required files are simply included in the bundle in their entirety;
if the project relies on the ECMAScript Module System, parts of an imported module can
be removed if they are not referenced in the importing module. The size reductions that
can be achieved using tree-shaking can be significant, but they are still limited by the fact
that soundness is required, because the removal of code that is used could cause a bundled
application to crash.

The use of Stubbifier in combination with a bundler requires a few additional steps in the
previously discussed transformation pipeline. First, bundling must always happen before
applying Stubbifier , as bundlers perform their own code transformations. For example,
when merging all the application code into a single file, bundlers often refactor the code
so as to avoid variable name conflicts, repeated imports, etc. If Stubbifier were run on the
application before bundling, the bundler would only perform its analysis on the code that
is not replaced with stubs, since the code to be loaded dynamically is just stored as plain
text. As a result, expanding a stub would result in code that does not match, e.g., the
changed variable names in the bundle, which is likely to result in errors.

To prevent such issues, Stubbifier should be applied to an application after it has been
processed by a bundler. One minor obstacle here is that Stubbifier uses an application’s
tests as the entry points for call graph construction, and tests are nearly always based
on the original project source code, and not on a bundle. To address this, Stubbifier

90

Figure 6.6: Stubbifier overview with bundler integration. As in Figure 6.1, a call graph is computed
from the project and its test suite, but here the project is bundled before being transformed. The code
transformation is applied to the bundle w.r.t. the call graph computed from the application (note: test
suites typically rely on the non-bundled application, which is why the call graph is not computed over the
bundle directly).

determines a mapping of the functions to be stubbed from their positions in the original
code to their positions in the bundle. Then, it constructs call graphs from tests as discussed
before, and it consults the mapping to determine where stubs should be introduced in the
bundle. This is all illustrated in the diagram in Figure 6.6, which is expanded from the
diagram in Figure 6.1. The major difference with the approach illustrated in Figure 6.1 is
the use of a bundler after the call graph is computed, but before debloating; the result of
this entire process is a debloated application bundle.

The evaluation presented in Section 6.4 will examine how much additional code size
reduction can be achieved by Stubbifier on applications after they have been bundled using
Rollup.

6.4 Evaluation and Discussion

This section presents an evaluation of Stubbifier that aims to answer the following research
questions:

• RQ1. How much does Stubbifier reduce application size, and which type of call
graphs (static or dynamic) is more effective for reducing application size?

• RQ2. How much code is dynamically loaded due to stub expansion?

91

• RQ3. How much overhead is incurred due to stub expansion?

• RQ4. How much time does Stubbifier need to transform applications?

• RQ5. How much run-time overhead is incurred by guarded execution mode and can
it detect security vulnerabilities?

• RQ6. How much does Stubbifier reduce the size of applications that have been
bundled using Rollup?

6.4.1 Experimental Setup and Methodology

To evaluate Stubbifier , we selected 15 projects from the most popular projects published
by npm; specifically, we listed projects in descending order by number of weekly downloads,
and went down this list, selecting a project if it met the following two criteria: first, we
required that the project installed, was able to build without error, and had a running test
suite with no failing tests (as Stubbifier uses the test suite to generate call graphs). If a
project satisfied these criteria, we then randomly selected from its dependents, or clients,
and attempted to install, build, and run their tests; if the project had five such clients, it
was selected for our evaluation. The selection criterion that was the most difficult to satisfy
is that subject applications needed to have at least 5 client packages that had fully passing
test suites. The availability of such client packages is critical to our evaluation since this
provides us with a way to assess frequency and cost of stub expansion in a realistic setting
(since we introduce stubs in an application based on its own tests, running the same tests
to evaluate stub expansion would have yielded biased results).

The intended user of Stubbifier is a package developer: when the developer is ready
to prepare a production distribution of their package, they can run Stubbifier . Based on
the application’s tests, Stubbifier will determine the extent of the package code that is
reachable, as well as the extent that the package exercises its dependencies. Thus, it is
likely that Stubbifier will remove large swathes of the package’s production dependencies.
The developer is left with a minimal distribution that they should feel safe distributing
to users. The evaluation described here is intended to simulate that experience: we run
Stubbifier on a package, and then insert the stubbified version of that package in five of
the package’s dependents to confirm that the debloated distribution works, and evaluate
the extent to which our technique was effective (by running the tests of the dependents).

92

Test Coverage Size
Project (citation) Commit LOC # files # tests Src Deps Deps (KB)

memfs ([24]) a9d2242 18k 133 284 80.7% 37.2% 1 146
fs-nextra ([4]) 6565c81 11k 184 138 99.0% 99.0% 0 52
body-parser ([13]) 480b1cf 20k 210 231 99.7% 29.6% 21 364
commander ([27]) 327a3dd 13k 177 351 48.8% 48.8% 0 70
memory-fs ([29]) 3daa18e 14k 167 44 97.4% 58.9% 11 120
glob ([19]) f5a57d3 13k 175 1706 95.9% 72.0% 10 86
redux ([182]) b5d07e0 105k 4491 82 96.9% 0.5% 2 267
css-loader ([28]) dcce860 71k 1299 430 99.3% 4.88% 36 2764
q ([21]) 6bc7f52 16k 135 243 42.9% 14.9% 0 281
send ([23]) de073ed 14k 157 152 100% 68.5% 17 97
serve-favicon ([16]) 15fe5e3 10k 121 30 100% 58.8% 5 20
morgan ([15]) 19a6aa5 14k 159 81 100% 73.6% 8 55
serve-static ([17]) 94feedb 13k 160 90 100% 48.4% 19 106
prop-types ([18]) d62a775 15k 152 287 98.0% 1.48% 4 106
compression ([14]) 3fea81d 13k 149 38 100% 40.6% 11 66

Table 6.1: Summary of projects used for evaluation

Table 6.1 lists the projects used for the evaluation, as well as some relevant metrics.
The first row reads: the project memfs has 18k lines of code (LOC) in the analyzed files7,
and there are 133 files analyzed (Num files). The memfs test suite has 284 tests, which
have a coverage of 80.7% of the source code of the project (Coverage: Src), and a coverage
of 37.23% of its production dependencies (Coverage: Deps). memfs has one production
dependency (Deps), and its analyzed code comprises 146 KB (Size). Note that the number
of dependencies includes both direct and transitive dependencies.

We have created a code artifact [217] to accompany this chapter: the artifact includes
each project cloned at the version on which we ran the evaluation, the experimental in-
frastructure used to conduct said evaluation, as well as the full source code of Stubbifier .

Selecting subject applications. Each subject application was processed twice with
Stubbifier , once using static call graphs and once using dynamic call graphs. In each case,
files and functions deemed unreachable were replaced with stubs. To addressRQ4, the time
required for the entire process was measured. For RQ1, the size of the application before
and after introducing stubs was compared. We compute the size of source code (excluding
tests), including production dependencies and excluding development dependencies.

To address RQ2 and RQ3, we selected five clients of each subject package from its list
of dependents that is published on npm. These clients were essentially selected randomly,
but we excluded clients without tests or with failing tests. We also confirmed that the

7The metrics in the table reflect the project’s own source code (excluding tests), and all its (transitive)
production dependencies, but excluding devDependencies. .

93

https://github.com/streamich/memfs
https://github.com/bdistin/fs-nextra
https://github.com/expressjs/body-parser
https://github.com/tj/commander.js
https://github.com/webpack/memory-fs
https://github.com/isaacs/node-glob
https://github.com/reduxjs/redux
https://github.com/webpack-contrib/css-loader
https://github.com/kriskowal/q
https://github.com/pillarjs/send
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/expressjs/compression
https://doi.org/10.5281/zenodo.5599914

Project Size (KB) Reduction % Expanded (KB) Red after exp (%)

memfs 19 87% [19, 138] [87%, 5%]
fs-nextra 31 39% [31, 45] [39%, 14%]
body-parser 65 82% [211, 297] [42%, 18%]
commander 68 2% [68, 68] [2%, 2%]
memory-fs 41 66% [41, 87] [66%, 27%]
glob 61 28% [70, 80] [18%, 7%]
redux 201 25% [221, 221] [17%, 17%]
css-loader 559 80% [559, 895] [80%, 68%]
q 37 87% [37, 100] [87%, 64%]
send 59 39% [59, 92] [39%, 5%]
serve-favicon 15 24% [15, 18] [24%, 8%]
morgan 25 55% [41, 45] [25%, 20%]
serve-static 38 64% [38, 83] [64%, 21%]
prop-types 18 83% [56, 56] [48%, 48%]
compression 24 63% [24, 24] [63%, 63%]

(a) Size of projects stubbified with static CG

Project Size (KB) Reduction % Expanded (KB) Red after exp (%)

memfs 17 89% [17, 136] [89%, 7%]
fs-nextra 47 10% [47, 47] [10%, 10%]
body-parser 173 53% [180, 253] [51%, 31%]
commander 59 16% [59, 59] [16%, 16%]
memory-fs 100 17% [100, 117] [17%, 3%]
glob 84 4% [91, 91] [-6%, -6%]
redux 189 29% [209, 209] [22%, 22%]
css-loader 584 79% [584, 1372] [79%, 50%]
q 206 27% [206, 209] [27%, 26%]
send 89 8% [89, 93] [8%, 5%]
serve-favicon 19 3% [19,19] [3%, 3%]
morgan 49 13% [52, 52] [7%, 7%]
serve-static 98 7% [98, 102] [7%, 4%]
prop-types 16 85% [53, 53] [50%, 50%]
compression 46 29% [46, 46] [29%, 29%]

(b) Size of projects stubbified with dynamic CG

Table 6.2

94

https://github.com/streamich/memfs
https://github.com/bdistin/fs-nextra
https://github.com/expressjs/body-parser
https://github.com/tj/commander.js
https://github.com/webpack/memory-fs
https://github.com/isaacs/node-glob
https://github.com/reduxjs/redux
https://github.com/webpack-contrib/css-loader
https://github.com/kriskowal/q
https://github.com/pillarjs/send
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/expressjs/compression
https://github.com/streamich/memfs
https://github.com/bdistin/fs-nextra
https://github.com/expressjs/body-parser
https://github.com/tj/commander.js
https://github.com/webpack/memory-fs
https://github.com/isaacs/node-glob
https://github.com/reduxjs/redux
https://github.com/webpack-contrib/css-loader
https://github.com/kriskowal/q
https://github.com/pillarjs/send
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/expressjs/compression

dependency is actually used in the client: there are some projects that list a package as a
dependency but no longer use in the source code, and we excluded these. Finally, we exclude
clients that require the use of older versions of Node.js. We did not run an application’s
own test suite to explore RQ2 and RQ3 because it was debloated based on those very
same tests. Further, the use case envisioned is that of a developer debloating their own
project, and clients importing the debloated version; examining how the debloated version
of a project behaves in the setting of one of its clients replicates this.

Conducting performance measurements. To determine the performance overhead
caused by stub expansion, we compared the runtime of each of these clients’ tests when
using the stubbed and original subject application. When running the test suite with
the stubbed application, we also tracked the total size and number of stub expansions to
determine how much code is loaded dynamically. In our evaluation, stubs were loaded
from local storage on the machine running the evaluation.

To mitigate noise and bias caused by caching, all test suites were executed 10 times after
two test runs before the timed experiments; the reported results are the average of these
10 test runs. Furthermore, since some of the tests generate files in /tmp, this directory is
cleared between every test suite run.

Finally, to mitigate versioning errors, we run our experiments on a client using the same
version of the dependency as the one that we transform. Specifically, we do the following
when testing a client:

• npm or yarn install in the root of the client project.

• Replace the dependency in question in the client’s node modules with a symbolic link
to the source code of the dependency that we will transform.

• Run the client’s tests.

• Transform the dependency. The symbolic link means the client needs no change to
use the stubbed version of the dependency.

• Rerun the client’s tests, now with the stubbed version of the dependency.

All our experiments were conducted on a Thinkpad P43s with an Intel Core i7 processor
and 32GB RAM, running Arch linux, using the same version of Node.js (14.3.0), to avoid
any updates to the runtime environment that could affect run times and thus skew the
results.

95

Guarded execution mode. For RQ5, we repeated the experiments with guards en-
abled, and measured the running time and size of expanded code for the client test suites
to determine the increase in overhead due to these extra checks.

In addition, we report on a case study involving depd [10], a subject application with
a known vulnerability, and on experiments with osenv and node-os-uptime, two npm

modules with confirmed vulnerabilities that were used as experimental subjects in Karim
et al. [121]8.

Bundlers. ForRQ6, each subject application was bundled use the Rollup bundler [185].
This involved the creation of a bundler configuration file (which we generated automatically
given the application’s package.json file) to bundle the application based on its listed entry
points and to create a single bundle that also includes all of its production dependencies9.
We measure and report on the sizes of the resulting bundle, both with and without having
applied Stubbifier , to determine what additional size reduction is enabled by Stubbifier .

6.4.2 Overview of Results

The results of running Stubbifier on the projects are displayed in Tables 6.2a and 6.2b. We
show the size of the original source code, the size of the application distribution, and then
the resulting size of the distribution after we run our transformation on it, with both the
static and dynamic call graphs.

Note that the size immediately after transformation is only representative of the stubbed
application size if no stubs are expanded. To gain a realistic estimate of the size reduction
in a standard use-case of the application, we identified five clients for each application and
tracked how many stubs were expanded during the execution of the test suites of these
clients. Then, we consider the size of the application to be its base stubbed size plus the
total size of the stubs that were expanded during the client tests. This is reported as a
range of the lower and upper bounds of application size over the five clients. The full data
is included in Appendix C.

The first row of Table 6.2a reads: after running Stubbifier with the static call graph, the
size of the memfs source code is reduced to 19KB, which is a reduction of 87% of the original

8Of the subject applications reported on in this work [121], these were the only two that had a confirmed
vulnerability and a test suite with passing tests.

9The default behavior of rollup is to ignore dependent modules in node modules, but the bundle
should all code in which stubs may be introduced, to be able to determine Stubbifier ’s effectiveness.

96

https://rollupjs.org/guide/en/

application size. This expanded to a minimum of 19KB (i.e., nothing was expanded) and
a maximum of 138KB over the five clients tested; the expanded code is a reduction of 87%
(with minimum expansion) and 5% (with maximum expansion) of the original application
size. The first row of Table 6.2b can be read the same way, but for results after running
Stubbifier with the dynamic call graph on memfs and testing with the same five clients.

In the remainder of this section, we will address each research question in order.

RQ1: How much does Stubbifier reduce application size, and
which type of call graphs (static or dynamic) produces smaller
applications?

We refer the reader to Tables 6.2a and 6.2b. In these tables, it can be seen that, using static
call graphs, size reductions ranging from 2% to 87% are achieved (56% on average). The
case where a size reduction of only 2% is achieved is commander, which has no dependencies
and appears to be a bit of an outlier. Using dynamic call graphs, size reductions ranging
from 3% to 89% achieved (31% on average).

Overall, the use of static call graphs results in larger size reductions in 11/15 cases, and
in larger size reductions on average (56% on average when static call graphs are used vs.
31% when dynamic call graphs are used). This is not surprising, as both static and dynamic
call graph constructions use the test suite as the entry point of the application, and the
static analysis suffers from unsoundness due to the dynamic nature of JavaScript. Since
the static analysis is constructing a call graph, unsoundness might cause some functions
to be excluded from the call graph when they are actually executed in the test suite. As a
result, the initial code size reduction is therefore usually larger, but more stubs need to be
expanded at run time. The dynamic analysis finds every function that is called during the
test suite execution, since it is constructed with a coverage tool. If the static analysis was
perfectly precise then it would produce the exact same call graph as the dynamic analysis.

Many of these packages have millions of weekly downloads, and so the size savings add
up quickly: for example, css-loader is 2.764MB, and with 10 million weekly downloads we
have nearly 28TB of data transferred to users every week. Stubbifier reduces css-loader’s
initial size by 80% with both call graphs, which would contribute to 22 fewer TB being
transferred weekly (for one project!).

On average, Stubbifier reduces initial application size by 56% when using static call graphs,
and by 31% when using dynamic call graphs.

97

RQ2: How much code is dynamically loaded due to stub expan-
sion?

Again referring to Table 6.2a and 6.2b, this time to the Expanded KB range columns,
we see that the top end of the expanded ranges using the static call graph are smaller than
(or equal to) the expanded ranges using the dynamic call graph in 11/15 cases. This aligns
with our findings in RQ1. In all but one case, the minimal expanded size is close to the
reduced application size, and the maximum size increase is > 2x in only two cases.

The case where glob is processed using a dynamic call graph is an interesting outlier, as
its size is larger than the original code after all stubs have been expanded. This is because
not much of glob is stubbed (the initial size reduction is only 4%, or 2KB), and the code
required to support stub expansion is larger than the initial size reduction due to the extra
boilerplate that was introduced by Stubbifier (import statements, eval call, reassignments
to imports, etc.).

To break down the results further, we consider the results for all clients of a few pack-
ages. Tables 6.3a and 6.3b display all the metrics tracked for all clients of redux, q, and
body-parser. These metrics are the test suite runtimes, the percentage slowdown due to
running the stubbed code, and number and size of stubs dynamically expanded during the
tests. We chose these applications to display as we felt they are a representative sample of
our results; the full data for all clients of all projects is included in Appendix C.

The first row of Table 6.3a reads: for redux, its client application Choices has an average
test suite runtime of 5.06 seconds. When the Choices test suite is rerun with stubbed redux

(via the static call graph), it has an average runtime of 5.16 seconds, which is a slowdown of
2%; 1 file stub and no function stubs were expanded, and the total size of stubs expanded
was 20.06KB. The first row of Table 6.3b shows the results of rerunning again with stubbed
redux via the dynamic call graph: now, Choices’ test suite has an average runtime of 5.05
seconds, which is a slowdown of 0%; 1 file stub and no function stubs were expanded, and
the total size of stubs expanded was 20.06KB.

Digging into the client-specific data reveals some interesting trends. There appears to
be a correlation between the number of stubs expanded for the static and dynamic call
graphs. For example, consider the clients of body-parser: even though there are more
stub expansions using the static call graph vs. using the dynamic call graph, it appears
that there are “sets” of functionality that are commonly expanded together (seen here as
whenever 48 file stubs are expanded in the static case, 14 file stubs are expanded in the
dynamic case). The range of expansions among clients suggest that some of the clients use
more of an application’s untested functionality than others.

98

Client Stubbed code: effect of expansions
Proj Client Proj Time (s) Time (s) Slowdown (%) Files Fcts Exp (KB)

Choices 5.06 5.16 2% 1 0 20.06
found 30.61 31.83 4% 1 0 20.06

redux Griddle 8.93 8.91 0% 1 0 20.06
react-beautiful-dnd 61.70 63.49 3% 2 0 20.06

redux-ignore 0.57 0.58 2% 1 0 20.06

decompress-zip 0.70 0.74 6% 1 0 63.25
downshift 1.43 1.44 1% 1 0 63.25

q node-ping 3.80 4.20 10% 1 0 63.25
passport-saml 0.41 0.44 6% 0 0 0.00
requestify 2.92 2.99 2% 1 0 63.25

appium-base-driver 8.66 10.04 14% 39 0 146.10
body express 1.05 1.89 45% 48 0 231.69
- karma 2.08 2.12 2% 40 0 199.57
parser moleculer-web 5.80 6.46 10% 48 0 231.69

typescript-rest 13.17 14.89 12% 48 0 231.69

(a) Stubbed with static call graph

Client Stubbed code: effect of expansions
Proj Client Proj Time (s) Time (s) Slowdown (%) Files Fcts Exp (KB)

Choices 5.06 5.05 0% 1 0 20.06
found 30.61 31.34 2% 1 0 20.06

redux Griddle 8.93 9.03 1% 1 0 20.06
react-beautiful-dnd 61.70 62.12 1% 2 0 20.06

redux-ignore 0.57 0.59 3% 1 0 20.06

decompress-zip 0.70 0.78 10% 0 5 2.98
downshift 1.43 1.44 1% 0 1 0.88

q node-ping 3.80 4.08 7% 0 6 2.86
passport-saml 0.41 0.42 2% 0 0 0.00
requestify 2.92 3.05 4% 0 2 0.86

appium-base-driver 8.66 9.26 6% 8 0 6.69
body express 1.05 1.21 14% 14 0 79.70
- karma 2.08 2.09 1% 12 0 79.03
parser moleculer-web 5.80 6.38 9% 14 0 79.70

typescript-rest 13.17 14.48 9% 14 0 79.70

(b) Stubbed with dynamic call graph

Table 6.3: Results for Clients of Select Projects

99

https://github.com/jshjohnson/Choices
https://github.com/4Catalyzer/found
https://github.com/GriddleGriddle/Griddle
https://github.com/atlassian/react-beautiful-dnd
https://github.com/omnidan/redux-ignore
https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift
https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify
https://github.com/appium/appium-base-driver
https://github.com/expressjs/express
https://github.com/karma-runner/karma
https://github.com/moleculerjs/moleculer-web
https://github.com/thiagobustamante/typescript-rest
https://github.com/jshjohnson/Choices
https://github.com/4Catalyzer/found
https://github.com/GriddleGriddle/Griddle
https://github.com/atlassian/react-beautiful-dnd
https://github.com/omnidan/redux-ignore
https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift
https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify
https://github.com/appium/appium-base-driver
https://github.com/expressjs/express
https://github.com/karma-runner/karma
https://github.com/moleculerjs/moleculer-web
https://github.com/thiagobustamante/typescript-rest

We also noted consistency in which stubs are expanded. For example, in the “sets”
of expanded functionality described earlier, these are the same 48 and 14 files every time.
As an additional example, all the clients of redux expand one file stub (one client expands
two)—this is always the same stub that is expanded. In the other applications, there is
always significant overlap in which stubs are expanded with different clients. This suggests
that some of these applications have commonly used functionalities that are untested, so
developers could use this information to shore up their test suites.

Finally, we observe that the dynamic call graph typically produces far fewer file stub
expansions than the static call graph. There are a few dimensions to this. On one hand, as
JavaScript is a dynamic language, the static call graph is likely to be incomplete—functions
in JavaScript are often called in highly dynamic ways, and these kinds of calls are more
easily detected using dynamic analyses. On the other hand, the dynamic call graph is
more susceptible to lower-quality tests: if the application is poorly tested, the dynamic
call graph will report many unreachable functions and files. It is not immediately clear
which call graph yields “better” results, as fewer stubs mean less size reduction, but also
less overhead—we ultimately leave the decision up to the developer.

Most package clients load very little code dynamically. Many applications have commonly
loaded “sets” of code, representing broadly used, untested functionality.

RQ3: How much overhead is incurred due to stub expansion?

To determine the performance overhead introduced by stub expansion, we measured the
running times of the test suites of clients of applications processed by Stubbifier .

We decided not to aggregate runtime information over all clients of a package as the
overhead depends on many factors outside of our control: the number of tests, the structure
of the tests, the raw running time of the test, etc. Instead, we conducted a case study
on the effect of the dynamic code loading for the individual clients of the three projects
presented in Tables 6.3a and 6.3b. The results for all test applications are included in
Appendix C, but the trends are upheld across the full data.

Referring to the time columns of Tables 6.3a and 6.3b, the following conclusions can
be drawn. First, a correlation between the slowdown and the number of stub expansions
can be observed: as more code is dynamically loaded, the performance overhead increases.
This aligns with our expectations, as stub expansions involve additional I/O and compute
time. That said, the runtime overhead is never extreme, and the slowdowns still leave the
running times of the test suites well within the same order of magnitude. As a percentage,

100

Static CG Dynamic CG
Project CG generation (s) Transf. (s) CG generation (s) Transf. (s)

memfs 740.18 2.46 15.97 2.72
fs-nextra 380.97 1.11 13.94 1.10
body-parser 295.38 3.43 10.53 3.79
commander 554.93 1.94 24.56 1.61
memory-fs 324.06 1.73 5.33 1.75
glob 300.80 2.09 18.66 1.46
redux 1349.09 3.18 182.02 4.02
css-loader 1137.77 14.85 48.61 15.52
q 336.31 4.41 10.98 4.85
send 279.16 1.75 7.57 1.67
serve-favicon 259.06 0.76 3.91 0.79
morgan 313.76 1.20 8.65 1.16
serve-static 276.89 1.67 7.51 1.60
prop-types 752.94 2.12 12.79 1.89
compression 279.18 1.28 6.78 1.37

Table 6.4: Callgraph generation and transformation timing

some runtime overhead is high (e.g., body-parser’s express dependency), but the magnitude
of the change is not (only 0.84 seconds). We do not see high percentage slowdowns for
long-running tests, for instance redux’s found and react-beautiful-ignore clients have 4%
and 3% slowdowns respectively. We conjecture that the amount of overhead mostly has to
do with the I/O required to load the dynamic code.

By and large, the magnitude and percentage overhead introduced by dynamic loading is
small.

RQ4: How much time does Stubbifier need to transform applica-
tions?

Table 6.4 shows the time needed by Stubbifier to process each of the 15 projects. Here,
we distinguish between the time needed to construct call graphs, and the time needed
to transform the source code. Note that as the execution of the project test suite is a
necessary step for constructing the dynamic callgraph, the dynamic callgraph generation
time includes the time required to run the tests.

The first row of the table reads: for memfs, generating the static call graph takes 740.18
seconds and applying transformations based on this call graph takes 2.46 seconds. Further-
more, generating the dynamic call graph takes 15.97 seconds and applying transformations
based on this call graph takes 2.72 seconds.

101

https://github.com/streamich/memfs
https://github.com/bdistin/fs-nextra
https://github.com/expressjs/body-parser
https://github.com/tj/commander.js
https://github.com/webpack/memory-fs
https://github.com/isaacs/node-glob
https://github.com/reduxjs/redux
https://github.com/webpack-contrib/css-loader
https://github.com/kriskowal/q
https://github.com/pillarjs/send
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/expressjs/compression

From the table, it can be seen that the cost of the code transformation itself is negligible.
The longest runtime is 15 seconds on the css-loader project, which is unsurprising given
that css-loader is the largest subject application (2.76MB). There is no difference between
the transformation times using the static vs dynamic call graphs. This is also unsurprising,
as the same process is used to run the transformation in either case, and, generally, a similar
number of stubs is created. In cases such as q, where the dynamic call graph produces a
larger stubbed application and yet it takes longer to run, this is because there are more
function stubs being generated (compared to a single file stub being generated when using
static call graphs).

The cost of call graph construction is more noteworthy. Overall, we see that construct-
ing a static call graph takes one to two orders of magnitude more time than constructing
the dynamic call graph. We also observe a correlation between the times to construct the
static and dynamic call graphs. To construct the dynamic call graph, Stubbifier simply
computes a coverage report from running an application’s tests (including node modules),
which amounts to the time to run the tests plus some small overhead. The slower runtime
of static call graph construction is due to our inclusion of the generation of the CodeQL
database in the overall runtime, which is directly proportional to the amount of code in
the project (in order to run any static analysis queries, CodeQL must build a database of
the application’s code—this is a one-time cost as long as the code does not change).

We envision the use-case of Stubbifier to be a final stage in the creation of a production
release, and so do not believe a build-time of 5-15 minutes to be prohibitive. If a user
wanted to apply Stubbifier more frequently, they could opt for using dynamic call graphs.

The average runtime of Stubbifier with the static call graph is not prohibitive (at roughly
8.3 minutes), and is much lower (28 seconds) with the dynamic call graph.

RQ5: How much run-time overhead is incurred by guarded exe-
cution mode and can it detect security vulnerabilities?

The use of “dangerous” functions such as eval and exec that interpret string values as
code is known to cause injection vulnerabilities in JavaScript applications [121]. It is
particularly concerning if such functions are invoked from untested code, because it means
that the developers may not have considered all situations where calls to such functions
are executed. Stubbifier ’s guarded execution mode aims to mitigate this risk, by adding
dynamic checks for such functions in stubbed-out code so that a warning can be issued or
execution can be terminated when such calls are encountered. These dynamic checks may

102

With guards
Client Proj Time (s) Slowdown (%) Exp. KB Exp. KB no guards

decompress-zip 1.22 43% 240.9 63.3
downshift 1.47 3% 240.9 63.3
node-ping 4.89 22% 240.9 63.3
passport-saml 0.48 13% 0.0 0.0
requestify 3.30 12% 240.9 63.3

(a) Stubbed with static call graph

With guards
Client Proj Time (s) Slowdown (%) Exp. KB Exp. KB no guards

decompress-zip 0.78 10% 16.6 3.0
downshift 1.63 13% 3.2 0.9
node-ping 4.69 19% 14.9 2.9
passport-saml 0.51 19% 0.0 0.0
requestify 3.43 15% 4.3 0.9

(b) Stubbed with dynamic call graph

Table 6.5: Results for Clients of q with guards enabled

have a noticeable impact on code size and execution times, and research question RQ5
aims to establish the magnitude of that effect.

We first consider performance and code size by repeating the experiments in guarded
execution mode. The initial distribution sizes for the 15 applications is the same, but we
noted an increase in expanded code sizes, which in many cases now exceeds the size of
the original application. This is unsurprising, as the code size overhead of the guards is
significant. Consider Tables 6.5a and 6.5b10, which report experimental data for the q

package’s five clients. The first row of Table 6.5a reads: for the decrompress-zip client of q,
the test suite runs in 1.22s which is a slowdown of 43% over running the test suite with the
original q package. A performance hit is expected, as the expanded code is now running
an additional conditional check around every function call to check if the function being
called is in the specified list of dangerous functions. Moreover, during these tests 240.9KB
of code is expanded, as compared to 63.25KB of code being expanded without guarded
execution mode (this last column is also included in Table 6.3a). Note that, when using
static call graphs, the expanded code size is almost 4x larger when guards are enabled. The
performance of the code also degrades, though the raw numbers are again fairly low—we
again suspect the increased slowdown to be (mostly) due to the fact that the program needs
to load more code. That said, we did observe some significant overhead in longer-running
applications, for instance slowdowns of 19% and 3% in the longer running test suites of
redux’s found and react-beautiful-dnd clients, respectively (when using static call graphs),
as compared with 4% and 3% respectively without guarded execution mode.

10The full data for all applications is included in Appendix C.

103

https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift
https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify
https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift
https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify

Detecting security vulnerabilities. When guarded execution mode was enabled, calls
to eval were intercepted in running the test suites of three subject applications: body-parser,
send, and serve-static. Upon investigation, we found that the dangerous calls were not in
the code of these packages themselves, but hidden in one their dependencies. Specifically,
all these packages rely on an old version of depd [10]: body-parser and send have a direct
dependency, and serve-static has a transitive dependency as it depends on send. We
confirmed that this is indeed a problem by examining the depd project repository on Github
and found that the problematic eval was removed on January 12, 2018 with commit [6],
which fixed three issues [7, 8, 9]. These issues were filed because eval is not only bad
practice, but its use is disallowed in Chrome apps and Electron apps. To fix this issue, we
removed the lock on the depd version (i.e., set it to *) to get the applications to use the
current version of depd, and confirmed that all client tests still pass.

To further test the effectiveness of guarded execution mode, we ran another experiment
involving two other applications with known vulnerabilities: osenv and node-os-uptime.
These projects were used as experimental subjects11 in the evaluation of a dynamic taint
analysis [121] that detected vulnerabilities in them. In both projects, a function contain-
ing a call to a dangerous function (exec in the case of osenv and execSync in the case of
node-os-uptime) was stubbed out by Stubbifier . We created a new test containing the same
code fragment that was used in Karim et al. [121] to detect the vulnerability, and confirmed
that the guard introduced by Stubbifier was triggered when the test was executed.

Guarded execution mode allows developers to detect injection vulnerabilities in imported
modules of which developers may be unaware, and we found several examples of this in
our experiments.

RQ6: How much does Stubbifier reduce the size of applications
that have been bundled using Rollup?

To answer this research question, we conducted an experiment where we applied the the
Rollup bundler to each subject application, and applied Stubbifier to the resulting bundle.
Table 6.6 displays the results of this experiment. The first row of this table can be read as
follows: for the memfs project, the size of the rollup bundle is 128KB, which is a reduction
of 53% from the original size of the project. When we stubbify that bundle using the
dynamic callgraph as input, the result is a bundle of 10KB, which is a further reduction

11Of all the subject applications considered in Karim et al. [121], these are the only two that still build,
install, and have a test suite with passing tests, as required by Stubbifier .

104

https://github.com/npm/osenv
https://github.com/oroce/node-os-uptime

Stubbed Bundle
Bundle Dynamic CG Static CG

Package Size (KB) Red % Size (KB) Red % Size (KB) Red %

memfs 128 53% 10 92% 10 92%
fs-nextra 52 0% 21 60% 21 60%
body-parser 626 36% 534 15% 534 15%
commander 72 17% 47 35% 47 35%
memory-fs 100 17% 62 38% 62 38%
glob 84 2% 42 50% 42 50%
redux 22 92% 7 67% 7 67%
css-loader 962 59% 393 59% 393 59%
q 66 77% 53 19% 53 19%
send 130 43% 89 31% 89 31%
serve-favicon 18 21% 12 31% 12 31%
morgan 54 3% 30 44% 30 45%
serve-static 107 22% 95 11% 95 11%
prop-types NA NA NA NA NA NA
compression 23 66% 21 7% 21 7%

Table 6.6: Effect of stubbifying bundled projects. Note: the size reduction reported in columns Dynamic
CG and Static CG are on top of the reduction reported in the Bundle columns. In our experiments,
Stubbifier achieved size reduction beyond what could be achieved with bundlers alone in all cases.

of 92% from the original bundle. When we stubbify the bundle instead with the static
callgraph as input, the result is also a bundle of 10KB, with the same reduction of 92%
from the original bundle.

Not all of the applications lend themselves well to bundling. For example, commander

and q are configured such that when the bundler is applied, the entire package is wrapped
in a single function that is called to generate the module exports. Since this function does
not exist in the original module, it is not detected as reachable from the application’s tests
(since these exercise the original, un-bundled application). To address this, we configured
Stubbifier to prevent it from replacing 4 functions with stubs (one in commander, and three
in q) (recall from Section 6.3.2 that programmers can specify in a comment that Stubbifier
should not stub a function or file). Beyond these, prop-types could not be bundled as it
depends on some BabelJS libraries that throw errors when the code format is changed by
the bundler, and fs-nextra has no dependencies so bundling it does not reduce its size at
all.

That said, in every case, we see that Stubbifier achieves additional size reductions on
applications after they are bundled, with an average of 37% further size reduction. Indeed,
the purpose of bundlers is not to reduce application size, and that is merely a secondary
benefit: the main goal of a bundler is to produce a single file that can be distributed for
ease-of-use, and Stubbifier reduces the size of all of these bundles. Bundlers and Stubbifier
are in a sense complementary.

105

https://github.com/streamich/memfs
https://github.com/bdistin/fs-nextra
https://github.com/expressjs/body-parser
https://github.com/tj/commander.js
https://github.com/webpack/memory-fs
https://github.com/isaacs/node-glob
https://github.com/reduxjs/redux
https://github.com/webpack-contrib/css-loader
https://github.com/kriskowal/q
https://github.com/pillarjs/send
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/expressjs/compression

To confirm that the debloated bundles behave as expected, we conducted an experiment
in which we reconfigured the test suites of commander, body-parser, and node-glob to use the
debloated bundle12, and found that the project tests executed as expected with no failing
tests introduced by the process.

Stubbifier achieves significant code size reductions when applied to bundled applications,
by reporting a further size reduction of 37% on top of the reduction already afforded by
bundlers.

6.4.3 Comparison with Mininode

Like Stubbifier , Mininode [126] is a tool for reducing the size of Node.js applications, but
there are fundamental differences between the two tools, which we explore and evaluate in
this section.

Mininode relies on a static analysis to determine code that is unused and that should
be removed. Code can be removed at one of two levels of granularity: “coarse”, where
entire modules are removed, or “fine”, where individual functions are removed. For the
“fine” mode, Mininode makes use of an unsound static analysis to build a call graph of
the application, using as the entry point the main file specified in the package.json of the
project. Mininode also removes non-code artifacts such as license and configuration files.

There is a significant difference in the types of distributions used to evaluate Mininode
and Stubbifier . In the JavaScript npm package ecosystem, a distinction is made between
an application’s dependencies and development dependencies: A dependency is another
package that the application needs to function (e.g., a utility library such as lodash),
whereas a development dependency is only needed during development (e.g., a test runner
such as mocha that is needed to run the application’s tests) and is not normally part of
a production distribution. Mininode assumes an application’s development distribution as
the starting point and considers development dependencies and package tests as targets
for removal. By contrast, in our work, we assume the production distribution of a package
to be the starting point (which already excludes development dependencies and tests).
Therefore, we do not consider development dependencies and test code when reporting
results obtained with Stubbifier . Mininode also only supports the ECMAScript 5 version

12In general, adapting application test suites to work with a bundled version of the application instead of
the original version can be a complex and error-prone process, as test suites may import specific functions
(that may be renamed by the bundler) from specific files (that may be combined by the bundler). For the
applications mentioned here, this conversion was straightforward.

106

of JavaScript (which dates back to 2009), whereas Stubbifier can debloat JavaScript ES2019
applications that use modern JS features such as modules, classes, async/await, etc.

We tried running Mininode on all 15 subject applications that we used to evaluate
Stubbifier . Of these, 4 used features specific to JavaScript ES6+13 causing Mininode to fail
on parsing the source code; 2 of them crashed Mininode with a runtime exception14 because
Mininode dispatches a malformed call to fs.stat, and in 1 of them15 Mininode removed
one a production file factory.js file, rendering the debloated application non-functional.
In the remaining 8 projects where Mininode ran successfully, we noted that the only files
that it removed were development dependency module files, test files, and non-code files
such as .eslintignore and LICENSE.

Fundamentally, Mininode and Stubbifier have different objectives and apply different
techniques. Mininode completely removes code and other files such as license files. On
the other hand, Stubbifier replaces code that is likely to be unused with stubs. Note that
it is not possible to apply Stubbifier after applying Mininode because Mininode removes
the application’s tests, which Stubbifier needs for call graph construction. Conversely,
Stubbifier creates production distributions that already exclude development dependences,
so applying Mininode after applying Stubbifier does not make sense.

6.5 Threats to Validity

Our approach relies on an application’s test suite as the entry point for call graph con-
struction. This entwines the performance of our tool with the quality of the tests. An
application with a low-quality test suite may generate a call graph that does not represent
a comprehensive usage of the application functions, thus leading to more stubs and likely
more stub expansion. To mitigate against bias, we did not consider the quality of an appli-
cation’s tests when selecting projects for our evaluation, only that the application had tests
at all (and that these tests passed). Concretely, Table 6.1 shows that applications have
differing numbers of tests, as many as 1706 and as few as 30, with every application having
over 10K LOC. We also see a large variation in the coverage achieved by these test suites
over the code available to be stubbed (i.e., the source code and production dependencies
of an application): we see coverage as high as 99.04% and as low as 0.52%. This suggests
that the quality of the test suites of the projects in our evaluation varies considerably.

13memfs,fs-nextra,commander.js,redux
14memory-fs,serve-favicon
15prop-types

107

Also, we are cognizant that we are drawing generalized conclusions based on a limited
set of JavaScript projects. To mitigate potential bias in project selection, we selected 15
projects in a systematic manner from the most popular projects published by npm: from a
list of projects sorted in descending order by number of weekly downloads, we attempted
to install, build, and run project test suites. If a project satisfied all these criteria, we then
randomly selected from its clients and attempted to install, build, and run their tests; if the
project had five such clients, it was selected. We also note that the subject applications vary
considerably in size, in number of dependencies, as well as application domains: e.g., memfs
is an in-memory file system, body-parser is a parser for request bodies, and css-loader

is a custom loader for css files. In a similar vein, we are cognizant of the fact that the five
chosen client applications might not be representative clients of the projects. To mitigate
potential bias here, we chose the clients randomly, and we chose five of them to try and
get a variety of use cases. We note that there is a range in the amount of code loaded
dynamically across the clients, so we see that not all the clients use the same features of a
package. We do also note that there is often overlap in the stubs expanded across clients:
this is unsurprising, as we expect some overlap in the ways clients use a project, and it
indicates untested functionality in the project.

It is also possible that the reported runtimes are subject to measurement bias. We
mitigate this by running all performance experiments on a machine with no other processes
running. We also report the average run time over 10 runs, after discarding two initial runs,
which minimizes risk of long experiment startup time.

In our experiments with the Rollup bundler, we had to manually configure Stubbifier to
avoid stubbing four functions in the bundles for commander and q that were introduced by
the bundler. Since these functions did not occur in the call graphs created by Stubbifier ,
they would otherwise have been replaced with stubs, resulting in size reductions in excess of
95%. However, such a size reduction would have been counterproductive—these functions
are always executed when the bundles are used, and thus the introduced stubs would always
have to be expanded. There is a potential for human error here, but identifying these four
functions was not difficult: for commander, the bundler wrapped the entire module in an
immediately invoked function expression (IIFE), and in the case of q the bundler included
large swaths of code in the exported object of the bundle. Longer term, an automated
solution to this problem could be devised.

108

6.6 Relation to Previous Work

Our work was inspired by Doloto [138], a tool that applies code-splitting to an appli-
cation based on “access profiles” obtained from users interacting with an instrumented
version of the application. These access profiles define clusters of functions that should be
loaded together, and functionality that should be part of the distribution of an applica-
tion. Applications processed by Doloto ship with enough functionality for initialization,
and inessential functions are replaced with small stubs that are either replaced once their
original code is loaded lazily, or on-demand when a stubbed function is invoked.

There are several factors that make Stubbifier more practical than Doloto. Most im-
portantly, Stubbifier is fully automatic, debloating an application based on call graphs
that were constructed from its tests. Stubbifier handles JavaScript ECMAScript 2019 [74],
which includes many features (e.g., classes, promises, async/await, generators, modules
etc.) that were not present when Doloto was developed in 2008. Moreover, Stubbifier
supports not only the function-level stubs that were used by Doloto, but also file-level
stubs to handle the common case where all functions in a file are found to be unreachable.
Stubbifier also provides a guarded execution mode, which prevents injection vulnerabilities
resulting from calls to functions such as eval and exec when they are invoked from within
untested code that resulted from expanding stubs. Lastly, Stubbifier has been developed
to be used in conjunction with bundlers.

In Section 6.4.3, we compared Stubbifier with Mininode [126], another tool for de-
bloating Node.js applications and noted significant differences between the two debloating
techniques: (1) Mininode targets development distributions, which include application
tests as well as dependencies only needed during development (e.g., test suite runners like
jest), whereas Stubbifier targets production distributions, which already exclude tests
and development dependencies; (2) Mininode completely removes code, and can introduce
application crashes if the removed code is called, whereas Stubbifier replaces code with
stubs that can fetch the original code as needed; (3) Mininode targets the ECMAScript 5
version of JavaScript, which lacks many widely used features such as classes, async/await,
and modules, and these are all supported by Stubbifier which supports the ECMAScript
2019 version of JavaScript. We ran Mininode on the 15 subject applications in the eval-
uation, and found that Mininode successfully debloated only 8 of them, and in those it
only removed development dependencies, test files, and non-code files. There is also recent
work on debloating other languages: JShrink [56] is a tool for debloating the bytecode of
Java applications. Their technique makes use of a combination of both static and dynamic
analyses, to use both the strong type guarantees of the Java language, and to also deal
with dynamic language features that are becoming more prevalent in modern Java use.

109

Section 3.4 broadly discussed debloating, which is pertinent in this chapter. Building
minimal application bundles is both well-studied and prevalent in industry. Many of these
approaches discussed rely on some form of “application profile” obtained via program
analysis—Stubbifier builds this profile via static or dynamic analysis of application tests.
Trimming optional functionality from applications has been studied by many, as well as
entirely removing unused code., Finally, Stubbifier relies on code splitting, though the
primary purpose of code splitting is to remove optional functionality until it is needed,
whereas it is leveraged in this approach for aggressive dead code elimination.

6.6.1 Control Flow Integrity

The guarded execution mode resembles works on Control Flow Integrity (CFI) verification
by, e.g., Abadi et al. [32]. A CFI policy dictates that program execution must follow a
predetermined path of a control flow graph, enforced via program rewriting and runtime
monitoring. Conceptually, our guarded execution mode enforces a policy where program
execution cannot invoke a predefined list of functions. Zhang et al. [252] present a CFI
approach that enforces a policy preventing jumps to any but a white-list of locations,
whereas our guarded mode enforces a black-list of functions. Niu and Tan [169] develop a
“per-input” CFI technique to avoid the overhead of constructing a control flow graph, and
our mode avoids this altogether by pre-transforming code to intercept calls.

6.6.2 Vulnerability Detection and Reduction

Guarded execution mode’s ability to intercept dangerous function execution in dynamically
loaded code is intended to reduce the attack surface of applications, and ultimately make
them less vulnerable to attacks.

There is a wealth of existing work in this area. On the topic of traditional injection
vulnerabilities, Gauthier et al. [95] describe an approach for detecting injection vulnera-
bilities through a mix of white-box analysis (of application code), and black-box analysis
(of third party modules), and Nielsen et al. [167] present a static dataflow analysis tool
which overcomes scalability issues by analyzing a limited amount of third-party modules.
Taint analysis is a popular method for detecting these types of vulnerabilities, and Staicu et
al. [202] describe an approach to automatically extracting taint specifications for JavaScript
libraries, which is important as taint analysis require taint specifications to report taint
flows, and manually coming up with taint specifications is tedious at best, and error-prone
at worst. Injection vulnerabilities are not alone in plaguing JavaScript code, and Li et

110

al. [131] present a novel data structure constructed from various static analysis, model a
variety of vulnerabilities (e.g., beyond injection), and use abstract interpretation to de-
tect them. Node.js allows JavaScript programs to execute arbitrary shell commands, and
Vasilakis et al. [222] detail an approach specifying read-write-execute permissions for third-
party libraries, noting that much third-party code executes with more elevated permission
than is required. Further, Staicu et al. [201] report on a study of over 200k Node.js ap-
plications, arguing that command-line injection vulnerabilities are common, and present a
system that synthesizes grammar-based policies from template values (that are generated
as abstractions of values likely to result in vulnerabilities). Another interesting vulnera-
bility specific to languages with prototype-based inheritance (like JavaScript) is reported
on by Li et al. [130]; known as prototype pollution, base object prototypes are modified to
introduce new attack vectors.

The npm ecosystem does provide a “security audit” of packages it installs, and typically
reports that dozens of vulnerabilities exist in installed dependencies. Zimmermann et
al. [253] conduct a study of security threats in the npm ecosystem, and determine that a lack
of maintenance contribute to many present vulnerabilities. Updating packages is important
to keep up with security patches, and semantic versioning helps developers determine the
work involved in downloading a new version of a package; Møller and Torp [160] argue
that semantic versioning is poorly used in JavaScript, and propose a technique to detect
breaking changes in security patches using fuzz testing of API models.

6.7 Conclusion

JavaScript is an increasingly popular language for server-side development, thanks in part
to the Node.js runtime environment and the vast ecosystem of modules available on npm.
Unfortunately, npm installs modules with all of their functionality, even if only a fraction
is needed, which causes an undue increase in code size. In this chapter, we presented a
fully automatic technique that identifies dead code by constructing static or dynamic call
graphs from the application’s tests, and replaces code deemed unreachable with either file-
or function-level stubs that can fetch and execute the original code dynamically. The tech-
nique also gives users the option to guard their applications against injection vulnerabilities
in untested code that result from stub expansion. This technique is implemented in a tool
called Stubbifier , which supports the ECMAScript 2019 standard.

In an empirical evaluation on 15 Node.js applications and 75 clients of these applica-
tions, Stubbifier reduced application size by 56% on average while incurring only minor
performance overhead. The evaluation also showed that Stubbifier ’s guarded execution

111

mode is capable of preventing several known injection vulnerabilities that are manifested
in stubbed-out code. Finally, Stubbifier works alongside bundlers, and for the subject appli-
cations under consideration, we measured an average size reduction of 37% in distributions
produced by bundlers.

Future work includes the application of similar debloating techniques to other program-
ming languages. A key enabling factor for our technique is the availability of a mechanism
for executing arbitrary code at run time, similar to JavaScript’s eval feature. While such
mechanisms tend to create significant challenges for sound static analysis, they enable the
implementation of stubs that load missing code at run time. The use of a fast program
analysis techniques that generate an unsound call graph is generally also well suited for
dynamic languages.

6.8 Discussion

In this work, we propose to use code splitting with unsound analysis as an alternative
to dead code elimination using sound analysis. Instead of outright removing dead code
(requiring precise analysis to be effective), we apply code splitting to code that unsound
analysis finds to be likely dead. A key observation underlying this work is that far more
JavaScript code is dead than it appears.

It is worth investigating scenarios where it is not catastrophic to wrongfully apply an
optimization. Dynamic languages in particular benefit from such approaches as it is rare
to be sure about anything when analyzing them. Just-in-time (JIT) compilers already do
this to some degree through speculative optimization, where a JIT will speculate about
properties of code blocks and optimize them accordingly, and if ever the assumptions are
invalidated the code is “de-optimized” and the original code is executed. In this work,
we speculated on the liveness of code, and if ever we were wrong about the code being
dead it was fetched and executed as if it were never removed. It is worth investigating
optimizations predicated on speculation of richer properties of code or of values: e.g.,
dispatching based on the sortedness of a list, or on the upper-triangularity of a matrix.

As a concrete avenue for future work, the dynamic loading mechanism presented in this
chapter could be improved by devising an analysis to automatically build “usage profiles”
for the application being debloated. For example, consider the snippet in Figure 6.7. Here,
if both foo and bar were determined to be likely dead, then they would both be replaced
with stubs. Then, if foo were called, the code for foo would be fetched and executed, which
includes a call to bar, which would trigger a separate dynamic load.

112

359 function foo() {

360 // big code

361 bar()

362 }

363

364 function bar() {

365 // big code

366 }

Figure 6.7: Example of inefficient dynamic loading in applications debloated with Stubbifier .

It would instead be more efficient to load the entire “usage profile” of foo, which
includes the code for bar, when foo is loaded dynamically. That being said, the overhead
associated with dynamic loading is relatively small, although improving that is sure to
make this approach more appealing in general. Further, unused functionality could be
communicated directly to developers so they can be informed about what their test suites
are missing (e.g., the common sets of unused functionality in redux).

113

Chapter 7

Lazy Loading

Abstract

Front-end developers want their applications to contain no more code than is needed in order to

minimize the amount of time that elapses between visiting a web page and the page becoming responsive.

However, front-end code is typically written in JavaScript, the ubiquitous “language of the web”, and tends

to rely heavily on third-party packages. While the reuse of packages improves developer productivity, it is

notorious for resulting in very large “bloated” applications, resulting in a degraded end-user experience.

One way to combat such bloat is to lazily load external packages on an as-needed basis, for which sup-

port was added to JavaScript in 2020 when asynchronous, dynamic imports were added to the language

standard. Unfortunately, migrating existing projects to take advantage of this feature is nontrivial, as the

code changes required to introduce asynchrony may involve complex, non-local transformations.

In this work, we propose an approach for automatically introducing lazy loading of third-party packages

in JavaScript applications. Our approach relies on static analysis to identify external packages that can

be loaded lazily and generates the code transformations required to lazily load those packages. Since the

static analysis is unsound, these transformations are presented as suggestions that programmers should

review and test carefully. We implement this approach in a tool called Lazifier, and evaluate Lazifier on 10

open-source front-end JavaScript applications, showing that each application was successfully refactored,

reducing initial application size and load times in all cases. On average, for these applications, Lazifier

reduces initial application size by 36.2%, initial load time by 29.7%, and unsoundness did not arise in any

of these applications.

114

7.1 Introduction

In web application development, it is highly desirable to minimize the time it takes for
an application to load and become responsive [94, 135, 137, 57]. Therefore, developers
generally aim to keep the size of their distribution as small as possible and rely on tools
such as bundlers, minifiers, and tree-shakers [64, 157, 186, 232] to minimize code size.
Unfortunately, such tools are of limited use in scenarios where an application contains
functionality that is (potentially) required, but not immediately on application startup.
In such cases, responsiveness can be improved by loading the code associated with such
functionality asynchronously, if or when its first use occurs.

In this work, we propose an approach for automatically refactoring applications to
introduce lazy loading. We are targeting a specific scenario where the functionality to be
loaded lazily is isolated in a third-party library that is imported by the application under
consideration. Our approach relies on static analysis to identify packages that are only
used in the context of event-handling code, as they are likely only needed conditionally (or
at least not needed on startup). Then, for each of these packages, another static analysis
establishes the extent of the code that needs to be modified to accommodate asynchronous,
lazy loading of the package. Finally, a set of declarative rewrite rules specifies the code
changes required to transform the application.

We implemented this approach in a tool called Lazifier that targets the JavaScript pro-
gramming language (ECMAScript 2021). Similar to recent other refactoring tools [49, 216,
100], Lazifier employs unsound static analysis, so the proposed code transformations are
presented as suggestions that programmers should review and test carefully before apply-
ing. In an experimental evaluation on 10 open-source client-side JavaScript applications,
the code transformations proposed by Lazifier resulted in an average initial application
size reduction of 36.2%, which caused applications to speed up initial load time by 29.7%
on average. Furthermore, we found that the actual lazy loading of packages affected by
the transformations incurs little overhead. Finally, despite the potential for unsoundness
in the static analysis, we found that none of the transformations proposed by Lazifier for
the 10 subject applications caused unwanted behavioral differences.

In sum, this chapter contains:

• an automated approach for identifying packages that can be loaded lazily, and a set of
rewrite rules specifying how to refactor an application to load those packages lazily;

• an implementation of this approach in a tool called Lazifier, targeting the JavaScript
programming language;

115

• an evaluation of Lazifier on 10 applications that suggests that Lazifier reduces initial
application size (36.2%, on average) and load time significantly (29.7%, on average)
with little overhead associated with dynamic loading.

The remainder of this chapter is organized as follows. First, the relevant background
is covered in § 7.2, the problem is further motivated in § 7.3, the approach is described
in-depth in § 7.4 (in which the implementation of our tool, Lazifier, is overviewed in
subsections 7.4.4), followed by the evaluation in § 7.5, threats to validity in § 7.6, the work
is positioned with respect to related literature in § 7.7, and § 7.8 concludes. A discussion
follows in § 7.9 relating the work in this chapter with the rest of the thesis.

7.2 Background

Refer to Chapters 2.2.1 and 2.2 for background on asynchrony in JavaScript, and Chap-
ter 2.3.1 for more information regarding how to import external functionality into a
JavaScript application.

7.3 Lazy Loading

To illustrate our approach, consider an open-source JavaScript application that displays
a list of recent movies to users, complete with information about them (Movies-web-
ui [33]). Users can filter the list of movies and, optionally, export their filtered selection.
The code snippet in Fig 7.1(a) is taken directly from Movies-web-ui, showing how they
implement an “export” button and associated functionality. Note that this application
uses a few external packages: React, an extremely popular UI framework for JavaScript,
file-saver [77] for saving files, and xlsx [196] for dealing with spreadsheet-like data. The
file exports a function exportCSV that creates a JSX 1 button component (lines 382-386).
The "click" event handler associated with this button (lines 383-384) eventually calls the
exportToCSV function (lines 374-380), which leverages the xlsx package to convert a JSON
file representing the user’s selection to a sheet (line 375), and file-saver to save the
selection to a file (line 379).

Crucially, in this example, the xlsx and file-saver packages are only needed to
implement the export functionality and are not useful to users that simply want to browse

1JSX is a type provided by React that closely matches HTML, allowing programmers to easily construct
HTML-like objects in their JavaScript code.

116

367 import React from ’react ’;

368 import * as fileSaver from ’file -saver’;

369 import * as xlsx from ’xlsx’;

370

371 export const exportCSV = ({csvData , fileName }) => {

372 const fileType = ’...’;

373 const fileExtension = ’.xlsx’;

374 const exportToCSV = (csvData , fileName) => {

375 const ws = xlsx.utils.json_to_sheet(csvData);

376 const wb = {Sheets: {...}, SheetNames: [...]};

377 const buffer = xlsx.write(wb, {...});

378 const data = new Blob([buffer], {type: fileType });

379 fileSaver.saveAs(data , fileName + fileExtension);

380 }

381 return (

382 <button className="export"

383 onClick ={(e) =>

384 exportToCSV(csvData ,fileName)}>

385 Export

386 </button >

387)

388 }

(a)

389 import React from ’react ’;

390 // this import was removed

391 // this import was removed

392

393 export const exportCSV = ({csvData , fileName }) => {

394 const fileType = ’...’;

395 const fileExtension = ’.xlsx’;

396 const exportToCSV = async (csvData , fileName) => {

397 const fileSaver = await import(’file-saver’);

398 const xlsx = await import(’xlsx’);

399 const ws = xlsx.utils.json_to_sheet(csvData);

400 const wb = {Sheets: {...}, SheetNames: [...]};

401 const buffer = xlsx.write(wb, {...});

402 const data = new Blob([buffer], {type: fileType });

403 fileSaver.saveAs(data , fileName + fileExtension);

404 }

405 return (

406 <button className="export"

407 onClick ={async (e) =>

408 await exportToCSV(csvData ,fileName)}>

409 Export

410 </button >

411)

412 }

(b)

Figure 7.1: Excerpt of a client-side application which uses xlsx: (a) version with static import (b) version
with dynamic import

117

the list of movies. It should also be noted that the references to these packages on lines 375,
377, and 379 are the only references to these packages in the entire application.

In such cases, it is desirable to load packages lazily, so that users who do not use
the associated functionality do not incur the overhead of loading code that they will not
use. The code snippet in Fig 7.1(b) depicts how this can be achieved, and code changes
are highlighted. First, note the lack of static imports to xlsx and file-saver, and the
inclusion of dynamic imports to the packages instead (lines 397-398).

The call import(’file-saver’) on line 397 creates a promise that is resolved with an
object representing the file-saver package. Once the loading of the package has been
completed, the await on the same line ensures that this object can be assigned to the local
variable fileSaver. Recall that await expressions are only allowed in the context of async

functions, so the exportToCSV function must gain the async keyword (line 396). This changes
the return type of exportToCSV to Promise⟨JSX⟩, so all call sites to this function should
be await-ed to ensure that application behavior remains unchanged. In particular, an await

is added at the call to exportToCSV on line 408. This new await requires the surrounding
function to be made async as well (line 407), at which point we have reached a context that
implicitly handles asynchrony: callbacks that serve as event handlers are not expected to
return anything, so no further transformations are required once they are made async.

This simple refactoring reduces the amount of code that is loaded by over 30% (from
1.4mb to 0.96mb), and improves the initial load time of the application by just under
50% (from 517ms to 286ms, averaged over 10 runs). If the user does want to export their
selection, the packages are loaded rather quickly (0.11s), and the total amount of code
loaded by the application is 1.4mb, i.e., the same as the original size.

There are certain additional complexities that the above example only hinted at. For
instance, when making a function async, all call sites to the function must be await-ed,
no matter where they are. This can cause a cascade of transformations that may not be
localized to a single file. Further, certain code patterns need to be modified to accommo-
date async functions (e.g., the expression someArray.forEach(f) is blocking if the callback
f is synchronous, but non-blocking if f is async). In the next section, we describe these
complexities and present our approach to automatically detecting packages that can be
loaded lazily, and specify the code transformations required.

118

7.4 Approach

Our approach for automatically refactoring applications to introduce lazy loading consists
of the following three steps:

1. Determine packages that are only used in the context of event handlers;

2. Confirm which of these can be loaded lazily, and identify the required transformations;

3. Enact the transformation.

For (1), a static analysis detects which packages are only used in the context of event
handling code and not initially needed by the application. For (2), another static analysis
determines all of the functions containing references to a given lazy loading candidate.
Each of those functions will require a dynamic, asynchronous import of the package, which
will require several other code transformations to support the now asynchronous import.
If any of these transformations are not possible, the lazy loading candidate is discarded.
Finally, for (3) a set of declarative rewrite rules describes the code changes required to
refactor the application to lazily load the package.

Soundness. We assume that the static analyses used in steps 1) and 2) are potentially
unsound, because sound, precise, and scalable static analysis for JavaScript is well beyond
the state-of-the-art [175, 125, 130]. Thus, the transformations proposed by the approach
may not preserve behavior, and should be carefully reviewed by a programmer, similar to
the approach taken by other refactoring tools for JavaScript [49, 216, 100]. In Section 7.5,
we investigate the degree to which this unsoundness causes behavioral differences.

7.4.1 Identify Candidate Packages for Lazy Loading

To identify packages that should be loaded lazily, we provide a fully-automated analysis
that detects packages that are only used in the context of event-handling code. Given a
call graph for an application, this analysis identifies functions that are supplied to event-
handling mechanisms (e.g., registered as “on-click” attributes of HTML elements, or reg-
istered as event listeners), and determines all of the functions that are (transitively) called
from those handlers. If all references to a package are in this list of functions, then it is
flagged as being a candidate for lazy loading. This list of event handlers is:

119

• functions passed to onClick or other on or click events on JSX and HTML com-
ponents, including functions identified using string representations of their name;

• any code snippets included in an event handler attribute (e.g., code in the onClick

event of an HTML element);

• functions passed as callback arguments to event handlers (e.g., reader.on(’load’,

callback));

• functions assigned to properties of the window object that represents the Document
Object Model (DOM).

7.4.2 Validate and Determine Transformations Required

To successfully load a package p lazily, all static imports to p must be removed, and func-
tions containing references to pmust be refactored to load the package dynamically. This in-
volves removing static import ... from ’p’ statements and inserting dynamic import(’p’)

expressions where appropriate. The expression import(’p’) yields a promise that even-
tually resolves with the content of the package ’p’. While that promise is pending, the
current context that depends on the package should not proceed, and await-ing that call
will suspend execution until the promise is resolved. Then, if assigning the await-ed import
to a variable (e.g., let x = await import(’p’)), the package itself will be stored in x and
execution can resume.

Now, await expressions are only allowed inside of functions marked as async, but making
a function async changes its return type to Promise⟨T ⟩, where T is the function’s original
return type. To preserve existing application behavior, all call sites to this function will
need to be await-ed, which itself requires more functions to be made async and more call
sites to be await-ed, and so on. It is imperative that all call sites to newly async functions
be await-ed, else program behavior will be affected; this means that the transformation is
all or nothing proposition, and if any call sites cannot be await-ed, we must abandon the
entire transformation, and discard p as a lazy loading candidate.

Algorithm 3 describes the process of creating the set Sasync of functions needing to be
made async while validating the transformation. As inputs to the algorithm, the package
p is supplied along with the call graph CG of the program. First, Sasync is initialized as
the empty set (line 1), and the list F of functions yet to be processed is initialized with
all functions containing references to the package p (line 2). The main loop (lines 3-15)
iterates through functions f ∈ F that have not yet been visited. First, lines 6-8 describes a

120

Algorithm 3: Validating p and building Sasync

Data: p: a package being imported dynamically
Data: CG: the call graph of the program

1 let Sasync := {};
2 let F := [functions referencing p];
3 while F not empty do
4 let f := select and remove a function from F ;
5 if f not visited then
6 if f is a reaction or f is argument to promise constructor or f registered

as event handler then
7 Sasync := Sasync ∪ {f};
8 continue;

9 let Cf := callers of f in CG;
10 if f is constructor or c ∈ Cf is top level or f returns promise then
11 Sasync := {};
12 break;

13 Sasync := Sasync ∪ {f};
14 F := F ∪ Cf ;
15 mark f as visited;

16 return Sasync;

121

special case where a function to be made asynchronous is already in a context that handles
asynchrony, in which case no further transformations are required. Then, all callers of the
function f are obtained from the call graph (line 9). Lines 10-12 validates the transforma-
tion by identifying situations that cannot support asynchrony. First, constructors cannot
be async. Second, if f is called at the top level of the application, there is no sense in lazily
loading p as the dynamic import would be executed on application startup anyway. (Also,
top-level await expressions are only supported as of ECMAScript 2022.) Third, if f already
returns a promise, the programmer is likely using it accordingly and may not want calls to
it to be await-ed, and so it should not be transformed. In such cases, the transformation is
rejected and p is not loaded lazily. If f passes this check, then f is added to Sasync , all of
f ’s callers are added to the list F of functions left to process, and f is marked as visited;
analysis continues until F is exhausted.

7.4.3 Code Transformations

The application can be refactored to lazily load package p once the set Sasync of functions
that need to be made async is known. Several transformations are required to handle the
transition to asynchronous imports, specified as declarative rewrite rules in Figure 7.2.
The figure depicts simplified, idealized JavaScript to illustrate the salient details of the
transformation. We will describe them one by one next.

Async-Function: This transformation is simple: if a function f is in the set Sasync
of functions that need to be made async, the function definition gains the async keyword.

Async-Call: All potential calls to a function f ∈ Sasync need to have await expressions
inserted before the call.

ForEach-ForOf: The expression arr.forEach(f) calls the callback f on each ele-
ment of arr, and importantly returns nothing, i.e., forEach is type void. If f were made
asynchronous, the call to forEach would not wait for all of the asynchronous calls to re-
solve, and execution would simply continue past the call. In the event that f contains no
return statements, the body B of f is made into the body of a for ... of loop that iterates
over the elements of the array (the loop iterator a is chosen to match the argument name
of f).

ForEach-Map: In the event that f does contain a return statement, conversion to
a for ... of loop is not possible. Instead, the forEach is transformed into a map, and the

122

f ∈ Sasync

fun f(A) {B} −→ async fun f(A) {B}
(Async-Function)

f ∈ Sasync g can resolve to f

g(args) −→ await g(args)
(Async-Call)

f ∈ Sasync B body of f
no returns in B a = the single argument of f

arr.forEach(f) −→ for([i, a] of arr.entries()) {B}
(ForEach-ForOf)

f ∈ Sasync B body of f
returns in B

arr.forEach(f) −→ await Promise.all(arr.map(f))
(ForEach-Map)

f ∈ Sasync

arr.map(f) −→ await Promise.all(arr.map(f))
(Await-Map)

p ∈ PD v0, ..., vn ref p ∈ B

dynImp := const pname = await import(p)
declk := const vk = p.vname

k ∀k ∈ 0, ..., n

fun f(A) {B} −→ fun f(A) {dynImp; decl0; ... decln; B}
(Insert-Dynamic-Import)

x ∈ Sasync fB := async () ⇒ {B}
get x() {B} −→ get x() {return fB();}

(Getter)

Figure 7.2: Transformation rules for introducing lazy loading and necessary code changes to support newly
introduced asynchrony.

123

call to map is surrounded in an await-ed Promise.all to ensure that all of the asynchronous
callbacks fully execute before continuing.

Await-Map: Similar to the previous rule, if a callback passed to map is to be made
asynchronous, the map is surrounded in an await-ed Promise.all.

Insert-Dynamic-Import: If a function f contains references (v0, ..., vn) to a package
p that is to be made dynamic (p ∈ PD), a dynamic import to the package p is created
(const pname = await import(p)), where pname will serve as a reference to the package in
this scope. Then, declarations are created for each vk ∈ v0, ..., vn extracting the relevant
component vname

k from the import pname. The dynamic import and associated declarations
are then inserted at the beginning of the function body.

Getter: Getters present a special case as they cannot be made asynchronous. A new
asynchronous function fB is created with the body B of the getter x. The body of x is
then replaced with a return to the call to fB—callers of x will await calls to it, and so the
promise returned by fB can be await-ed then.

The code transformation in the motivating example was determined automatically using
this approach, and involved applications of rules Async-Function, Async-Call, and
Insert-Dynamic-Import. Fig. 7.3 shows small code examples depicting the transforma-
tions associated with the other rules: Fig. 7.3(a) and (b) shows rule ForEach-ForOf,
Fig. 7.3(c) and (d) shows rule ForEach-Map, Fig. 7.3(e) and (f) shows rule Await-
Map, and finally Fig. 7.3(g) and (h) shows rule Getter.

7.4.4 Implementation

This approach is implemented in a tool called Lazifier. All static analyses are built in
CodeQL [152], including data flow analyses required to detect uses of imported packages
and call graph construction. All call graphs were obtained through CodeQL’s own static
call graph construction algorithm for JavaScript [154], which is unsound. The code trans-
formation is built in JavaScript using Babel [52] to parse code, manipulate ASTs, and emit
transformed code.

124

413 arr.forEach ((e) => {

414 if (e)

415 foo();

416 else

417 bar();

418 });

419 for([i, e] of arr.entries ()) {

420 if (e)

421 await foo ();

422 else

423 bar();

424 }

(a) (b)

425 arr.forEach ((e) => {

426 if (e)

427 return foo();

428 else

429 return bar();

430 });

431 await Promise.all(arr.map(async (e) => {

432 if (e)

433 return await foo ();

434 else

435 return await bar ();

436 }));

(c) (d)

437 arr.map((e) => {

438 if (e)

439 foo();

440 else

441 bar();

442 });

443 await Promise.all(arr.map(async (e) => {

444 if (e)

445 await foo ();

446 else

447 await bar ();

448 }));

(e) (f)

449 const o = {

450 x : 1,

451 get y() {

452 return foo(x);

453 }

454 }

455

456 o.y;

457 const o = {

458 x : 1,

459 get y() {

460 return (async () => {

461 return await foo(x);

462 })();

463 }

464 }

465

466 await o.y;

(g) (h)

Figure 7.3: Code showing the before and after of applying select rewrite rules: (a)-(b) shows ForEach-
ForOf, (c)-(d) shows ForEach-Map, (e)-(f) shows Await-Map, and (g)-(h) shows Getter.

125

Table 7.1: Information about subject applications. The first row reads: the first application is called
upoint-query-builder, and commit hash f9aa0f1 was used for the evaluation; upoint-query-builder
has 10,341 lines of code. The initial size of the application is 0.84mb, reduced to 0.61mb after loading
modules lazily, corresponding to a 27.4% size reduction. The size of the application once modules are
loaded dynamically is 0.84mb. It took 201s to run Lazifier on this project, which required an additional 28s
to build the CodeQL database.

Commit Sizes (mb) Run Time (s)
Project Name Hash LOC Before After % Red. Exp. Tool QLDB

upoint-query-builder [107] f9aa0f1 10,341 0.84 0.61 27.4% 0.84 201 28
excelreader [190] 4a5f9cb 9,733 4.8 3.4 29.2% 4.8 187 44
task [87] b641bc0 9,747 0.94 0.48 48.9% 0.94 180 36
react-excel [109] 2d59e85 9,685 1.9 1.5 21.1% 1.9 178 33
Movies-web-ui [33] 58904a3 9,789 1.4 0.96 31.4% 1.4 180 35
ExcelSheet Validation Reactjs [223] f38cb9e 9,942 0.90 0.40 55.6% 0.90 181 35
scrambles-matcher [208] 1de93f7 11,304 1.1 0.83 24.5% 1.1 188 37
timetable [111] 0fa8527 9,932 0.60 0.38 36.7% 0.60 314 80
workday-schedule-exporter [38] 97ca596 9,718 0.90 0.44 51.1% 0.90 186 35
react-excel-csv [221] 18c6d97 9,779 0.85 0.62 27.1% 0.85 206 34

Avg. Size Reduction: 36.2% Avg. Time: 240

7.5 Evaluation

We pose the following research questions in order to evaluate the approach proposed in
this chapter:

RQ1. How does lazy loading affect the size and initial load time of applications?

RQ2. How often does the transformation introduce unwanted behavioral changes?

RQ3. How much code is loaded lazily, and how quickly is it loaded?

RQ4. How many code changes are required to support lazy loading?

RQ5. What is the running time of Lazifier?

Experimental Methodology

To answer these research questions, we first compiled a list of 10,000 open-source client-side
JavaScript applications by scraping GitHub for repositories that had JavaScript UI frame-
works stated as dependencies. Then, we ran the npm-filter [50] tool to identify projects
for which Lazifier identified at least one package as a candidate for lazy loading (yielding
998 projects). We manually inspected projects in this list until we found 10 that could

126

be successfully installed, started, and interacted with. The vast majority of JavaScript
projects on GitHub suffer from installation errors (e.g., developer-specified dependencies
no longer work), build errors (e.g., build configurations that are only valid for certain op-
erating systems/environments), or environment errors (e.g., many client-side applications
rely on external servers that are inaccessible). Since we wanted to have a high degree
of confidence in our understanding of our subject applications, we expended considerable
effort finding applications that suffered from none of these aforementioned issues.

To answerRQ1, we first determine the original application’s initial size using the “bytes
transferred” metric from Chrome DevTools’ [102] “Network” tab on a hard refresh of the
application page, and then apply the transformation and similarly determine the initial
size of the transformed application. To time the initial application load, we again leverage
the Chrome DevTools’ “Network” tab, and note the “Load” time field upon performing a
hard refresh—we note this time pre- and post-transformation, and collect and average 10
load times.

To answer RQ2, we manually interacted with each application to determine how to
make it execute code from packages that were flagged to be loaded lazily, then applied
the transformation and repeated the interaction, manually ensuring that the application
behavior was unchanged.

To answer RQ3, we identify how to trigger each of the dynamic imports (in the same
manner as in RQ2), and note the size of the code chunk transferred when doing so through
the Chrome DevTools’ “Network” tab (again consulting the “bytes transferred” metric),
and note the time taken to transfer that chunk through the “Load” time field.

To answer RQ4, we configured Lazifier to: display which packages were flagged to be
loaded lazily, display the dynamic import statements that were added to the program, and
log the code transformations it was applying.

And finally, to answer RQ5, we used the Unix time utility to time the execution of
Lazifier on each application. To run Lazifier’s analyses, a CodeQL database must be built
for the project, and so we used the time utility to time the CodeQL database build for
each project.

All measurements were taken on a 2016 MacBook Pro running Catalina 10.15.7, with
a 2.6GHz Quad-Code Intel Code i7 processor and 16GB RAM. We used Google Chrome
version 112.0.5615.137 (Official Build) (x86 64) in incognito mode. Next, we respond to
each of the RQs in turn.

127

0

300

600

900

 task

 tim

etable

 e
xcelreader

 r
eact−excel

 M
ovies−web−ui

react−excel−csv

 s

crambles−matcher

upoint−query−builder

 E
xcelSheet_Validation

workday−schedule−exporter

Subject application

A
ve

ra
ge

 (
m

s)

State

before

after

dynamic

Application load time (avg. over 10 runs)

Figure 7.4: Load times for each subject application are depicted in this plot, with a set of three columns
for each application. In each set, three times are presented: first, the time taken pre-refactoring (before),
then after refactoring (after), and finally the time taken to dynamically load all packages (dynamic). These
are averages over 10 runs, and error bars indicate +/- one standard deviation.

RQ1: How does lazy loading affect the size and initial load time
of applications?

Lazifier’s transformation leverages ECMAScript 2020’s ability to load packages on demand:
If all static imports to a package are replaced with dynamic imports, the JavaScript runtime
dynamically fetches the package when a dynamic import is executed, and the package is
not included in the application at start time. The initial application size is reported in
columns Initial Size (mb) Before and After in Table 7.1, corresponding to the size of
the applications pre- and post-refactoring. We note significant size reduction across all
applications (36.2% on average), as high as 51.6%.

While smaller applications are desirable in and of themselves, the speed at which an
application starts is also important to users. We investigate the degree to which this size
reduction hastens the initial load time of refactored applications. Averages of 10 load times
are reported in Fig. 7.4, with three columns for each subject application, the first two of
which are relevant here: the first column corresponds to the load time pre-refactoring,
and the middle column to the load time post-refactoring. We find statistically significant

128

(T-test, two-tailed, 95% confidence) reductions in initial load time in all cases, with an
average speedup of 29.7%, as high as 47.5%.

The size of refactored applications is smaller in all cases, which translates to a statistically
significant reduction in application start times.

RQ2: How often does the transformation introduce unwanted be-
havioral changes?

Since the approach presented in this chapter relies on unsound static analysis, the trans-
formations suggested by Lazifier are not guaranteed to preserve application behavior. In
our subject applications, Lazifier’s refactorings caused 15 packages to be loaded lazily, in-
troducing 21 dynamic imports to those packages, requiring 47 other transformations (i.e.,
applications of a rewrite rule). We manually interacted with the applications and ensured
that all transformed code was exercised, and found no behavioral differences introduced
by the transformation.

For the 10 subject applications under consideration in this evaluation, there was no evidence
of behavioral differences due to unsoundness in the static analysis.

RQ3: How much code is loaded lazily, and how quickly is it
loaded?

When a package is loaded dynamically, the application asynchronously fetches package
code and executes it, making the package available. Dynamically loading packages may
result in a larger total application size, since dynamic imports load the entire package code
(so no tree-shaking can be done as in the case of static imports). The total expanded size of
each application is reported in column Expanded Size (mb) in Table 7.1. Interestingly,
we note that the total size of applications after dynamic loading is always the same as the
initial size without refactoring, suggesting that tree-shaking is not an effective technique
at reducing the size of imported packages.

We also noted the time taken to perform this transfer, reported in Fig. 7.4, specifically
the third column (“dynamic”) in each set of three. The transfer is small relative to initial
load times in all cases (85.8ms on average), though note that we do not simulate latency

129

in this test, and assuredly transferring data over a network would incur overhead related
to latency.

The total size of the code loaded by the refactored applications (including lazily loaded
packages) is comparable to the total size of the original applications, and dynamically
loading packages is generally not noticeable.

RQ4: How many code changes are required to support lazy load-
ing?

Since Lazifier suggests code changes that should be vetted carefully by programmers, it
would be helpful if the extent of the transformations required was small and manageable.
Table 7.2 lists information about the code transformations suggested by Lazifier in each
subject application, namely how many packages could be loaded lazily (column # Imps.
Removed), how many dynamic import statements were required to lazily load the pack-
ages (column # Dyn. Imps.), and finally how many applications of other rewrite rules
were necessary to support lazily loading the packages (column # Trans. Changes).
All cases required few code transformations, at most 15 for upoint-query-builder (the
number of changes including added dynamic imports), with a median of 6 changes (again
including added dynamic imports) per application, which should be manageable for a de-
veloper to review.

The number of code changes suggested by Lazifier is small, so the effort needed by pro-
grammers to review these changes is manageable.

RQ5: What is the running time of Lazifier?

The time taken to run Lazifier is reported in column Tool Run Time (s) of Table 7.1.
This includes the time to run the static analyses and also transform the application, though
the transformation itself runs extremely quickly. The time to build the CodeQL database
is reported in column QLDB Time (s) in Table 7.1: this is a fixed cost once per project,
and can be reused by other CodeQL queries.

The run time of Lazifier is 240s on average, demonstrating its suitability for practical use.

130

Table 7.2: Information about code transformations. The first row reads: in upoint-query-builder, 2
packages were loaded dynamically instead of statically; 3 dynamic import statements were added, and 12
applications of other rewrite rules were required to support the transition.

Imps. # Dyn. # Trans.
Project Name Removed Imps. Changes

upoint-query-builder 2 3 12
excelreader 1 1 2
task 1 1 2
react-excel 1 1 2
Movies-web-ui 2 2 5
ExcelSheet Validation Reactjs 2 3 7
scrambles-matcher 1 2 4
timetable 1 2 4
workday-schedule-exporter 3 4 6
react-excel-csv 1 2 3
In total: 15 21 47

7.6 Threats to Validity

The technique presented in this chapter was inspired by the work of Gokhale et al. [100],
and suffers similar threats to validity. Namely, the code transformations proposed by
our approach are unsound and are not guaranteed to preserve program behavior. There
are many reasons for losses of soundness, e.g., the static analyses that build call graphs
are unsound, and our technique introduces asynchrony to applications which may cause
data races. In a sense, this unsoundness is inevitable as JavaScript is a highly dynamic
language not amenable to sound static analysis. Nevertheless, in our evaluation we found
that Lazifier proposed no behavior-altering transformations in spite of this unsoundness.

Beyond this, it is possible that our set of subject applications may not be representative.
To mitigate this, we selected our subject applications from a list of client-side JavaScript
applications sampled essentially randomly from GitHub. We did prune this list such that
we could build and run the applications to evaluate the effectiveness of our technique, but
believe that our random initial selection of projects mitigates risk of bias.

7.7 Relation to Previous Work

This work is concerned with refactoring web application source code to lazy load libraries
that are only conditionally required. Software debloating is a related area of research
focused on trimming unused functionality from applications and has many applications in
security, particularly when unused code is removed from applications. Also, the refactoring

131

proposed in this work introduces asynchrony to an application, which is another well-
studied area of research.

Debloating and Lazy Loading Chapter 3.4 discusses a wealth of work related to
reducing application size. Broadly, software debloating is concerned with removing unused
functionality, and often lazily loading the dead code if they were wrong about the code
being dead, whereas the approach discussed in this chapter removes conditionally used
functionality. In a sense, these approaches are complementary.

Refactoring to Introduce Asynchrony Loading packages lazily must be done asyn-
chronously on the web, as blocking I/O operations are prohibited in the modern web
standard. Thus, the refactoring proposed in this chapter also refactor the applications
to be asynchronous w.r.t. the lazily loaded packages. There are numerous pieces of re-
lated work in this area, discussed in Chapter 3.2. Essentially, making synchronous code
asynchronous is a difficult problem; in our work, we introduce just enough asynchronous
constructs to allow for packages to be lazily loaded.

There is also a related wide body of work on understanding asynchronous applica-
tions, discussed in Chapter 3.3. This is complementary to our work, as Lazifier presents
refactorings (that introduce asynchrony!) as suggestions to be vetted by programmers.

7.8 Conclusion

Client-side developers want to minimize the amount of time users need to wait for a web
application to load and become responsive. Existing tools such as bundlers, minifiers, and
tree-shakers focus on eliminating unused functionality and reducing code size, but do not
address scenarios where an application contains functionality that is (potentially) required,
but not immediately when the application starts up. In such cases, responsiveness can be
improved by loading such functionality lazily. We have presented an approach for detecting
situations where an entire library can be loaded lazily. The approach uses static analysis
to identify packages that are only used in the context of event handling and to compute the
changes that must be made to the code to accommodate lazy loading. A set of declarative
rewrite rules specifies the code changes required to transform the application.

This approach was implemented in a tool called Lazifier, and evaluated on 10 open-
source client-side JavaScript applications. In all cases, Lazifier successfully refactored the

132

applications, resulting in an average initial application size reduction of 36.2%, which
caused applications to start up 29.7% more quickly on average.

7.9 Discussion

In this work, we developed an approach to detect packages that were referenced only in the
context of event handlers, and developed a program transformation to load those packages
lazily. This serves to reduce the size of the code that is loaded initially, i.e., the size of
the initial distribution of an application. The approach was implemented with an unsound
analysis, which did not cause issues in our evaluation (beyond possibly having missed
refactoring opportunities, but significant reductions in the size of initial distributions were
observed in spite of this). It appears that there are enough instances of programmers using
packages only in event-handling code to achieve significant size reduction in applications,
and an imprecise analysis could detect many such cases.

This approach is complementary to the one presented in Chapter 6, which described a
method for safely removing dead code with unsound analysis. If an application has a test
suite that exercises an optional dependency, dead code elimination would not remove it,
even though it is only conditionally needed. If the package were only used in an event-
handling context, Lazifier would lazily load it, achieving further size reduction on top of
dead code elimination alone.

There is the possibility that behavioral differences are introduced by the code transfor-
mation, particularly in making code asynchronous. In their work on transforming uses of
synchronous APIs to their asynchronous equivalents, Gokhale et al. [100] found that code
changes often spanned large portions of the application and so behavioral changes were
introduced. In contrast, in this work code changes were more localized to event handlers
and functions callable from them; one advantage is that the extent of transformations was
smaller, and another advantage is that event handlers are contexts that handle asynchrony
by design.

If the approach described in this chapter misses a reference to a removed static import,
a significant behavioral difference would be introduced. In this case, the transformation
would not insert a dynamic import for the referenced module component, and if the code
was run then a ReferenceError would occur. In many cases these “referenced before
declaration” issues can be caught by the simple static analyses of linters, but nevertheless
this represents a departure from the optimizations discussed in previous chapters in that
inadequacies in the analysis can lead to runtime errors, rather than just missed optimization
opportunities or redundant optimizations.

133

467 import React , { Suspense } from "react";

468 import { DogPage } from "./ DogPage.js";

469 import { CatPage } from "./ CatPage.js";

470

471 export default (props) => {

472 if (props.user.selection === "dog") {

473 return <DogPage />;

474 } else if (props.user.selection === "cat") {

475 return <CatPage />;

476 } else {

477 return <div > Only dog and cat adoptions supported online. </div >;

478 }

479 };

Figure 7.5: Example pet adoption service application.

One interesting avenue of future work is to lazily load entire components of the UI, as
entire application does not need to be loaded for one page of the UI to be functional. This
is a more complicated transformation that also requires placeholder UI elements to be dis-
played while components load dynamically, and unfortunately the program transformation
differs depending on the UI framework being used (in JavaScript, most client-side appli-
cations are built with a UI framework), as each UI frameworks has its own mechanism for
loading UI elements lazily. For example, React has a lazy function [150] and functionality
for displaying placeholder components while sub-components load [151]. Unlike React, in
Angular programmers must create lazily loaded routes using loadChildren [46]; the Angular
bundler takes advantage of these to split the application bundle.

To get a flavor for what this would look like, consider a hypothetical multi-page React
application for an animal adoption service. Such an application might first ask a user
what kind of animal they want to adopt, and display a subsequent page depending on that
selection. Some example code can be found in Figure 7.5. This code displays the UI once a
user has indicated which kind of animal they want to adopt. On line 468 the UI elements
related to dog adoption are imported, and on line 469 the UI elements for cat adoption
are imported. These are JSX components, and they are displayed to the user on lines 473
and 475 depending on the user’s selection, with an else branch indicating that only cat
and dog adoptions are supported on the site. The issue in the snippet is that all of the
functionality is loaded when the application starts, which is very wasteful.

Figure 7.6 shows how the application can be refactored to load components lazily. To
lazily load a component in React, it needs to be imported dynamically using import (like the
approach described in this chapter), and then wrapped in a call to React’s lazy function;
we see this on lines 481-482. Then, references to the module need to be wrapped in a
<Suspend> component, which takes a suitable placeholder UI element called a fallback to be

134

480 import React , { Suspense } from "react";

481 const DogPage = React.lazy (() => import("./ DogPage.js"));

482 const CatPage = React.lazy (() => import("./ CatPage.js"));

483

484 export default (props) => {

485 if (props.user.selection === "dog") {

486 return (

487 <Suspense fallback={<div >Loading dog adoption service ...</div >}>

488 <DogPage />

489 </Suspense >

490);

491 } else if (props.user.selection === "cat") {

492 return (

493 <Suspense fallback={<div >Loading cat adoption service ...</div >}>

494 <CatPage />

495 </Suspense >

496);

497 } else {

498 return <div > Only dog and cat adoptions supported online. </div >;

499 }

500 };

Figure 7.6: Example pet adoption service application, now with lazy loading of optional UI components.

displayed while the lazy load completes; we see this on lines 486-490 and lines 492-496.

In this case, the fallback is merely some text saying that the requested adoption service
is being loaded, but the differences between that and the actual UI might be glaring. It
would be interesting to use some lightweight static analysis to determine the structure of
a placeholder UI element that roughly matches the element that would be loaded dynam-
ically. In many cases, the structure of UI elements is evident from the code as many of
the JavaScript frameworks mimic the look of HTML (React’s JSX looks like HTML, and
Angular and Vue both use HTML explicitly).

135

Chapter 8

Conclusion

In this thesis, we set out to show that unsound analysis of asynchronous JavaScript appli-
cations yields actionable insights and effective optimizations. We applied unsound analysis
in four settings, and found promising results in all cases.

In Chapter 4, we developed a technique for detecting anti-patterns in asynchronous
JavaScript applications, hinging on lightweight unsound static analysis to detect anti-
patterns and a dynamic analysis collecting information about runtime promises. This
technique was implemented in a tool called DrAsync, and we evaluated it on 20 popu-
lar open-source JavaScript applications, finding thousands of instances of anti-patterns in
them. We conducted case studies of 80 instances of the anti-patterns, and found that the
vast majority could be refactored by outsiders to the code base, suggesting that the insights
delivered by the approach are indeed actionable.

An unsound analysis is appropriate here for a few reasons: (1) the anti-patterns are
simple, and imprecise analysis can detect them easily; (2) we envision DrAsync’s anti-
pattern detector to be run essentially like a linter, and so run time should be manageable;
and (3) a dynamic analysis corroborates the information gleaned from static analysis,
equipping developers with more information to assist them in remediating anti-patterns,
helping to make up for the lack of precision of the unsound static analysis. Unsoundness
in this context means that we might miss actual anti-patterns (false negatives), and may
also incorrectly flag correct code as exhibiting anti-patterns (false positives), though we
did not observe much of this empirically.

In Chapter 5, we presented an approach for improving the performance of database-
backed applications via automated refactoring. An unsound static taint analysis tracks
data flow from ORM API calls through a loop into other ORM API calls, identifying pairs

136

of such data-related calls as instances of the “N+1 Problem”, and declarative rewrite rules
specify how such pairs of calls should be transformed to eliminate the “N+1 Problem”
altogether. This technique was implemented in a tool called reformulator, which we
evaluated on 8 open-source JavaScript applications. We found many instances of the “N+1
Problem” and found that reformulator was able to successfully refactor all instances,
resulting in significant performance improvements in the applications, representing an ef-
fective optimization of the program.

Unlike in Chapter 4, here we were able to automatically determine the code changes
required to remediate the issue. Even though we still use imprecise and unsound analysis,
there are many data-related ORM API calls that co-occur in relatively close proximity
in the code. Further, these API calls have very strict requirements on their arguments
and predictable return types, which seems to discourage programmers from writing very
dynamic code when preparing or using the values obtained from API calls and provides
information that imprecise analysis can take advantage of. Taken together, this suggests
that the overall lack of precision of our approach does not lead to a significant lack of
precision in this case; i.e., while we do not have complete information, the information we
have is good enough for this context. Of course, code transformation opportunities are still
detected through unsound analysis, and the rewrite rules are not sound. The approach
might miss refactoring opportunities (false negatives), might incorrectly flag pairs of ORM
API calls for refactoring (false positives), and the transformations themselves may not
preserve program behavior; that said, we found no issues that arose due to unsoundness in
practice.

In Chapter 6, we rephrased dead code elimination to instead aggressively apply code
splitting to likely dead code, leveraging imprecise unsound analysis. Unsound program
analysis (static or dynamic) builds a call graph for an application, and unreachable func-
tions and files are replaced with stub versions that can fetch the original code if the call
graph was wrong about the code being dead. This allows for significant size reduction;
we implemented this technique in a tool called Stubbifier , and ran it on 20 open-source
JavaScript applications, finding 56% initial application size reduction on average, and that
little code was fetched dynamically incurring manageable overhead. Programmers want
small distributions, and this tool and technique help them achieve that with another ef-
fective optimization.

Unsound analysis was successful in this setting because the consequences of wrongfully
applying the code transformation were not catastrophic: if the code was not dead, then it
is loaded dynamically. We took a program optimization that only made sense with a sound
and precise static analysis, and re-framed it to work with unsound and imprecise analysis.
The fact that sound analysis vastly over-approximates reachability in JavaScript was key

137

to the success of this approach was. Unsoundness in the analysis can result in code being
incorrectly identified as live (false negative) and code being incorrectly identified as dead
(false positive); unsoundness in the transformations may result in behavioral differences
introduced by the code changes. In the evaluation, we found some false positives but
the code transformation was explicitly designed to handle this case, and no behavioral
differences were observed empirically (i.e., no refactorings caused tests to fail).

Finally, in Chapter 7, we developed an approach for automatically lazily loading pack-
ages in client-side JavaScript applications. A lightweight, imprecise static analysis deter-
mines what is transitively callable from event-handling code, and any package exclusively
used in such contexts is flagged to be loaded lazily, and declarative rewrite rules specify
how the code should be transformed to lazily load the package. We implemented this ap-
proach in a tool called Lazifier, and evaluated it on 10 open-source JavaScript applications,
finding that Lazifier successfully lazily loaded many packages, and that initial code size
was significantly reduced in all cases. This is a boon for client-side developers, who desire
lean initial application sizes; as such, this approach is yet another effective optimization
for client-side programs.

Unsoundness in this context means that refactoring opportunities might be missed, and
that the suggested transformations may not preserve application behavior. This setting
is similar to the one explored in Chapter 6, where the consequences of loading a package
lazily that was needed eagerly are not severe: if a package was actually needed on startup,
it will simply be loaded dynamically when the application page is first visited, and missed
refactoring opportunities do not cause errors in the program (these are not bugs, only
inefficiencies). As for transformations possibly not preserving application behavior, this is
unavoidable given the unsound analysis and program transformations (as in Chapter 5),
but in this case the risk is mitigated by having the analysis focus on event-handling code,
which minimizes the risk of incorrectly transforming code since the suggested refactorings
tend to span a small part of the application.

8.1 Discussion

In each setting, we had to account for imprecision and unsoundness of the analyses. In this
section, we reflect on this and discuss the benefits and limitations of employing unsound
methods to optimize programs.

138

8.1.1 Dynamic vs. Static Analysis

Static analysis analyzed a program without running it, and instead models the behavior of
the program; the quality of the model has a huge impact on the precision and correctness
of the results, and on the scalability of the analysis. In contrast, dynamic analysis analyzes
a program while it is running; the gathering of information at runtime has a performance
impact, and dynamic analysis is typically quite precise in that an actual program execution
is observed. That said, it is not always obvious how analysis results from one execution
generalize to all executions, while static analysis explores possible program behavior more
broadly. In this thesis we developed many approaches relying primarily on static, rather
than dynamic program analysis, but in many cases we initially explored approaches using
dynamic analysis.

In Chapter 4 (DrAsync), the initial approach relied solely on dynamic analysis. We
built the promise profiler and accompanying visualization and pored over hundreds of
JavaScript projects (with running test suites, as they are needed for the dynamic analysis).
We identified many issues just from looking at the dynamic information, chiefly extremely
short-lived promises and the “staircase pattern” discussed in Chapter 4.

In Chapter 6 (Stubbifier), the code splitting approach takes a call graph as input, which
can be computed statically or dynamically, and the chapter discusses and evaluates call
graphs obtained using both methods. In the tool, the (nyc) coverage reporter was used to
obtain a dynamic call graph with respect to the execution of the test suite. Similarly, a
simple static analysis used the test suite as an entry point to determine what is reachable.

In Chapter 5 (reformulator), we originally used a dynamic taint analysis built in
Augur [39]; Augur is a taint analysis framework that leverages the NodeProf [204] dynamic
analysis framework for GraalVM [237, 235]. As discussed in Section 5.9, the precise data
flow gleaned with dynamic analysis was not necessary for the code transformations that
fixed instances of the “N+1 Problem”. The precision of a dynamic analysis could be
leveraged by more sophisticated transformations.

Dynamic analysis has a very important drawback: the code needs to be (able to be)
executed, and this turns out to be extremely challenging. In Chapter 4, the projects had
test suites that executed, so this was not an issue, but the vast majority of JavaScript
projects on GitHub have no running test suites. It is difficult to apply an approach that
relies too heavily on dynamic analysis given the current developer culture around test-
ing, and in terms of research it is difficult to evaluate approaches that rely heavily on
dynamic analysis due to the lack of easily executable code. This can be alleviated with
test generation, though test generation as it applies to dynamic languages has its own set
of challenges [218, 47, 193], mainly due to the lack of effective implicit oracles.

139

Another important limitation of dynamic analyses is that they are rarely portable.
There are two predominant approaches to obtaining dynamic information from programs:
instrumentation, and source code rewriting. Instrumentation is difficult because it re-
quires modifying the underlying virtual machine to emit dynamic information, which is
not portable (unless V8 were to expose dynamic analysis hooks, in which case the lion’s
share of JavaScript could be analyzed!). Source code rewriting is more portable, but
significantly degrades the performance of analyzed applications. Moreover, JavaScript is
extremely dynamic and reflective, and dynamic analyses that modify runtime objects can
break applications if programmers reflect on the shape of objects. In the DrAsync tool,
we implemented the dynamic analysis with the Async Hooks API exposed by Node.js, and
a lot of JavaScript runs on Node.js. In Stubbifier , the dynamic call graph was obtained
using a coverage reporter, which is very portable and used broadly by the community. The
initial analysis underpinning reformulator was built in Augur (built in NodeProf and
GraalVM), and we had difficulty running many JavaScript projects in GraalVM.

There is a wealth of related work on combining static and dynamic analysis information,
discussed in Section 3.1.3. In the refactoring projects presented in Chapters 5 and 7 we
decided against this due to limitations in the portability of dynamic analysis, and further
the added precision is likely unnecessary. In Chapter 4, where dynamic and static analysis
feature, we felt the added precision would not have helped detect any of the anti-patterns
proposed in the work, and instead present information from both sources to programmers
for them to make sense of. In Chapter 6, we investigated totally removing functions deemed
unreachable in both static and dynamic analysis, but this caused a lot of live code to be
removed.

Takeaway: Dynamic analysis yields precise information, but generalizing beyond a
particular execution is difficult. Moreover, analyzing a program dynamically incurs often-
times significant overhead, and dynamic analyses are less portable than static analyses.

8.1.2 Empowering Programmers

As mentioned, DrAsync was originally envisioned as an entirely dynamic promise profiling
tool. One reason we shifted away from a pure dynamic analysis approach was because we
believed that our familiarity with the JavaScript semantics and runtime was helping us
understand the dynamic profile information, and that the profiles might not be as easily
understood by developers. Besides, there were common code patterns that resulted in the
problematic execution profiles, and these patterns had enough consistency that we were
able to specify them formally, and devise simple static analyses to detect them. Shifting

140

to detection of the code patterns resulting in the issues in the dynamic profiles was a way
to leverage our expertise to communicate the most salient details to programmers.

We employed an unsound and imprecise analysis to find anti-patterns, and ultimately
decided to keep both the dynamic and static analyses since the precise information gleaned
via dynamic analysis complemented the relatively imprecise information obtained from
static analysis. We felt that the dynamic profile information was even more useful with
a static analysis highlighting anti-patterns since it makes the impact of the anti-patterns
on program execution clear. The complementary nature of the analyses was made explicit
by connecting anti-pattern code to the runtime promises it created in the visualization.
Another important feature of the dynamic analysis is establishing the relationships between
runtime promises by tracing promise chains, very precise information about promises.

The anti-pattern identification part of DrAsync is similar in spirit to linters, although
it can be thought of as more of a linting suite for promise-related issues, complete with
dynamic information to help programmers determine the impact of issues and prioritize
fixing them. It is really a tool to empower programmers, equipping them with information
to modify their code by showing them anti-patterns in their code and connecting those
with their impact on test suite execution.

In Chapters 5- 7, program transformations to optimize code are suggested to program-
mers, which is an important distinction from transformations enacted by compilers and
language runtimes to optimize code as it is compiled or run. In addressing inefficiencies
at their source, this thesis describes how inefficiently written source code can be detected
and, in many cases, fixed automatically ahead-of-time via automated refactoring, and as
programmers review the transformations they are made aware of the issues in the code
they wrote.

In Chapter 5 we proposed an approach for automatically detecting and remediating
instances of the “N+1 Problem” in ORM-backed web applications. The underlying issue
that the approach detected was the data flow between ORM API calls that passed through
a loop, and in Section 5.9 we discussed future work where all data flow between ORM
API calls should be called into question. When a developer uses reformulator, the tool
will suggest code transformations, but can additionally serve to educate the developer that
they should, e.g., avoid data flow between ORM API calls in general. In contrast, tools
that optimize inefficient database use in the back-end provide no insight to programmers,
and they will continue to write the same inefficient code patterns.

Similarly in Chapter 6, the approach removes code based on what is executable from the
test suite, and if the programmer is informed about what this code is they have information
that would help them improve the test suite. In Chapter 7, only packages that are used

141

exclusively in the context of event handlers are loaded lazily; in suggesting a refactoring,
programmers are provided an example of how to load packages lazily, which they could
learn from and apply throughout their code.

There is rich avenue for future work in incorporating program understanding tech-
niques in the approaches presented in this thesis, or more broadly in the space of refac-
toring suggestions. In Chapters 5 and 7, we determined refactorings and suggested them
to programmers—when programmers are deciding whether or not to apply a refactoring,
future work might explore how to best equip them to accept or reject the transformation.
We focused the evaluations on exploring if the transformation worked, rather than if pro-
grammers want to apply it. There are often further considerations beyond raw performance
or size reduction. E.g., in Chapter 5, eagerly fetching data from a database can exert a
high degree of pressure on application memory. That said, we found no issues related to
this in the evaluation presented in the context of the chapter.

Takeaway: Imperfect, unsound analysis extracts useful information for programmers.
Multiple sources of information further empowers programmers to understand and make
changes to their code. Moreover, suggesting optimizations ahead of time gives programmers
insight into the issues they are responsible for.

8.1.3 Finding Precision Where You Can

Many approaches presented in this thesis rely on precise information about specific parts
of programs. In Chapter 4, precise information about runtime promises helps corroborate
general information obtained through static analysis. In Chapter 5, precise data flow maps
pairs of N+1-related ORM API calls, and precise information about object properties
are needed to build code transformations. In Chapter 7, a precise call graph of event-
handling code was instrumental in building and validating code transformations to lazily
load packages. In this section, we reflect on how such precise information was sourced in
these contexts.

Dynamic Analysis

This was discussed in § 8.1.1, but to recap dynamic analysis is a source of very precise
information about particular executions of a program. Generalizing information beyond
any given execution is challenging, and generally there are obstacles and limitations to
running a dynamic analysis (including having sufficient executable code, the portability of
the analysis, and significant performance overhead associated with dynamic analysis).

142

Analysis developers can opt to incorporate dynamic information directly into a static
analysis, or vice versa. We did not do that in the work presented in this thesis as the
approaches worked well without the added precision. § 3.1.3 discusses related literature.

Strict APIs

Many API boundaries have strict requirements that need to be met. This strictness is
advantageous to analyses, as the arguments supplied to and values obtained from calls to
these APIs are often predictable.

We observed this while developing the approach presented in Chapter 5 (reformu-
lator). The ORM API takes an object with property names that are either from a set
of pre-defined options, or correspond to columns in the database the ORM is interacting
with; and ORM API calls typically return arrays of objects with properties drawn from
the statically available model of the tables in the database. Thus, the types of arguments
and return values are known to even imprecise analyses.

Further, in Chapter 7 (Lazifier) the strict, static nature of ECMAScript 2015’s import

made references to exported properties of external packages straightforward to detect.
With static import, programmers must supply the name of the external package as a string
literal, so determining which packages were imported was simple. In contrast, the older
import functionality using require allowed programmers to supply dynamically computed
strings, which would have been more demanding for a static analysis.

Heuristics

While the approaches presented in the context of this thesis were principled in their overall
design, there were several situations where heuristics greatly enhanced the quality of the
results.

For example, in Chapter 7 we developed a method to automatically lazily load packages
that relied on identifying packages that were used exclusively in the context of event-
handling code. In JavaScript, there is no single mechanism for “handling events”; HTML
elements have attributes with no consistent naming scheme that specify event handlers,
programmers can register code blocks as “click” attributes as well as functions, some event
handling is done with higher level abstractions (e.g., a file reader class), and functions
can be directly assigned to the DOM. Also, different UI frameworks provide additional
abstractions for handling events that do not correspond to any aforementioned methods.
In the end, all of these methods likely result in a callback being registered for an event. A

143

precise analysis that delved into the abstractions to uncover callback registrations would
be incredibly costly, so instead these heuristics serve as shortcuts that allow imprecise
analyses to make judgements which might otherwise be too costly.

In Chapter 5, ORM API calls in a loop are refactored into a single eager call placed
before the loop. This is unsound, and is predicated on an assumption that loop iterations
are independent w.r.t. the ORM API call. A (more) sound analysis should analyze the
loop and confirm this assumption, because the code transformation should not be applied
if the assumption is invalid, or further transformations may be required. In this case,
suggesting transformations to programmers circumvents this source of unsoundness, as
issues with the transformation would quickly be revealed, and programmers may be able
to determine the rest of the transformation required. That said, this issue did not manifest
in our evaluation.

Takeaway: Unsound should not mean unprincipled. There are very good reasons
to employ unsound approaches, especially in dynamic languages where soundness and
precision are often antonymous.

8.2 Closing Thoughts

In this thesis, we used unsound analysis to optimize asynchronous JavaScript programs.
Specifically, we demonstrated that unsound analysis of asynchronous JavaScript applica-
tions yields actionable insights and effective optimizations by developing four approaches
that fit into this statement. Promising results in each approach indicate that lightweight,
unsound analysis can be leveraged to make meaningful, impactful, and actionable sugges-
tions to programmers.

That said, unsound analysis is far from a silver bullet. Unsound approaches are inher-
ently less reliable than sound approaches and lack a solid bedrock of correctness, but clever
design that mitigates unsoundness can make up for this. In this thesis, we re-framed opti-
mizations to be safely applied given unreliable information, we developed techniques that
leverage precise and readily accessible information to build complex code transformations,
and collected and distilled information and presented holistic insights it to programmers.
These are imperfect methods, but the sound analysis that would invariably be required
for sound methods is infeasible in languages as dynamic as JavaScript; here, we show that
perfect is the enemy of good.

There is ample opportunity to build on the work laid out in this thesis. Essentially, we
present “linting” tools that use relatively sophisticated analysis to improve the quality of

144

source code. There is deep literature on program understanding, which can help improve
the delivery of refactoring suggestions. Further, one can leverage advancements in test
generation to equip refactoring suggestions with focused code snippets to help program-
mers explore the execution profile and behavior of potential code changes. And of course,
program analysis underpins all of the work discussed here, and any advancements in the
field will improve the quality of results.

145

References

[1] Concurrency visualizer - visual studio (windows) — microsoft docs. https://docs.
microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?

view=vs-2019, 2017. (Accessed on 08/20/2021).

[2] Jshint: A static code analysis tool for JavaScript, 2019. See https://jshint.com/.

[3] Async hooks — node.js v16.6.0 documentation. https://nodejs.org/api/async_

hooks.html, 2020. (Accessed on 08/02/2021).

[4] bdistin/fs-nextra. https://github.com/bdistin/fs-nextra, 2021. Accessed:
2021-10-25.

[5] Codeql for research — github security lab. https://securitylab.github.com/

tools/codeql/, 2021. (Accessed on 08/10/2021).

[6] Commit: remove eval. https://github.com/dougwilson/nodejs-depd/commit/

887283b4, 2021. Accessed: 2021-04-16.

[7] depd issue 20. https://github.com/dougwilson/nodejs-depd/issues/20, 2021.
Accessed: 2021-04-16.

[8] depd issue 22. https://github.com/dougwilson/nodejs-depd/issues/22, 2021.
Accessed: 2021-04-16.

[9] depd issue 24. https://github.com/dougwilson/nodejs-depd/issues/24, 2021.
Accessed: 2021-04-16.

[10] dougwilson/nodejs-depd. https://github.com/dougwilson/nodejs-depd, 2021.
Accessed: 2021-04-16.

[11] ECMAScript 2021 Language Specification Section 27.2: Promises. https://262.

ecma-international.org/#sec-promise-objects, June 2021.

146

https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2019
https://jshint.com/
https://nodejs.org/api/async_hooks.html
https://nodejs.org/api/async_hooks.html
https://github.com/bdistin/fs-nextra
https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://github.com/dougwilson/nodejs-depd/commit/887283b4
https://github.com/dougwilson/nodejs-depd/commit/887283b4
https://github.com/dougwilson/nodejs-depd/issues/20
https://github.com/dougwilson/nodejs-depd/issues/22
https://github.com/dougwilson/nodejs-depd/issues/24
https://github.com/dougwilson/nodejs-depd
https://262.ecma-international.org/#sec-promise-objects
https://262.ecma-international.org/#sec-promise-objects

[12] Eslint: Find and fix problems in your JavaScript code, 2021. See https://eslint.
org/.

[13] expressjs/body-parser. https://github.com/expressjs/body-parser, 2021. Ac-
cessed: 2021-10-25.

[14] expressjs/compression. https://github.com/expressjs/compression, 2021. Ac-
cessed: 2021-10-25.

[15] expressjs/morgan. https://github.com/expressjs/morgan, 2021. Accessed: 2021-
10-25.

[16] expressjs/serve-favicon. https://github.com/expressjs/serve-favicon, 2021.
Accessed: 2021-10-25.

[17] expressjs/serve-static. https://github.com/expressjs/serve-static, 2021. Ac-
cessed: 2021-10-25.

[18] facebook/prop-types. https://github.com/facebook/prop-types, 2021. Ac-
cessed: 2021-10-25.

[19] isaacs/node-glob. https://github.com/isaacs/node-glob, 2021. Accessed: 2021-
10-25.

[20] Jslint, 2021. See https://www.jslint.com/.

[21] kriskowal/q. https://github.com/kriskowal/q, 2021. Accessed: 2021-10-25.

[22] mapbox/node-blend. https://github.com/mapbox/node-blend, 2021. Accessed:
2021-04-16.

[23] pillarjs/send. https://github.com/pillarjs/send, 2021. Accessed: 2021-10-25.

[24] streamich/memfs. https://github.com/streamich/memfs, 2021. Accessed: 2021-
10-25.

[25] Thread concurrency visualization — pycharm. https://www.jetbrains.com/

help/pycharm/thread-concurrency-visualization.html, 2021. (Accessed on
08/20/2021).

147

https://eslint.org/
https://eslint.org/
https://github.com/expressjs/body-parser
https://github.com/expressjs/compression
https://github.com/expressjs/morgan
https://github.com/expressjs/serve-favicon
https://github.com/expressjs/serve-static
https://github.com/facebook/prop-types
https://github.com/isaacs/node-glob
https://www.jslint.com/.
https://github.com/kriskowal/q
https://github.com/mapbox/node-blend
https://github.com/pillarjs/send
https://github.com/streamich/memfs
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html

[26] Threading analysis. https://software.intel.com/content/www/us/

en/develop/documentation/vtune-help/top/analyze-performance/

parallelism-analysis-group/threading-analysis.html, 2021. (Accessed
on 08/20/2021).

[27] tj/commander.js. https://github.com/tj/commander.js, 2021. Accessed: 2021-
10-25.

[28] webpack-contrib/css-loader. https://github.com/webpack-contrib/css-loader,
2021. Accessed: 2021-10-25.

[29] webpack/memory-fs. https://github.com/webpack/memory-fs, 2021. Accessed:
2021-10-25.

[30] Laravel: The PHP framework for web artisans, 2022. See https://laravel.com/.

[31] Sequelize ORM, 2022. See https://sequelize.org.

[32] Mart́ın Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow integrity
principles, implementations, and applications. ACM Trans. Inf. Syst. Secur., 13(1),
November 2009.

[33] Abhishek312s. Movies-web-ui, 2023. See https://github.com/Abhishek312s/

Movies-web-ui/58904a3.

[34] adam dill. wall, 2022. See https://github.com/adam-dill/wall/commit/ae6c815.

[35] Christoffer Quist Adamsen, Anders Møller, and Frank Tip. Practical initializa-
tion race detection for JavaScript web applications. Proc. ACM Program. Lang.,
1(OOPSLA):66:1–66:22, 2017.

[36] Ole Agesen, Jens Palsberg, and Michael I. Schwartzbach. Type inference of SELF.
In ECOOP’93 - Object-Oriented Programming, 7th European Conference, Kaiser-
slautern, Germany, July 26-30, 1993, Proceedings, pages 247–267, 1993.

[37] Ole Agesen and David Ungar. Sifting out the gold: Delivering compact applications
from an exploratory object-oriented programming environment. In Proceedings of the
Ninth Annual Conference on Object-Oriented Programming Systems, Languages, and
Applications (OOPSLA’94), pages 355–370, Portland, OR, 1994. ACM SIGPLAN
Notices 29(10).

148

https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://github.com/tj/commander.js
https://github.com/webpack-contrib/css-loader
https://github.com/webpack/memory-fs
https://laravel.com/
https://sequelize.org
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://github.com/adam-dill/wall/commit/ae6c815

[38] Akalay27. workday-schedule-exporter, 2023. See https://github.com/Akalay27/

workday-schedule-exporter/97ca596.

[39] Mark W Aldrich, Alexi Turcotte, Matthew Blanco, and Frank Tip. Augur: Dy-
namic taint analysis for asynchronous javascript. In 37th IEEE/ACM International
Conference on Automated Software Engineering, pages 1–4, 2022.

[40] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Hybrid dom-sensitive
change impact analysis for javascript. In 29th European Conference on Object-
Oriented Programming (ECOOP 2015). Schloss Dagstuhl-Leibniz-Zentrum fuer In-
formatik, 2015.

[41] Saba Alimadadi, Ali Mesbah, and Karthik Pattabiraman. Understanding asyn-
chronous interactions in full-stack javascript. In Proceedings of the 38th International
Conference on Software Engineering, pages 1169–1180, 2016.

[42] Saba Alimadadi, Sheldon Sequeira, Ali Mesbah, and Karthik Pattabiraman. Under-
standing javascript event-based interactions. In Proceedings of the 36th International
Conference on Software Engineering, pages 367–377, 2014.

[43] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. Finding bro-
ken promises in asynchronous javascript programs. Proc. ACM Program. Lang.,
2(OOPSLA):162:1–162:26, 2018.

[44] Scott Ambler and Pramod Sadalage. Refactoring Databases: Evolutionary Database
Design. Addison-Wesley, 1 edition, 2006.

[45] Esben Andreasen and Anders Møller. Determinacy in static analysis for jQuery. In
Proc. 29th ACM SIGPLAN International Conference on Object Oriented Program-
ming Systems Languages, and Applications (OOPSLA), 2014.

[46] Angular. Angular - LoadChildrenCallback, 2023. See https://angular.io/api/

router/LoadChildrenCallback.

[47] Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. Nessie: Auto-
matically testing javascript apis with asynchronous callbacks. In Proceedings of the
International Conference on Software Engineering (ICSE 2022), 2022.

[48] Ellen Arteca, Max Schäfer, and Frank Tip. Learning how to listen: Automatically
finding bug patterns in event-driven JavaScript APIs. IEEE Trans. Software Eng.,
2022.

149

https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://angular.io/api/router/LoadChildrenCallback
https://angular.io/api/router/LoadChildrenCallback

[49] Ellen Arteca, Frank Tip, and Max Schäfer. Enabling additional parallelism in asyn-
chronous JavaScript applications. In Anders Møller and Manu Sridharan, editors,
35th European Conference on Object-Oriented Programming, ECOOP 2021, July
11-17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, pages
7:1–7:28. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2021.

[50] Ellen Arteca and Alexi Turcotte. Npm-filter: Automating the mining of dynamic
information from npm packages. In Proceedings of the 19th International Conference
on Mining Software Repositories, MSR ’22, page 304–308, New York, NY, USA,
2022. Association for Computing Machinery.

[51] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. QL:
object-oriented queries on relational data. In 30th European Conference on Object-
Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy, pages 2:1–2:25,
2016.

[52] Babel. Babel, 2022. See https://babeljs.io/.

[53] David F. Bacon and Peter F. Sweeney. Fast static analysis of C++ virtual function
calls. In Proceedings of the 1996 ACM SIGPLAN Conference on Object-Oriented Pro-
gramming Systems, Languages & Applications (OOPSLA ’96), San Jose, California,
USA, October 6-10, 1996., pages 324–341, 1996.

[54] Davide Balzarotti, Marco Cova, Vika Felmetsger, Nenad Jovanovic, Engin Kirda,
Christopher Kruegel, and Giovanni Vigna. Saner: Composing static and dynamic
analysis to validate sanitization in web applications. In 2008 IEEE Symposium on
Security and Privacy (sp 2008), pages 387–401, 2008.

[55] Suparna Bhattacharya, Kanchi Gopinath, and Mangala Gowri Nanda. Combining
concern input with program analysis for bloat detection. In Proceedings of the 2013
ACM SIGPLAN International Conference on Object Oriented Programming Systems
Languages and Applications, OOPSLA ’13, pages 745–764, New York, NY, USA,
2013. ACM.

[56] Bobby R Bruce, Tianyi Zhang, Jaspreet Arora, Guoqing Harry Xu, and Miryung
Kim. JShrink: In-depth investigation into debloating modern Java applications.
In Proceedings of the 28th ACM Joint Meeting on European Software Engineering
Conference and Symposium on the Foundations of Software Engineering, pages 135–
146, 2020.

150

https://babeljs.io/

[57] Michael Butkiewicz, Daimeng Wang, Zhe Wu, Harsha V. Madhyastha, and Vyas
Sekar. Klotski: Reprioritizing web content to improve user experience on mobile
devices. In 12th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 15, Oakland, CA, USA, May 4-6, 2015, pages 439–453. USENIX
Association, 2015.

[58] Boyuan Chen, Zhen Ming Jiang, Paul Matos, and Michael Lacaria. An industrial
experience report on performance-aware refactoring on a database-centric web ap-
plication. In 34th IEEE/ACM International Conference on Automated Software En-
gineering, ASE 2019, San Diego, CA, USA, November 11-15, 2019, pages 653–664.
IEEE, 2019.

[59] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. Detecting performance anti-patterns for applications developed
using object-relational mapping. In Proceedings of the 36th International Conference
on Software Engineering, ICSE 2014, page 1001–1012, New York, NY, USA, 2014.
Association for Computing Machinery.

[60] Tse-Hsun Chen, Weiyi Shang, Zhen Ming Jiang, Ahmed E. Hassan, Mohamed Nasser,
and Parminder Flora. Finding and evaluating the performance impact of redun-
dant data access for applications that are developed using object-relational mapping
frameworks. IEEE Transactions on Software Engineering, 42(12):1148–1161, 2016.

[61] Alvin Cheung, Samuel Madden, and Armando Solar-Lezama. Sloth: Being lazy is a
virtue (when issuing database queries). In Curtis E. Dyreson, Feifei Li, and M. Tamer
Özsu, editors, International Conference on Management of Data, SIGMOD 2014,
Snowbird, UT, USA, June 22-27, 2014, pages 931–942. ACM, 2014.

[62] Bas Cornelissen, Andy Zaidman, and Arie van Deursen. A controlled experiment for
program comprehension through trace visualization. IEEE Transactions on Software
Engineering, 37(3):341–355, 2010.

[63] Bas Cornelissen, Andy Zaidman, Arie Van Deursen, Leon Moonen, and Rainer
Koschke. A systematic survey of program comprehension through dynamic anal-
ysis. IEEE Transactions on Software Engineering, 35(5):684–702, 2009.

[64] Douglas Crockford. jsmin, 2023. See https://www.crockford.com/jsmin.html.

[65] daedadev. employee-tracker, 2022. See https://github.com/daedadev/

employee-tracker/commit/ba4a195.

151

https://www.crockford.com/jsmin.html
https://github.com/daedadev/employee-tracker/commit/ba4a195
https://github.com/daedadev/employee-tracker/commit/ba4a195

[66] Bjorn De Sutter, Bruno De Bus, and Koen De Bosschere. Sifting out the mud: Low
level C++ code reuse. SIGPLAN Notices, 37(11):275–291, November 2002.

[67] Jeffrey Dean, David Grove, and Craig Chambers. Optimization of object-oriented
programs using static class hierarchy analysis. In ECOOP’95 - Object-Oriented Pro-
gramming, 9th European Conference, Århus, Denmark, August 7-11, 1995, Proceed-
ings, pages 77–101, 1995.

[68] Dario Di Nucci, Fabio Palomba, Damian A Tamburri, Alexander Serebrenik, and
Andrea De Lucia. Detecting code smells using machine learning techniques: are we
there yet? In 2018 ieee 25th international conference on software analysis, evolution
and reengineering (saner), pages 612–621. IEEE, 2018.

[69] Danny Dig. A refactoring approach to parallelism. IEEE Softw., 28(1):17–22, 2011.

[70] Danny Dig, John Marrero, and Michael D. Ernst. Refactoring sequential java code for
concurrency via concurrent libraries. In 31st International Conference on Software
Engineering, ICSE 2009, May 16-24, 2009, Vancouver, Canada, Proceedings, pages
397–407. IEEE, 2009.

[71] Danny Dig, Mihai Tarce, Cosmin Radoi, Marius Minea, and Ralph E. Johnson.
Relooper: refactoring for loop parallelism in java. In Shail Arora and Gary T. Leav-
ens, editors, Companion to the 24th Annual ACM SIGPLAN Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2009, Oc-
tober 25-29, 2009, Orlando, Florida, USA, pages 793–794. ACM, 2009.

[72] Sourav Dutta, Sheheeda Manakkadu, and Dimitri Kagaris. Classifying performance
bottlenecks in multi-threaded applications. In IEEE 8th International Symposium
on Embedded Multicore/Manycore SoCs, MCSoC 2014, Aizu-Wakamatsu, Japan,
September 23-25, 2014, pages 341–345. IEEE Computer Society, 2014.

[73] ECMA. Ecmascript 2021 language specification, 2021. Available from
https://www.ecma-international.org/publications-and-standards/

standards/ecma-262/.

[74] ECMA International. ECMAScript 2019 language specification. https://262.

ecma-international.org/10.0/, 2019. Accessed: 2021-04-16.

[75] ECMA International. ECMAScript module system. https://www.

ecma-international.org/ecma-262/#sec-modules, 2021. Accessed: 2021-04-16.

152

https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://262.ecma-international.org/10.0/
https://262.ecma-international.org/10.0/
https://www.ecma-international.org/ecma-262/#sec-modules
https://www.ecma-international.org/ecma-262/#sec-modules

[76] Elektra-GHP. Graceshopper-elektra, 2022. See https://github.com/Elektra-GHP/
Graceshopper-Elektra/commit/c327530.

[77] eligrey. file-saver, 2023. See https://www.npmjs.com/package/file-saver.

[78] employee tracker, 2022. See https://github.com/daedadev/employee-tracker/

blob/main/index.js#L9-L44.

[79] employee tracker, 2022. See https://github.com/daedadev/employee-tracker/

blob/main/index.js#L169-L219.

[80] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/events.js#L17-L31.

[81] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/events.js#L32-L43.

[82] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/events.js#L44-L63.

[83] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/events.js#L64-L76.

[84] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/events.js#L104-L114.

[85] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/like.js#L6-L16.

[86] eventbright, 2022. See https://github.com/twincarlos/eventbright/blob/

main/backend/routes/api/order.js#L6-L21.

[87] fahimahammed. task, 2023. See https://github.com/fahimahammed/task/

b641bc0.

[88] Amin Milani Fard and Ali Mesbah. JSNOSE: detecting javascript code smells. In 13th
IEEE International Working Conference on Source Code Analysis and Manipulation,
SCAM 2013, Eindhoven, Netherlands, September 22-23, 2013, pages 116–125. IEEE
Computer Society, 2013.

153

https://github.com/Elektra-GHP/Graceshopper-Elektra/commit/c327530
https://github.com/Elektra-GHP/Graceshopper-Elektra/commit/c327530
https://www.npmjs.com/package/file-saver
https://github.com/daedadev/employee-tracker/blob/main/index.js#L9-L44
https://github.com/daedadev/employee-tracker/blob/main/index.js#L9-L44
https://github.com/daedadev/employee-tracker/blob/main/index.js#L169-L219
https://github.com/daedadev/employee-tracker/blob/main/index.js#L169-L219
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L17-L31
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L17-L31
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L32-L43
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L32-L43
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L44-L63
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L44-L63
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L64-L76
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L64-L76
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L104-L114
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L104-L114
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/like.js#L6-L16
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/like.js#L6-L16
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/order.js#L6-L21
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/order.js#L6-L21
https://github.com/fahimahammed/task/b641bc0
https://github.com/fahimahammed/task/b641bc0

[89] Asger Feldthaus, Todd D. Millstein, Anders Møller, Max Schäfer, and Frank Tip.
Tool-supported refactoring for JavaScript. In Cristina Videira Lopes and Kath-
leen Fisher, editors, Proceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages, and Applications, OOPSLA
2011, part of SPLASH 2011, Portland, OR, USA, October 22 - 27, 2011, pages
119–138. ACM, 2011.

[90] Asger Feldthaus, Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Effi-
cient construction of approximate call graphs for javascript ide services. In 2013 35th
International Conference on Software Engineering (ICSE), pages 752–761, 2013.

[91] Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley,
1 edition, 1999.

[92] Martin Fowler. Refactoring: Improving the Design of Existing Code. Addison-Wesley,
1999.

[93] Martin Fowler. Refactoring. Improving the Design of Existing Code. Addison-Wesley,
2 edition, 2018.

[94] Dennis F. Galletta, Raymond M. Henry, Scott McCoy, and Peter Polak. Web site
delays: How tolerant are users? J. Assoc. Inf. Syst., 5(1):1, 2004.

[95] François Gauthier, Behnaz Hassanshahi, and Alexander Jordan. A¡span
class=”smallcaps smallercapital”¿ffogato¡/span¿: Runtime detection of injection at-
tacks for node.js. In Companion Proceedings for the ISSTA/ECOOP 2018 Work-
shops, ISSTA ’18, page 94–99, New York, NY, USA, 2018. Association for Computing
Machinery.

[96] GitHub. Language trends on GitHub. https://octoverse.github.com/

#top-languages, 2020.

[97] GitHub. CodeQL. https://github.com/github/codeql, 2021. Accessed: 2021-04-
16.

[98] GitHub. State of the Octoverse, 2023. See https://octoverse.github.com/2022/
top-programming-languages.

[99] Patrice Godefroid, Nils Klarlund, and Koushik Sen. Dart: Directed automated ran-
dom testing. SIGPLAN Not., 40(6):213–223, jun 2005.

154

https://octoverse.github.com/#top-languages
https://octoverse.github.com/#top-languages
https://github.com/github/codeql
https://octoverse.github.com/2022/top-programming-languages
https://octoverse.github.com/2022/top-programming-languages

[100] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. Automatic migration from
synchronous to asynchronous JavaScript APIs. Proc. ACM Program. Lang.,
5(OOPSLA):1–27, 2021.

[101] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. Dlint: dynamically
checking bad coding practices in javascript. In Michal Young and Tao Xie, editors,
Proceedings of the 2015 International Symposium on Software Testing and Analysis,
ISSTA 2015, Baltimore, MD, USA, July 12-17, 2015, pages 94–105. ACM, 2015.

[102] Google. Chrome DevTools, 2022. See https://developer.chrome.com/docs/

devtools/.

[103] Nikos Gorogiannis, Peter W. O’Hearn, and Ilya Sergey. A true positives theorem for
a static race detector. Proc. ACM Program. Lang., 3(POPL), jan 2019.

[104] Graceshopper-Elektra, 2022. See https://github.com/Elektra-GHP/

Graceshopper-Elektra/blob/master/server/api/checkout.js#L7-L47.

[105] Neville Grech and Yannis Smaragdakis. P/taint: Unified points-to and taint analysis.
Proceedings of the ACM on Programming Languages, 1(OOPSLA):1–28, 2017.

[106] Maila Hardin, Daniel Hom, Ross Perez, and Lori Williams. Which chart or graph is
right for you? Tell Impactful Stories with Data. Tableau Software, 2012.

[107] Harinathlee. upoint-query-builder, 2023. See https://github.com/Harinathlee/

upoint-query-builder/f9aa0f1.

[108] Hibernate. What is object/relational mapping?, 2022. See http://hibernate.org/
orm/what-is-an-orm/.

[109] hongtaodai. react-excel, 2023. See https://github.com/hongtaodai/

react-excel/2d59e85.

[110] David Hovemeyer and William Pugh. More efficient network class loading through
bundling. In Proceedings of the 1st Java Virtual Machine Research and Technology
Symposium, April 23-24, 2001, Monterey, CA, USA, pages 127–140, 2001.

[111] hoverGecko. timetable, 2023. See https://github.com/hoverGecko/timetable/

0fa8527.

155

https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/
https://github.com/Elektra-GHP/Graceshopper-Elektra/blob/master/server/api/checkout.js#L7-L47
https://github.com/Elektra-GHP/Graceshopper-Elektra/blob/master/server/api/checkout.js#L7-L47
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
http://hibernate.org/orm/what-is-an-orm/
http://hibernate.org/orm/what-is-an-orm/
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/hoverGecko/timetable/0fa8527

[112] IBM Corporation. VisualAge for Smalltalk Handbook Volume 1: Fundamentals, first
edition edition, 1997. Available from http://www.redbooks.ibm.com/redbooks/

4instantiations/sg244828.pdf.

[113] Istanbul. nyc. https://www.npmjs.com/package/nyc, 2021. Accessed: 2021-10-12.

[114] Simon Holm Jensen, Peter A. Jonsson, and Anders Møller. Remedying the eval
that men do. In Mats Per Erik Heimdahl and Zhendong Su, editors, International
Symposium on Software Testing and Analysis, ISSTA 2012, Minneapolis, MN, USA,
July 15-20, 2012, pages 34–44. ACM, 2012.

[115] Simon Holm Jensen, Magnus Madsen, and Anders Møller. Modeling the HTML
DOM and browser API in static analysis of JavaScript web applications. In SIG-
SOFT/FSE’11 19th ACM SIGSOFT Symposium on the Foundations of Software En-
gineering (FSE-19) and ESEC’11: 13th European Software Engineering Conference
(ESEC-13), Szeged, Hungary, September 5-9, 2011, pages 59–69, 2011.

[116] Simon Holm Jensen, Anders Møller, and Peter Thiemann. Type analysis for
JavaScript. In International Static Analysis Symposium, pages 238–255. Springer,
2009.

[117] José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. Bottleneck iden-
tification and scheduling in multithreaded applications. In Proceedings of the 17th
International Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012, pages 223–234,
2012.

[118] David Johannes, Foutse Khomh, and Giuliano Antoniol. A large-scale empirical
study of code smells in JavaScript projects. Softw. Qual. J., 27(3):1271–1314, 2019.

[119] Wagner Meira Jr., Thomas J. LeBlanc, and Alexandros Poulos. Waiting time anal-
ysis and performance visualization in carnival. In Proceedings of the SIGMETRICS
symposium on Parallel and distributed tools (SPDT’96), pages 1–10, 1996.

[120] T. Kamiya, S. Kusumoto, and K. Inoue. Ccfinder: a multilinguistic token-based code
clone detection system for large scale source code. IEEE Transactions on Software
Engineering, 28(7):654–670, 2002.

[121] Rezwana Karim, Frank Tip, Alena Sochurková, and Koushik Sen. Platform-
independent dynamic taint analysis for JavaScript. IEEE Trans. Software Eng.,
46(12):1364–1379, 2020.

156

http://www.redbooks.ibm.com/redbooks/4instantiations/sg244828.pdf
http://www.redbooks.ibm.com/redbooks/4instantiations/sg244828.pdf
https://www.npmjs.com/package/nyc

[122] Vineeth Kashyap, Kyle Dewey, Ethan A. Kuefner, John Wagner, Kevin Gibbons,
John Sarracino, Ben Wiedermann, and Ben Hardekopf. JSAI: A static analysis
platform for JavaScript. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, FSE 2014, page 121–132, New
York, NY, USA, 2014. Association for Computing Machinery.

[123] Wael Kessentini, Marouane Kessentini, Houari Sahraoui, Slim Bechikh, and Ali Ouni.
A cooperative parallel search-based software engineering approach for code-smells
detection. IEEE Transactions on Software Engineering, 40(9):841–861, 2014.

[124] Raffi Khatchadourian, Yiming Tang, Mehdi Bagherzadeh, and Syed Ahmed. Safe
automated refactoring for intelligent parallelization of Java 8 streams. In Joanne M.
Atlee, Tevfik Bultan, and Jon Whittle, editors, Proceedings of the 41st International
Conference on Software Engineering, ICSE 2019, Montreal, QC, Canada, May 25-31,
2019, pages 619–630. IEEE / ACM, 2019.

[125] Hee Yeon Kim, Ji Hoon Kim, Ho Kyun Oh, Beom Jin Lee, Si Woo Mun, Jeong Hoon
Shin, and Kyounggon Kim. DAPP: automatic detection and analysis of prototype
pollution vulnerability in node.js modules. Int. J. Inf. Sec., 21(1):1–23, 2022.

[126] Igibek Koishybayev and Alexandros Kapravelos. Mininode: Reducing the Attack
Surface of Node.js Applications. In Proceedings of the International Symposium on
Research in Attacks, Intrusions and Defenses (RAID), October 2020.

[127] Hyungjoon Koo, Seyedhamed Ghavamnia, and Michalis Polychronakis.
Configuration-driven software debloating. In Proceedings of the 12th European
Workshop on Systems Security, pages 1–6, 2019.

[128] Jacob Kreindl, Daniele Bonetta, Lukas Stadler, David Leopoldseder, and Hanspeter
Mössenböck. Dynamic taint analysis with label-defined semantics. In Proceedings
of the 19th International Conference on Managed Programming Languages and Run-
times, MPLR ’22, page 64–84, New York, NY, USA, 2022. Association for Computing
Machinery.

[129] Chandra Krintz, Brad Calder, and Urs Hölzle. Reducing transfer delay using Java
class file splitting and prefetching. In Proceedings of the 1999 ACM SIGPLAN Con-
ference on Object-Oriented Programming Systems, Languages & Applications (OOP-
SLA ’99), Denver, Colorado, USA, November 1-5, 1999., pages 276–291, 1999.

[130] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Detecting node.js prototype
pollution vulnerabilities via object lookup analysis. In Diomidis Spinellis, Georgios

157

Gousios, Marsha Chechik, and Massimiliano Di Penta, editors, ESEC/FSE ’21: 29th
ACM Joint European Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering, Athens, Greece, August 23-28, 2021, pages 268–279.
ACM, 2021.

[131] Song Li, Mingqing Kang, Jianwei Hou, and Yinzhi Cao. Mining node.js vulnerabil-
ities via object dependence graph and query. In 31st USENIX Security Symposium
(USENIX Security 22), Boston, MA, 2022. USENIX Association.

[132] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Precision-guided context
sensitivity for pointer analysis. PACMPL, 2(OOPSLA):141:1–141:29, 2018.

[133] Yue Li, Tian Tan, Anders Møller, and Yannis Smaragdakis. Scalability-first pointer
analysis with self-tuning context-sensitivity. In Proceedings of the 2018 26th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, pages 129–140, 2018.

[134] Yu Lin, Cosmin Radoi, and Danny Dig. Retrofitting concurrency for Android appli-
cations through refactoring. In Proceedings of the 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering, (FSE-22), Hong Kong, China,
November 16 - 22, 2014, pages 341–352, 2014.

[135] Gitte Lindgaard, Gary Fernandes, Cathy Dudek, and Judith M. Brown. Attention
web designers: You have 50 milliseconds to make a good first impression! Behav.
Inf. Technol., 25(2):115–126, 2006.

[136] Martina Lindorfer, Matthias Neugschwandtner, and Christian Platzer. Marvin: Effi-
cient and comprehensive mobile app classification through static and dynamic anal-
ysis. In 2015 IEEE 39th Annual Computer Software and Applications Conference,
volume 2, pages 422–433, 2015.

[137] Zhicheng Liu and Jeffrey Heer. The effects of interactive latency on exploratory
visual analysis. IEEE Trans. Vis. Comput. Graph., 20(12):2122–2131, 2014.

[138] V. Benjamin Livshits and Emre Kiciman. Doloto: code splitting for network-bound
Web 2.0 applications. In Proceedings of the 16th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2008, Atlanta, Georgia, USA,
November 9-14, 2008, pages 350–360, 2008.

[139] Yingjun Lyu, Ding Li, and William G. J. Halfond. Remove rats from your code: Au-
tomated optimization of resource inefficient database writes for mobile applications.

158

In Frank Tip and Eric Bodden, editors, Proceedings of the 27th ACM SIGSOFT In-
ternational Symposium on Software Testing and Analysis, ISSTA 2018, Amsterdam,
The Netherlands, July 16-21, 2018, pages 310–321. ACM, 2018.

[140] Magnus Madsen, Ondrej Lhoták, and Frank Tip. A model for reasoning about
javascript promises. Proc. ACM Program. Lang., 1(OOPSLA):86:1–86:24, 2017.

[141] Magnus Madsen, Benjamin Livshits, and Michael Fanning. Practical static analysis
of JavaScript applications in the presence of frameworks and libraries. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, ESEC/FSE
2013, page 499–509, New York, NY, USA, 2013. Association for Computing Machin-
ery.

[142] Magnus Madsen, Frank Tip, and Ondrej Lhoták. Static analysis of event-driven
node.js javascript applications. In Jonathan Aldrich and Patrick Eugster, edi-
tors, Proceedings of the 2015 ACM SIGPLAN International Conference on Object-
Oriented Programming, Systems, Languages, and Applications, OOPSLA 2015, part
of SPLASH 2015, Pittsburgh, PA, USA, October 25-30, 2015, pages 505–519. ACM,
2015.

[143] Ivano Malavolta, Kishan Nirghin, Gian Luca Scoccia, Simone Romano, Salvatore
Lombardi, Giuseppe Scanniello, and Patricia Lago. Javascript dead code identifica-
tion, elimination, and empirical assessment. IEEE Transactions on Software Engi-
neering, pages 1–23, 2023.

[144] manikandanraji. youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/commit/47002fc.

[145] Math Fluency App, 2022. See https://github.com/rayace5/Math_Fluency_App/
blob/main/routes/results.js#L428-L511.

[146] Math Fluency App, 2022. See https://github.com/rayace5/Math_Fluency_App/
blob/main/routes/results.js#L603-L686.

[147] Math Fluency App, 2022. See https://github.com/rayace5/Math_Fluency_App/
blob/main/routes/results.js#L259-L336.

[148] Lauren McCarthy, Casey Reas, and Ben Fry. Getting started with P5. js: Making
interactive graphics in JavaScript and processing. Maker Media, Inc., 2015.

159

https://github.com/manikandanraji/youtubeclone-backend/commit/47002fc
https://github.com/manikandanraji/youtubeclone-backend/commit/47002fc
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L428-L511
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L428-L511
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L603-L686
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L603-L686
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L259-L336
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L259-L336

[149] MDN. Tree shaking. https://developer.mozilla.org/en-US/docs/Glossary/

Tree_shaking, 2021. Accessed: 2021-10-11.

[150] Meta. lazy - react, 2023. See https://react.dev/reference/react/lazy.

[151] Meta. Suspense - react, 2023. See https://react.dev/reference/react/

Suspense.

[152] Microsoft. CodeQL, 2022. See https://codeql.github.com/.

[153] Microsoft. CodeQL, 2022. See https://codeql.github.com/docs/

codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/

#analyzing-data-flow-in-javascript-and-typescript.

[154] Microsoft. CodeQL JavaScript data flow library, 2023. See https:

//github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/

javascript/dataflow.

[155] mikethecodegeek. property-manage, 2022. See https://github.com/

mikethecodegeek/property-manage/commit/33f92a9.

[156] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K. Hollingsworth,
R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam, and Tia Newhall.
The paradyn parallel performance measurement tool. IEEE Computer, 28(11):37–
46, 1995.

[157] mishoo. uglify-js, 2023. See https://www.npmjs.com/package/uglify-js.

[158] Anders Møller. Jelly, 2023. See https://github.com/cs-au-dk/jelly.

[159] Anders Møller, Benjamin Barslev Nielsen, and Martin Toldam Torp. Detecting lo-
cations in javascript programs affected by breaking library changes. Proc. ACM
Program. Lang., 4(OOPSLA), nov 2020.

[160] Anders Møller and Martin Toldam Torp. Model-based testing of breaking changes in
node.js libraries. In Proceedings of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Foundations of Software
Engineering, ESEC/FSE 2019, page 409–419, New York, NY, USA, 2019. Association
for Computing Machinery.

[161] Mozilla. Rest parameters. https://developer.mozilla.org/en-US/docs/Web/

JavaScript/Reference/Functions/rest_parameters, 2021. Accessed 2021-04-16.

160

https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://developer.mozilla.org/en-US/docs/Glossary/Tree_shaking
https://react.dev/reference/react/lazy
https://react.dev/reference/react/Suspense
https://react.dev/reference/react/Suspense
https://codeql.github.com/
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://codeql.github.com/docs/codeql-language-guides/analyzing-data-flow-in-javascript-and-typescript/#analyzing-data-flow-in-javascript-and-typescript
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/mikethecodegeek/property-manage/commit/33f92a9
https://github.com/mikethecodegeek/property-manage/commit/33f92a9
https://www.npmjs.com/package/uglify-js
https://github.com/cs-au-dk/jelly
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Functions/rest_parameters

[162] NetSteam, 2022. See https://github.com/W-the-V/NetSteam/blob/main/

backend/routes/api/reviews.js#L14-L42.

[163] NetSteam, 2022. See https://github.com/W-the-V/NetSteam/blob/main/

backend/routes/api/reviews.js#L44-L80.

[164] NetSteam, 2022. See https://github.com/W-the-V/NetSteam/blob/main/

backend/routes/api/reviews.js#L82-L120.

[165] NetSteam, 2022. See https://github.com/W-the-V/NetSteam/blob/main/

backend/routes/api/reviews.js#L122-L157.

[166] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, Anh Tuan Nguyen, and
Tien N. Nguyen. Detection of embedded code smells in dynamic web applications.
In Michael Goedicke, Tim Menzies, and Motoshi Saeki, editors, IEEE/ACM Inter-
national Conference on Automated Software Engineering, ASE’12, Essen, Germany,
September 3-7, 2012, pages 282–285. ACM, 2012.

[167] Benjamin Barslev Nielsen, Behnaz Hassanshahi, and François Gauthier. Nodest:
Feedback-driven static analysis of node.js applications. In Proceedings of the 2019
27th ACM Joint Meeting on European Software Engineering Conference and Sympo-
sium on the Foundations of Software Engineering, ESEC/FSE 2019, page 455–465,
New York, NY, USA, 2019. Association for Computing Machinery.

[168] Benjamin Barslev Nielsen, Martin Toldam Torp, and Anders Møller. Modular call
graph construction for security scanning of node.js applications. In Proceedings of the
30th ACM SIGSOFT International Symposium on Software Testing and Analysis,
ISSTA 2021, page 29–41, New York, NY, USA, 2021. Association for Computing
Machinery.

[169] Ben Niu and Gang Tan. Per-input control-flow integrity. In Proceedings of the 22nd
ACM SIGSAC Conference on Computer and Communications Security, CCS ’15,
page 914–926, New York, NY, USA, 2015. Association for Computing Machinery.

[170] npm. npm. https://www.npmjs.com/, 2021. Accessed 2021-04-16.

[171] npm. semver. https://www.npmjs.com/package/semver, 2021. Accessed 2021-04-
16.

[172] Semih Okur, Cansu Erdogan, and Danny Dig. Converting parallel code from low-
level abstractions to higher-level abstractions. In ECOOP 2014 - Object-Oriented

161

https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L14-L42
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L14-L42
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L44-L80
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L44-L80
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L82-L120
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L82-L120
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L122-L157
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L122-L157
https://www.npmjs.com/
https://www.npmjs.com/package/semver

Programming - 28th European Conference, Uppsala, Sweden, July 28 - August 1,
2014. Proceedings, pages 515–540, 2014.

[173] OpenJS Foundation. Node.js. https://nodejs.org/en/, 2021. Accessed 2021-04-
16.

[174] ParcPlace-DigiTalk. VisualWorks User’s Guide, software release 2.5 edition, 1995.
Chapter 13: Application Delivery Tools. Available from http://esug.org/data/

Old/vw-tutorials/vw25/vw25ug.pdf.

[175] Joonyoung Park, Inho Lim, and Sukyoung Ryu. Battles with false positives in static
analysis of javascript web applications in the wild. In Laura K. Dillon, Willem Visser,
and Laurie A. Williams, editors, Proceedings of the 38th International Conference on
Software Engineering, ICSE 2016, Austin, TX, USA, May 14-22, 2016 - Companion
Volume, pages 61–70. ACM, 2016.

[176] Joonyoung Park, Jihyeok Park, Dongjun Youn, and Sukyoung Ryu. Accelerating
javascript static analysis via dynamic shortcuts. In Proceedings of the 29th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the
Foundations of Software Engineering, ESEC/FSE 2021, page 1129–1140, New York,
NY, USA, 2021. Association for Computing Machinery.

[177] Yun Peng, Yu Zhang, and Mingzhe Hu. An empirical study for common language
features used in python projects. In 2021 IEEE International Conference on Software
Analysis, Evolution and Reengineering (SANER), pages 24–35. IEEE, 2021.

[178] property manage, 2022. See https://github.com/mikethecodegeek/

property-manage/blob/master/backend/routes/api/properties.js#

L123-L146.

[179] Kia Rahmani, Kartik Nagar, Benjamin Delaware, and Suresh Jagannathan. Re-
pairing serializability bugs in distributed database programs via automated schema
refactoring. In Stephen N. Freund and Eran Yahav, editors, PLDI ’21: 42nd ACM
SIGPLAN International Conference on Programming Language Design and Imple-
mentation, Virtual Event, Canada, June 20-25, 2021, pages 32–47. ACM, 2021.

[180] rayace5. Math fluency app, 2022. See https://github.com/rayace5/Math_

Fluency_App/commit/5c1658e.

[181] Derek Rayside and Kostas Kontogiannis. Extracting Java library subsets for deploy-
ment on embedded systems. Sci. Comput. Program., 45(2):245–270, 2002.

162

https://nodejs.org/en/
http://esug.org/data/Old/vw-tutorials/vw25/vw25ug.pdf
http://esug.org/data/Old/vw-tutorials/vw25/vw25ug.pdf
https://github.com/mikethecodegeek/property-manage/blob/master/backend/routes/api/properties.js#L123-L146
https://github.com/mikethecodegeek/property-manage/blob/master/backend/routes/api/properties.js#L123-L146
https://github.com/mikethecodegeek/property-manage/blob/master/backend/routes/api/properties.js#L123-L146
https://github.com/rayace5/Math_Fluency_App/commit/5c1658e
https://github.com/rayace5/Math_Fluency_App/commit/5c1658e

[182] reduxjs. redux. https://github.com/reduxjs/redux, 2021. Accessed: 2021-10-25.

[183] Gregor Richards, Christian Hammer, Brian Burg, and Jan Vitek. The eval that
men do—A large-scale study of the use of eval in JavaScript applications. In Mira
Mezini, editor, ECOOP 2011 - Object-Oriented Programming - 25th European Con-
ference, Lancaster, UK, July 25-29, 2011 Proceedings, volume 6813 of Lecture Notes
in Computer Science, pages 52–78. Springer, 2011.

[184] Gregor Richards, Sylvain Lebresne, Brian Burg, and Jan Vitek. An analysis of the
dynamic behavior of javascript programs. In Proceedings of the 31st ACM SIGPLAN
Conference on Programming Language Design and Implementation, PLDI ’10, page
1–12, New York, NY, USA, 2010. Association for Computing Machinery.

[185] Rollup. Rollup. https://www.npmjs.com/package/rollup, 2021. Accessed: 2021-
10-11.

[186] Rollup. Tree shaking, 2023. See https://rollupjs.org. also see https://

rollupjs.org/faqs/#what-is-tree-shaking for tree-shaking.

[187] Ruby on Rails. Ruby on Rails, 2022. See https://rubyonrails.org/.

[188] Caitlin Sadowski, Edward Aftandilian, Alex Eagle, Liam Miller-Cushon, and Ciera
Jaspan. Lessons from building static analysis tools at google. Communications of
the ACM, 61(4):58–66, 2018.

[189] Caitlin Sadowski, Jeffrey Van Gogh, Ciera Jaspan, Emma Soderberg, and Collin
Winter. Tricorder: Building a program analysis ecosystem. In 2015 IEEE/ACM
37th IEEE International Conference on Software Engineering, volume 1, pages 598–
608. IEEE, 2015.

[190] sadupawan1990. excelreader, 2023. See https://github.com/sadupawan1990/

excelreader/4a5f9cb.

[191] Samsung. Jalangi2, 2023. See https://github.com/Samsung/jalangi2.

[192] Max Schäfer, Manu Sridharan, Julian Dolby, and Frank Tip. Refactoring Java pro-
grams for flexible locking. In Richard N. Taylor, Harald C. Gall, and Nenad Med-
vidovic, editors, Proceedings of the 33rd International Conference on Software Engi-
neering, ICSE 2011, Waikiki, Honolulu , HI, USA, May 21-28, 2011, pages 71–80.
ACM, 2011.

163

https://github.com/reduxjs/redux
https://www.npmjs.com/package/rollup
https://rollupjs.org
https://rollupjs.org/faqs/#what-is-tree-shaking
https://rollupjs.org/faqs/#what-is-tree-shaking
https://rubyonrails.org/
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/Samsung/jalangi2

[193] Marija Selakovic, Michael Pradel, Rezwana Karim, and Frank Tip. Test genera-
tion for higher-order functions in dynamic languages. Proceedings of the ACM on
Programming Languages, 2(OOPSLA):1–27, 2018.

[194] Koushik Sen, Swaroop Kalasapur, Tasneem Brutch, and Simon Gibbs. Jalangi: A
selective record-replay and dynamic analysis framework for javascript. In Proceedings
of the 2013 9th Joint Meeting on Foundations of Software Engineering, pages 488–
498, 2013.

[195] Hashim Sharif, Muhammad Abubakar, Ashish Gehani, and Fareed Zaffar. Trim-
mer: Application specialization for code debloating. In Proceedings of the 33rd
ACM/IEEE International Conference on Automated Software Engineering, ASE ’18,
page 329–339, New York, NY, USA, 2018. Association for Computing Machinery.

[196] SheetJS. xlsx, 2023. See https://www.npmjs.com/package/xlsx.

[197] Ben Shneiderman. The eyes have it: A task by data type taxonomy for information
visualizations. In The craft of information visualization, pages 364–371. Elsevier,
2003.

[198] César Soto-Valero, Deepika Tiwari, Tim Toady, and Benoit Baudry. Automatic
specialization of third-party java dependencies. arXiv preprint arXiv:2302.08370,
2023.

[199] Manu Sridharan, Julian Dolby, Satish Chandra, Max Schäfer, and Frank Tip. Corre-
lation tracking for points-to analysis of JavaScript. In James Noble, editor, ECOOP
2012 - Object-Oriented Programming - 26th European Conference, Beijing, China,
June 11-16, 2012. Proceedings, volume 7313 of Lecture Notes in Computer Science,
pages 435–458. Springer, 2012.

[200] Stack Overflow. Developer survey. https://insights.stackoverflow.com/

survey/2020#most-popular-technologies, 2020.

[201] Cristian-Alexandru Staicu, Michael Pradel, and Benjamin Livshits. Synode: Un-
derstanding and automatically preventing injection attacks on node.js. In NDSS,
2018.

[202] Cristian-Alexandru Staicu, Martin Toldam Torp, Max Schäfer, Anders Møller, and
Michael Pradel. Extracting taint specifications for javascript libraries. In Proceedings
of the ACM/IEEE 42nd International Conference on Software Engineering, ICSE ’20,
page 198–209, New York, NY, USA, 2020. Association for Computing Machinery.

164

https://www.npmjs.com/package/xlsx
https://insights.stackoverflow.com/survey/2020#most-popular-technologies
https://insights.stackoverflow.com/survey/2020#most-popular-technologies

[203] Benno Stein, Benjamin Barslev Nielsen, Bor-Yuh Evan Chang, and Anders Møller.
Static analysis with demand-driven value refinement. Proc. ACM Program. Lang.,
3(OOPSLA):140:1–140:29, 2019.

[204] Haiyang Sun, Daniele Bonetta, Christian Humer, and Walter Binder. Efficient dy-
namic analysis for node. js. In Proceedings of the 27th International Conference on
Compiler Construction, pages 196–206, 2018.

[205] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. Reasoning
about the node. js event loop using async graphs. In 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (CGO), pages 61–72. IEEE, 2019.

[206] Peter F. Sweeney and Frank Tip. Extracting library-based object-oriented applica-
tions. In ACM SIGSOFT Symposium on Foundations of Software Engineering, an
Diego, California, USA, November 6-10, 2000, Proceedings, pages 98–107, 2000.

[207] W the V. Netsteam, 2022. See https://github.com/W-the-V/NetSteam/commit/

5b1cd86.

[208] thewca. scrambles-matcher, 2023. See https://github.com/thewca/

scrambles-matcher/1de93f7.

[209] Frank Tip, Chris Laffra, Peter F. Sweeney, and David Streeter. Practical experi-
ence with an application extractor for Java. In Proceedings of the 1999 ACM SIG-
PLAN Conference on Object-Oriented Programming Systems, Languages & Applica-
tions (OOPSLA ’99), Denver, Colorado, USA, November 1-5, 1999., pages 292–305,
1999.

[210] Frank Tip and Jens Palsberg. Scalable propagation-based call graph construction
algorithms. In Mary Beth Rosson and Doug Lea, editors, Proceedings of the 2000
ACM SIGPLAN Conference on Object-Oriented Programming Systems, Languages &
Applications (OOPSLA 2000), Minneapolis, Minnesota, USA, October 15-19, 2000,
pages 281–293. ACM, 2000.

[211] Frank Tip, Peter F. Sweeney, Chris Laffra, Aldo Eisma, and David Streeter. Practical
extraction techniques for Java. ACM Trans. Program. Lang. Syst., 24(6):625–666,
2002.

[212] John Toman and Dan Grossman. Concerto: A framework for combined concrete and
abstract interpretation. Proc. ACM Program. Lang., 3(POPL), jan 2019.

165

https://github.com/W-the-V/NetSteam/commit/5b1cd86
https://github.com/W-the-V/NetSteam/commit/5b1cd86
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/thewca/scrambles-matcher/1de93f7

[213] Ena Tominaga, Yoshitaka Arahori, and Katsuhiko Gondow. Awaitviz: a visualizer of
javascript’s async/await execution order. In Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing, pages 2515–2524, 2019.

[214] Omer Tripp, Marco Pistoia, Stephen J Fink, Manu Sridharan, and Omri Weisman.
Taj: effective taint analysis of web applications. ACM Sigplan Notices, 44(6):87–97,
2009.

[215] Alexi Turcotte, Mark W. Aldrich, and Frank Tip. Reformulator: Artifact, August
2022.

[216] Alexi Turcotte, Mark W. Aldrich, and Frank Tip. Reformulator: Automated refac-
toring of the n+1 problem in database-backed applications. In Proceedings of the 37th
IEEE/ACM International Conference on Automated Software Engineering, ASE ’22,
New York, NY, USA, 2023. Association for Computing Machinery.

[217] Alexi Turcotte, Ellen Arteca, Ashish Mishra, Saba Alimadadi, and Frank Tip. Stubb-
ifer: Debloating dynamic server-side JavaScript applications (artifact). https:

//doi.org/10.5281/zenodo.5599914, 2021.

[218] Alexi Turcotte, Pierre Donat-Bouillud, Filip Křikava, and Jan Vitek. Signatr: A
data-driven fuzzing tool for r. In Proceedings of the 15th ACM SIGPLAN Interna-
tional Conference on Software Language Engineering, SLE 2022, page 216–221, New
York, NY, USA, 2022. Association for Computing Machinery.

[219] twincarlos. eventbright, 2022. See https://github.com/twincarlos/

eventbright/commit/e417020.

[220] Zacharias Tzermias, Giorgos Sykiotakis, Michalis Polychronakis, and Evangelos P.
Markatos. Combining static and dynamic analysis for the detection of malicious
documents. In Proceedings of the Fourth European Workshop on System Security,
EUROSEC ’11, New York, NY, USA, 2011. Association for Computing Machinery.

[221] ultimateakash. react-excel-csv, 2023. See https://github.com/ultimateakash/

react-excel-csv/18c6d97.

[222] Nikos Vasilakis, Cristian-Alexandru Staicu, Grigoris Ntousakis, Konstantinos Kallas,
Ben Karel, André DeHon, and Michael Pradel. Preventing dynamic library compro-
mise on node.js via rwx-based privilege reduction. In Proceedings of the 2021 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’21, page
1821–1838, New York, NY, USA, 2021. Association for Computing Machinery.

166

https://doi.org/10.5281/zenodo.5599914
https://doi.org/10.5281/zenodo.5599914
https://github.com/twincarlos/eventbright/commit/e417020
https://github.com/twincarlos/eventbright/commit/e417020
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://github.com/ultimateakash/react-excel-csv/18c6d97

[223] vishumane. Excelsheet validation reactjs, 2023. See https://github.com/

vishumane/ExcelSheet_Validation_Reactjs/f38cb9e.

[224] H.C. Vázquez, A. Bergel, S. Vidal, J.A. Dı́az Pace, and C. Marcos. Slimming
javascript applications: An approach for removing unused functions from javascript
libraries. Information and Software Technology, 107:18–29, 2019.

[225] Gregor Wagner, Andreas Gal, and Michael Franz. “Slimming” a Java virtual machine
by way of cold code removal and optimistic partial program loading. Sci. Comput.
Program., 76(11):1037–1053, 2011.

[226] Abdul Waheed and Diane T. Rover. Performance visualization of parallel programs.
In Proceedings IEEE Visualization ’93, San Jose, California, USA, October 25-29,
1993, pages 174–182, 1993.

[227] WALA. WALA, 2022. See http://wala.sourceforge.net/wiki/index.php/Main_
Page.

[228] wall, 2022. See https://github.com/adam-dill/wall/blob/main/schema/

groups.js#L144-L152.

[229] wall, 2022. See https://github.com/adam-dill/wall/blob/main/schema/

images.js#L206-L224.

[230] Yuepeng Wang, James Dong, Rushi Shah, and Isil Dillig. Synthesizing database pro-
grams for schema refactoring. In Kathryn S. McKinley and Kathleen Fisher, editors,
Proceedings of the 40th ACM SIGPLAN Conference on Programming Language De-
sign and Implementation, PLDI 2019, Phoenix, AZ, USA, June 22-26, 2019, pages
286–300. ACM, 2019.

[231] webpack. webpack. https://www.npmjs.com/package/webpack, 2021. Accessed:
2021-10-11.

[232] webpack. Tree shaking, 2023. See https://webpack.js.org. Also, see https://

webpack.js.org/guides/tree-shaking/#root for tree shaking.

[233] webpack-contrib. css-loader. https://www.npmjs.com/package/css-loader, 2021.
Accessed 2021-04-16.

[234] Anjiang Wei, Y. Deng, Chenyuan Yang, and Lingming Zhang. Free lunch for testing:
Fuzzing deep-learning libraries from open source. 2022 IEEE/ACM 44th Interna-
tional Conference on Software Engineering (ICSE), pages 995–1007, 2022.

167

https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
http://wala.sourceforge.net/wiki/index.php/Main_Page
http://wala.sourceforge.net/wiki/index.php/Main_Page
https://github.com/adam-dill/wall/blob/main/schema/groups.js#L144-L152
https://github.com/adam-dill/wall/blob/main/schema/groups.js#L144-L152
https://github.com/adam-dill/wall/blob/main/schema/images.js#L206-L224
https://github.com/adam-dill/wall/blob/main/schema/images.js#L206-L224
https://www.npmjs.com/package/webpack
https://webpack.js.org
https://webpack.js.org/guides/tree-shaking/#root
https://webpack.js.org/guides/tree-shaking/#root
https://www.npmjs.com/package/css-loader

[235] Christian Wimmer and Thomas Würthinger. Truffle: a self-optimizing runtime sys-
tem. In Proceedings of the 3rd annual conference on Systems, programming, and
applications: software for humanity, pages 13–14, 2012.

[236] Jan Wloka, Manu Sridharan, and Frank Tip. Refactoring for reentrancy. In Hans van
Vliet and Valérie Issarny, editors, Proceedings of the 7th joint meeting of the European
Software Engineering Conference and the ACM SIGSOFT International Symposium
on Foundations of Software Engineering, 2009, Amsterdam, The Netherlands, August
24-28, 2009, pages 173–182. ACM, 2009.

[237] Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Du-
boscq, Christian Humer, Gregor Richards, Doug Simon, and Mario Wolczko. One vm
to rule them all. In Proceedings of the 2013 ACM international symposium on New
ideas, new paradigms, and reflections on programming & software, pages 187–204,
2013.

[238] Sophie Xie, Junwen Yang, and Shan Lu. Automated code refactoring upon database-
schema changes in web applications. In 36th IEEE/ACM International Conference
on Automated Software Engineering, ASE 2021, Melbourne, Australia, November
15-19, 2021, pages 1262–1265. IEEE, 2021.

[239] Cong Yan, Alvin Cheung, Junwen Yang, and Shan Lu. Understanding database
performance inefficiencies in real-world web applications. In Proceedings of the 2017
ACM on Conference on Information and Knowledge Management, CIKM ’17, page
1299–1308, New York, NY, USA, 2017. Association for Computing Machinery.

[240] Junwen Yang, Pranav Subramaniam, Shan Lu, Cong Yan, and Alvin Cheung. How
not to structure your database-backed web applications: A study of performance
bugs in the wild. In Proceedings of the 40th International Conference on Software
Engineering, ICSE ’18, page 800–810, New York, NY, USA, 2018. Association for
Computing Machinery.

[241] Junwen Yang, Cong Yan, Pranav Subramaniam, Shan Lu, and Alvin Cheung. Pow-
erstation: Automatically detecting and fixing inefficiencies of database-backed web
applications in IDE. In Gary T. Leavens, Alessandro Garcia, and Corina S. Pasare-
anu, editors, Proceedings of the 2018 ACM Joint Meeting on European Software En-
gineering Conference and Symposium on the Foundations of Software Engineering,
ESEC/SIGSOFT FSE 2018, Lake Buena Vista, FL, USA, November 04-09, 2018,
pages 884–887. ACM, 2018.

168

[242] Junwen Yang, Cong Yan, Chengcheng Wan, Shan Lu, and Alvin Cheung. View-
centric performance optimization for database-backed web applications. In 2019
IEEE/ACM 41st International Conference on Software Engineering (ICSE), pages
994–1004, 2019.

[243] Yi Yang, Ana Milanova, and Martin Hirzel. Complex python features in the wild.
Mining Software Repositories (MSR), 2022.

[244] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L46-L80.

[245] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L103-L146.

[246] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L148-L224.

[247] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L226-L251.

[248] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L253-L289.

[249] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/user.js#L299-L332.

[250] youtubeclone, 2022. See https://github.com/manikandanraji/

youtubeclone-backend/blob/master/src/controllers/video.js#L269-L299.

[251] Andy Zaidman, Nick Matthijssen, Margaret-Anne Storey, and Arie Van Deursen. Un-
derstanding ajax applications by connecting client and server-side execution traces.
Empirical Software Engineering, 18:181–218, 2013.

[252] C. Zhang, T. Wei, Z. Chen, L. Duan, L. Szekeres, S. McCamant, D. Song, and
W. Zou. Practical control flow integrity and randomization for binary executables.
In 2013 IEEE Symposium on Security and Privacy, pages 559–573, 2013.

[253] Markus Zimmermann, Cristian-Alexandru Staicu, Cam Tenny, and Michael Pradel.
Smallworld with high risks: A study of security threats in the npm ecosystem. In
Proceedings of the 28th USENIX Conference on Security Symposium, SEC’19, page
995–1010, USA, 2019. USENIX Association.

169

https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L46-L80
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L46-L80
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L103-L146
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L103-L146
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L148-L224
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L148-L224
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L226-L251
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L226-L251
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L253-L289
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L253-L289
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L299-L332
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L299-L332
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/video.js#L269-L299
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/video.js#L269-L299

APPENDICES

170

Appendix A

Anti-Pattern Detection

We have included the manual refactoring of a randomized selection of anti-patterns detected
in our tool in this appendix with brief notes on the refactorings. Additional tables and
figures have been included regarding the queries made to detect the anti-patterns, as well
as the run-time performance of the queries.

A.1 Query Run Times

Table A.1 lists run times for all of our CodeQL queries to detect anti-patterns. The first
row of the table reads: for the appcenter-cli project, the query for anti-pattern P1 (aka
asyncFunctionNoAwait) is 12s, similarly for other anti-patterns. The legend for which PX
refers to which anti-pattern is in the table caption.

A.2 Case Study Summary Tables

An overview of our attempted refactorings is given in Tables A.2 through A.9.

Also, here are links to the repositories we accessed: strapi; ui5-builder; stencil;
eleventy; dash.js; fastify; mercurius; openapi-typescript-codegen; browsertime;
Boostnote. vuepress; treeherder; netlify-cms; erpjs; media-stream-library-js;
vscode-js-debug; rmrk-tools; flowcrypt-browser; CodeceptJS; appcenter-cli;

171

https://github.com/strapi/strapi
https://github.com/SAP/ui5-builder
https://github.com/ionic-team/stencil
https://github.com/11ty/eleventy
https://github.com/Dash-Industry-Forum/dash.js
https://github.com/fastify/fastify
https://github.com/mercurius-js/mercurius
https://github.com/ferdikoomen/openapi-typescript-codegen
https://github.com/sitespeedio/browsertime
https://github.com/BoostIO/BoostNote-Legacy
https://github.com/vuejs/vuepress
https://github.com/mozilla/treeherder
https://github.com/netlify/netlify-cms
https://github.com/iDempiere-micro/erpjs
https://github.com/AxisCommunications/media-stream-library-js
https://github.com/microsoft/vscode-js-debug
https://github.com/rmrk-team/rmrk-tools
https://github.com/FlowCrypt/flowcrypt-browser
https://github.com/codeceptjs/CodeceptJS
https://github.com/microsoft/appcenter-cli

Table A.1: Run times of the anti-pattern detection queries. Legend: P1 = asyncFunctionNoAwait,
P2 = loopOverArrayWithAwait, P3 = asyncFunctionAwaitedReturn, P4 = explicitPromiseConstructor,
P5 = customPromisification, P6 = promiseResolveThen, P7 = reactionReturnsPromise, P8 =
executorOneArgUsed

P1 P2 P3 P4 P5 P6 P7 P8

appcenter-cli 12.0 12.6 17.1 21.7 16.8 11.5 11.7 15.8
Boostnote 9.8 10.6 12.7 17.5 13.7 10.3 10.7 28.0

browsertime 10.7 11.2 12.0 16.3 14.0 10.2 10.7 26.6
CodeceptJS 11.2 11.5 14.8 17.9 15.4 11.3 11.6 31.3
dash.js 11.1 11.4 14.4 20.7 16.0 10.2 13.4 32.5
eleventy 10.7 11.1 12.6 16.6 14.3 11.3 11.2 26.3
erpjs 10.7 11.0 12.1 17.1 14.7 9.8 10.4 26.2

fastify 10.9 11.7 13.3 17.0 15.0 11.7 11.2 31.1
flowcrypt-browser 18.6 24.4 1.0 111.9 34.8 19.1 21.8 195.8

media-stream-library-js 11.4 11.3 13.7 17.8 14.5 10.4 10.9 29.2
mercurius 11.6 11.2 13.4 16.3 13.7 10.5 11.2 24.9

netlify-cms 10.6 12.0 13.6 18.4 14.8 11.3 11.1 35.1
openapi-typescript-codegen 10.2 11.4 12.3 16.0 13.8 9.9 10.9 27.7

rmrk-tools 11.7 13.6 18.6 29.4 17.9 11.8 14.0 47.2
stencil 13.7 15.7 30.0 47.6 21.3 12.9 14.7 92.8
strapi 11.5 12.9 16.8 23.5 18.1 12.3 12.8 40.0

treeherder 10.4 11.8 13.7 17.1 15.8 11.1 11.4 28.3
ui5-builder 11.2 11.2 12.9 17.5 14.5 10.7 11.7 31.6

vscode-js-debug 12.3 13.6 18.1 23.8 17.0 12.9 13.5 41.9
vuepress 10.5 12.2 16.3 25.4 16.0 10.8 13.1 40.0

Table A.2: Case Studies: loopOverArrayWithAwait

Application Location Refactored?

appcentre-cli src/util/misc/promisfied-fs.ts:89:94 Y
appcentre-cli src/util/misc/promisfied-fs.ts:167:169 Y
appcenter-cli src/util/misc/jszip-helper.ts:49:58 N

eleventy src/TemplateLayout.js:122:128 Y
eleventy src/TemplateMap.js:458:462 Y
eleventy src/TemplateLayout.js:159:162 N
vuepress @vuepress/core/lib/node/plugin-api/override/ClientDynamicModulesOption.js:17:27 Y
vuepress packages/@vuepress/plugin-register-components/index.js:40:46 Y
vuepress @vuepress/core/lib/node/plugin-api/abstract/AsyncOption.js:28:40 N

browsertime lib/support/browserScript.js:28:32 Y

172

Table A.3: Case Studies: executorOneArgUsed

Application Location Refactored?

ui5-builder lib/processors/bundlers/manifestBundler.js:151:171 Y
ui5-builder lib/lbt/resources/ResourceCollector.js:246:253 Y

vscode-js-debug src/cdp/webSocketTransport.ts:85:92 N
eleventy src/TemplatePath.js:258:265 Y
Boostnote browser/main/lib/dataApi/copyFile.js:16:30 N
dash.js src/streaming/controllers/BufferController.js:852:866 Y
dash.js src/streaming/utils/CapabilitiesFilter.js:39:56 Y
dash.js src/streaming/SourceBufferSink.js:184:219 N

netlify-cms packages/netlify-cms-lib-util/src/implementation.ts:217:232 N
fastify test/promises.test.js:24:26 Y

Table A.4: Case Studies: customPromisification

Application Location Refactored?

appcenter-cli src/util/misc/promisfied-glob.ts:4:12 Y
eleventy src/Engines/Nunjucks.js:467:475 Y

ui5-builder test/lib/tasks/bundlers/generateStandaloneAppBundle.integration.js:21:29 Y
ui5-builder test/lib/builder/builder.js:37:45 Y
ui5-builder test/lib/tasks/bundlers/generateLibraryPreload.integration.js:20:28 Y
mercurius lib/gateway/request.js:54:100 Y
mercurius lib/subscriber.js:11:29 N
mercurius lib/subscriber.js:56:63 Y
Boostnote browser/main/lib/dataApi/exportNote.js:64:70 Y

appcenter-cli src/commands/test/lib/dsym-dir-helper.ts:11:19 Y

Table A.5: Case Studies: reactionReturnsPromise

Application Location Refactored?

treeherder ui/models/treeStatus.js:5:33 Y
treeherder ui/models/perfSeries.js:124:134 Y
ui5-builder lib/builder/builder.js:307:395 Y
ui5-builder lib/processors/bundlers/manifestBundler.js:114:171 Y

appcenter-cli src/commands/codepush/lib/react-native-utils.ts:385:464 N
strapi packages/strapi-plugin-content-type-builder/controllers/validation/component.js:53:63 Y
strapi packages/strapi-plugin-content-type-builder/controllers/validation/component.js:79:89 Y

netlify-cms packages/netlify-cms-backend-github/src/API.ts:289:294 Y
netlify-cms packages/netlify-cms-core/src/backend.ts:428:433 Y
eleventy src/TemplateWriter.js:283:296 Y

Table A.6: Case Studies: explicitConstructor

Application Location Refactored?

Boostnote browser/main/lib/dataApi/createSnippet.js:7:30 Y
Boostnote browser/main/lib/dataApi/deleteSnippet.js:6:20 Y
Boostnote browser/main/lib/dataApi/createNoteFromUrl.js:36:99 N
dash.js src/dash/controllers/RepresentationController.js:126:152 Y
dash.js src/streaming/Stream.js:233:255 Y
dash.js src/streaming/Stream.js:266:301 N

ui5-builder lib/lbt/resources/ResourceCollector.js:246:253 Y
ui5-builder lib/lbt/analyzer/XMLTemplateAnalyzer.js:158:190 Y

appcenter-cli test/commands/test/lib/app-validator-test.ts:9:31 Y
strapi packages/strapi/lib/middlewares/index.js:44:66 N

173

Table A.7: Case Studies: Awaited Return in an Async Function

Application Location Refactored?

media-stream-library.js lib/components/helpers/sleep.ts:6:10 Y
openapi-typescript-codegen src/utils/getOpenApiSpec.ts:13:36 Y
openapi-typescript-codegen src/utils/readSpec.ts:5:13 Y

eleventy src/Template.js:625:713 Y
eleventy src/Template.js:573:573 Y
eleventy src/Engines/JavaScript.js:92:95 Y
erpjs apps/api/src/model/lib/base.entity.service.ts:62:93 Y

appcenter-cli src/commands/distribute/release.ts:471:492 Y
appcenter-cli src/commands/codepush/release.ts Y
ui5-builder lib/types/application/ApplicationFormatter.js:59:83 N

Table A.8: Case Studies: Promise Resolve Then

Application Location Refactored?

CodeceptJS lib/recorder.js:181:181 Y
CodeceptJS lib/recorder.js:187:197 Y
CodeceptJS test/unit/bdd test.js:165:165 Y
fastify test/listen.test.js:110:117 Y
fastify test/listen.test.js:125:133 Y

mercurius lib/subscription-connection.js:263:264 N
ui5-builder lib/lbt/resources/ResourcePool.js:185:188 Y
ui5-builder lib/types/application/ApplicationFormatter.js:177:223 Y
ui5-builder lib/lbt/resources/ResourcePool.js:185:188 Y

strapi packages/strapi-admin/services/permission/engine.js:198:199 Y

Table A.9: Case Studies: Async Functions Without Awaits

Application Location Refactored?

open-api-typescript-codegen src/utils/readSpecFromHttps.ts:7:22 Y
strapi packages/strapi-admin/services/permission/queries.js:86:92 Y
strapi packages/strapi-plugin-content-manager/services/uid.js:7:27 Y
strapi packages/strapi-admin/domain/condition/provider.js:22:30 N

eleventy src/Template.js:879:887 Y
eleventy src/Template.js:913:965 Y
eleventy src/TemplateContent.js:301:303 Y
mercurius lib/routes.js:281:297 Y
mercurius lib/routes.js:245:256 Y
mercurius lib/subscription.js:10:57 Y

174

Table S1: Pattern - asyncFunctionNoAwait

Number Application Refactored Refactoring Comments
1 openapi-typescript-codegen Yes Simple removal of async keyword. The function still returns a

promise, but it’s no longer wrapped in a superfluous promise.
Original Source → Refactored Source Code

export async function readSpecFromHttp(url: string): Promise<string> {

return new Promise<string>((resolve, reject) => {

get(url, response => {

let body = ’’;

response.on(’data’, chunk => {

body += chunk;

});

response.on(’end’, () => {

resolve(body);

});

response.on(’error’, () => {

reject(‘Could not read OpenApi spec: "${url}"‘);
});

});

});

}

export function readSpecFromHttp(url: string): Promise<string> {

return new Promise<string>((resolve, reject) => {

get(url, response => {

let body = ’’;

response.on(’data’, chunk => {

body += chunk;

});

response.on(’end’, () => {

resolve(body);

});

response.on(’error’, () => {

reject(‘Could not read OpenApi spec: "${url}"‘);
});

});

});

}

2 strapi Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

const findUserPermissions = async ({ roles }) => {

if (!isArray(roles)) {

return [];

}

return find({ role_in: roles.map(prop(’id’)), _limit: -1 });

};

const findUserPermissions = ({ roles }) => {

if (!isArray(roles)) {

return [];

}

return find({ role_in: roles.map(prop(’id’)), _limit: -1 });

};

3 strapi Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

async generateUIDField({ contentTypeUID, field, data }) {

const contentType = strapi.contentTypes[contentTypeUID];

const { attributes } = contentType;

const { targetField, default: defaultValue, options } = attributes

↪→ [field];

const targetValue = _.get(data, targetField);

if (!_.isEmpty(targetValue)) {

return this.findUniqueUID({

contentTypeUID,

field,

value: slugify(targetValue, options),

});

}

return this.findUniqueUID({

contentTypeUID,

field,

value: slugify(defaultValue || contentType.modelName, options),

});

}

generateUIDField({ contentTypeUID, field, data }) {

const contentType = strapi.contentTypes[contentTypeUID];

const { attributes } = contentType;

const { targetField, default: defaultValue, options } = attributes

↪→ [field];

const targetValue = _.get(data, targetField);

if (!_.isEmpty(targetValue)) {

return this.findUniqueUID({

contentTypeUID,

field,

value: slugify(targetValue, options),

});

}

return this.findUniqueUID({

contentTypeUID,

field,

value: slugify(defaultValue || contentType.modelName, options),

});

}

4 strapi No This doesn’t work, because throwing an error in an async func-
tion causes it to get caught by reject handlers, whereas throw-
ing an error in a non-async function gets caught by try ... catch.
This caused a behavioral difference.

Original Source → Refactored Source Code

Continued on next page

175

Table S1 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async register(conditionAttributes) {

if (strapi.isLoaded) {

throw new Error(‘You can’t␣register␣new␣conditions␣outside␣of␣

↪→ the␣bootstrap␣function.‘);

␣␣␣␣}

␣␣␣␣const␣condition␣=␣domain.create(conditionAttributes);

␣␣␣␣return␣provider.register(condition.id,␣condition);

␣␣}

// Not refactored

5 eleventy Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

async getInputFileStat() {

///////////////////

// Anti-pattern #1

const { exec } = require("child_process");

let stackTrace = {};

Error.captureStackTrace(stackTrace);

exec(

‘echo ’${Date.now()}:␣\t␣anti-pattern␣#1␣executed!␣${
␣␣␣␣␣␣␣␣stackTrace.stack

␣␣␣␣␣␣}\n\n\n’ >> ~/detections‘

);

///////////////////

if (this._stats) {

return this._stats;

}

this._stats = fs.promises.stat(this.inputPath);

return this._stats;

}

getInputFileStat() {

///////////////////

// Anti-pattern #1

const { exec } = require("child_process");

let stackTrace = {};

Error.captureStackTrace(stackTrace);

exec(

‘echo ’${Date.now()}:␣\t␣anti-pattern␣#1␣executed!␣${
␣␣␣␣␣␣␣␣stackTrace.stack

␣␣␣␣␣␣}\n\n\n’ >> ~/detections‘

);

///////////////////

if (this._stats) {

return this._stats;

}

this._stats = fs.promises.stat(this.inputPath);

return this._stats;

}

6 eleventy Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

Continued on next page

176

Table S1 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async getMappedDate(data) {

if ("date" in data && data.date) {

debug(

"getMappedDate:␣using␣a␣date␣in␣the␣data␣for␣%o␣of␣%o",

this.inputPath,

data.date

);

if (data.date instanceof Date) {

// YAML does its own date parsing

debug("getMappedDate:␣YAML␣parsed␣it:␣%o", data.date);

return data.date;

} else {

// string

if (data.date.toLowerCase() === "last␣modified") {

return this._getDateInstance("ctimeMs");

} else if (data.date.toLowerCase() === "created") {

return this._getDateInstance("birthtimeMs");

} else {

// try to parse with Luxon

let date = DateTime.fromISO(data.date, { zone: "utc" });

if (!date.isValid) {

throw new Error(

‘date front matter value (${data.date}) is invalid for $
↪→ {this.inputPath}‘

);

}

debug(

"getMappedDate:␣Luxon␣parsed␣%o:␣%o␣and␣%o",

data.date,

date,

date.toJSDate()

);

return date.toJSDate();

}

}

} else {

let filepathRegex = this.inputPath.match(/(\d{4}-\d{2}-\d{2})/);

if (filepathRegex !== null) {

let dateObj = DateTime.fromISO(filepathRegex[1], {

zone: "utc",

}).toJSDate();

debug(

"getMappedDate:␣using␣filename␣regex␣time␣for␣%o␣of␣%o:␣%o",

this.inputPath,

filepathRegex[1],

dateObj

);

return dateObj;

}

return this._getDateInstance("birthtimeMs");

}

}

getMappedDate(data) {

if ("date" in data && data.date) {

debug(

"getMappedDate:␣using␣a␣date␣in␣the␣data␣for␣%o␣of␣%o",

this.inputPath,

data.date

);

if (data.date instanceof Date) {

// YAML does its own date parsing

debug("getMappedDate:␣YAML␣parsed␣it:␣%o", data.date);

return data.date;

} else {

// string

if (data.date.toLowerCase() === "last␣modified") {

return this._getDateInstance("ctimeMs");

} else if (data.date.toLowerCase() === "created") {

return this._getDateInstance("birthtimeMs");

} else {

// try to parse with Luxon

let date = DateTime.fromISO(data.date, { zone: "utc" });

if (!date.isValid) {

throw new Error(

‘date front matter value (${data.date}) is invalid for $
↪→ {this.inputPath}‘

);

}

debug(

"getMappedDate:␣Luxon␣parsed␣%o:␣%o␣and␣%o",

data.date,

date,

date.toJSDate()

);

return date.toJSDate();

}

}

} else {

let filepathRegex = this.inputPath.match(/(\d{4}-\d{2}-\d{2})/);

if (filepathRegex !== null) {

let dateObj = DateTime.fromISO(filepathRegex[1], {

zone: "utc",

}).toJSDate();

debug(

"getMappedDate:␣using␣filename␣regex␣time␣for␣%o␣of␣%o:␣%o",

this.inputPath,

filepathRegex[1],

dateObj

);

return dateObj;

}

return this._getDateInstance("birthtimeMs");

}

}

7 eleventy Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

async render(str, data, bypassMarkdown) {

return this._render(str, data, bypassMarkdown);

}

render(str, data, bypassMarkdown) {

return this._render(str, data, bypassMarkdown);

}

8 mercurius Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

Continued on next page

177

Table S1 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

app.post(graphqlPath, {

schema: postSchema(allowBatchedQueries),

attachValidation: true

}, async function (request, reply) {

validationHandler(request.validationError)

if (allowBatchedQueries && Array.isArray(request.body)) {

// Batched query

return Promise.all(request.body.map(r =>

execute(r, request, reply)

.catch(e => {

const { response } = errorFormatter(e)

return response

})

))

} else {

// Regular query

return execute(request.body, request, reply)

}

})

app.post(graphqlPath, {

schema: postSchema(allowBatchedQueries),

attachValidation: true

}, function (request, reply) {

validationHandler(request.validationError)

if (allowBatchedQueries && Array.isArray(request.body)) {

// Batched query

return Promise.all(request.body.map(r =>

execute(r, request, reply)

.catch(e => {

const { response } = errorFormatter(e)

return response

})

))

} else {

// Regular query

return execute(request.body, request, reply)

}

})

9 mercurius Yes Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

const getOptions = {

url: graphqlPath,

method: ’GET’,

schema: getSchema,

attachValidation: true,

handler: async function (request, reply) {

validationHandler(request.validationError)

const { variables, extensions } = request.query

return execute({

...request.query,

// Parse variables and extensions from stringified JSON

variables: variables && tryJSONParse(request, variables),

extensions: extensions && tryJSONParse(request, extensions)

}, request, reply)

}

}

const getOptions = {

url: graphqlPath,

method: ’GET’,

schema: getSchema,

attachValidation: true,

handler: function (request, reply) {

validationHandler(request.validationError)

const { variables, extensions } = request.query

return execute({

...request.query,

// Parse variables and extensions from stringified JSON

variables: variables && tryJSONParse(request, variables),

extensions: extensions && tryJSONParse(request, extensions)

}, request, reply)

}

}

10 mercurius No Remove async keyword, one fewer promise.
Original Source → Refactored Source Code

Continued on next page

178

Table S1 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

return async (connection, request) => {

const { socket } = connection

if (socket.protocol === undefined ||

(socket.protocol.indexOf(GRAPHQL_WS) === -1)) {

// Close the connection with an error code, ws v2 ensures that

↪→ the

// connection is cleaned up even when the closing handshake

↪→ fails.

// 1002: protocol error

socket.close(1002)

return

}

let context = {

app: fastify,

pubsub: subscriber

}

if (context.app.graphql && context.app.graphql[kHooks]) {

context = assignLifeCycleHooksToContext(context, context.app.

↪→ graphql[kHooks])

} else {

context = assignLifeCycleHooksToContext(context, new Hooks())

}

let resolveContext

if (subscriptionContextFn) {

resolveContext = () => subscriptionContextFn(connection, request

↪→)

}

const subscriptionConnection = new SubscriptionConnection(socket,

↪→ {

subscriber,

fastify,

onConnect,

onDisconnect,

lruGatewayResolvers,

entityResolvers: entityResolversFactory &&

↪→ entityResolversFactory.create(),

context,

resolveContext

})

/* istanbul ignore next */

connection.socket.on(’error’, () => {

subscriptionConnection.close()

})

connection.socket.on(’close’, () => {

subscriptionConnection.close()

})

}

return (connection, request) => {

const { socket } = connection

if (socket.protocol === undefined ||

(socket.protocol.indexOf(GRAPHQL_WS) === -1)) {

// Close the connection with an error code, ws v2 ensures that

↪→ the

// connection is cleaned up even when the closing handshake

↪→ fails.

// 1002: protocol error

socket.close(1002)

return

}

let context = {

app: fastify,

pubsub: subscriber

}

if (context.app.graphql && context.app.graphql[kHooks]) {

context = assignLifeCycleHooksToContext(context, context.app.

↪→ graphql[kHooks])

} else {

context = assignLifeCycleHooksToContext(context, new Hooks())

}

let resolveContext

if (subscriptionContextFn) {

resolveContext = () => subscriptionContextFn(connection, request

↪→)

}

const subscriptionConnection = new SubscriptionConnection(socket,

↪→ {

subscriber,

fastify,

onConnect,

onDisconnect,

lruGatewayResolvers,

entityResolvers: entityResolversFactory &&

↪→ entityResolversFactory.create(),

context,

resolveContext

})

/* istanbul ignore next */

connection.socket.on(’error’, () => {

subscriptionConnection.close()

})

connection.socket.on(’close’, () => {

subscriptionConnection.close()

})

}

179

Table S2: Pattern - asyncFunctionAwaitedReturn

Number Application Refactored Refactoring Comments
1 media-stream-library-js Yes 3 Total invocations when running with npm run test –

verbose=true
Original Source → Refactored Source Code

export const sleep = async (ms: number) => {

return await new Promise((resolve) => {

setTimeout(resolve, ms);

})

}

/**

* Return a promise that resolves after a specific time.

* @param ms Waiting time in milliseconds

* @return Resolves after waiting time

*/

export const sleep = async (ms: number) => {

return /*await*/ new Promise((resolve) => {

setTimeout(resolve, ms);

})

}

2 openapi-typescript-codegen Yes Four instance invoked at: ”awaitedReturnInAsyncFun /src/u-
tils/getOpenApiSpec.ts:13:36”: 4,

Original Source → Refactored Source Code

throw new Error(‘Could not parse OpenApi JSON: "${input}"‘);
}

break;

}

return await RefParser.bundle(rootObject);

}

throw new Error(‘Could not parse OpenApi JSON: "${
↪→ input}"‘);

}

break;

}

return /*await*/ RefParser.bundle(rootObject);

}

3 ttopenapi-typescript-codegen Yes Four invocations of anti-pattern awaitedReturnInAsyncFun at
/src/utils/readSpec.ts:5:13”

Original Source → Refactored Source Code

export async function readSpec(input: string): Promise<string> {

if (input.startsWith(’https://’)) {

return await readSpecFromHttps(input);

}

if (input.startsWith(’http://’)) {

return await readSpecFromHttp(input);

}

return await readSpecFromDisk(input);

}

export async function readSpec(input: string): Promise<string> {

if (input.startsWith(’https://’)) {

return /*await*/ readSpecFromHttps(input);

}

if (input.startsWith(’http://’)) {

return /*await*/ readSpecFromHttp(input);

}

return /*await*/ readSpecFromDisk(input);

}

4 eleventy Yes 317 instances invoked of ”awaitedReturnInAsyncFun at /sr-
c/Template.js:625:713”:

Original Source → Refactored Source Code

return await Promise.all(return /*await*/ Promise.all(

5 eleventy Yes 20 instances of ”awaitedReturnInAsyncFun invoked at /sr-
c/Template.js:573:573”

Original Source → Refactored Source Code

this.computedData.addTemplateString(

"page.url",

async (data) => await this.getOutputHref(data),

data.permalink ? ["permalink"] : undefined,

false // skip symbol resolution

);

this.computedData.addTemplateString(

"page.url",

async (data) => /*await*/ this.getOutputHref(data),

data.permalink ? ["permalink"] : undefined,

false // skip symbol resolution

);

6 eleventy Yes 28 instances of ”awaitedReturnInAsyncFun invoked at /sr-
c/Template.js:580:580”:

Original Source → Refactored Source Code

Continued on next page

180

Table S2 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

this.computedData.addTemplateString(

"page.outputPath",

async (data) => await this.getOutputPath(data),

data.permalink ? ["permalink"] : undefined,

false // skip symbol resolution

);

this.computedData.addTemplateString(

"page.outputPath",

async (data) => /*await*/ this.getOutputPath(data),

data.permalink ? ["permalink"] : undefined,

false // skip symbol resolution

);

7 eleventy Yes 12 invocations of ”awaitedReturnInAsyncFun at /src/Engi-
nes/JavaScript.js:92:95”:

Original Source → Refactored Source Code

async getExtraDataFromFile(inputPath) {

let inst = this.getInstanceFromInputPath(inputPath);

return await getJavaScriptData(inst, inputPath);

}

async getExtraDataFromFile(inputPath) {

let inst = this.getInstanceFromInputPath(inputPath);

return /*await*/ getJavaScriptData(inst, inputPath);

}

8 eleventy Yes 6 invokations of ”awaitedReturnInAsyncFun at /src/Eleventy-
Files.js:419:422”:

Original Source → Refactored Source Code

/* For ‘eleventy --watch‘ */

async getGlobWatcherTemplateDataFiles() {

let templateData = this.templateData;

return await templateData.getTemplateDataFileGlob();

}

/* For ‘eleventy --watch‘ */

async getGlobWatcherTemplateDataFiles() {

let templateData = this.templateData;

return /*await*/ templateData.getTemplateDataFileGlob();

}

9 erpjs Yes 4 invokations at ”awaitedReturnInAsyncFun /apps/api/src/-
model/lib/base.entity.service.ts:62:93”

Original Source → Refactored Source Code

/* For ‘eleventy --watch‘ */

async getGlobWatcherTemplateDataFiles() {

let templateData = this.templateData;

return await templateData.getTemplateDataFileGlob();

}

);

(toBeSaved as any).updtOp = currentUser;

(toBeSaved as any).updtOpId = currentUser.id;

return await this.getRepository(transactionalEntityManager).save(

↪→ toBeSaved);

}

/* For ‘eleventy --watch‘ */

async getGlobWatcherTemplateDataFiles() {

let templateData = this.templateData;

return /*await*/ templateData.getTemplateDataFileGlob();

}

);

(toBeSaved as any).updtOp = currentUser;

(toBeSaved as any).updtOpId = currentUser.id;

return /*await*/ this.getRepository(transactionalEntityManager).

↪→ save(toBeSaved);

}

10 ui5-builder No Removing the awaits in this instance through an error in the
test suite. It appears that some dependency is needed here for
the removed awaits in order to work properly, likely due to the
try/catch blocks.

Original Source → Refactored Source Code

Continued on next page

181

Table S2 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async getNamespace() {

try {

return await this.getNamespaceFromManifestJson();

} catch (manifestJsonError) {

if (manifestJsonError.code !== "ENOENT") {

throw manifestJsonError;

}

// No manifest.json present

// => attempt fallback to manifest.appdescr_variant (typical

↪→ for App Variants)

try {

return await this.getNamespaceFromManifestAppDescVariant()

↪→ ;

} catch (appDescVarError) {

if (appDescVarError.code === "ENOENT") {

// Fallback not possible: No manifest.appdescr_variant

↪→ present

// => Throw error indicating missing manifest.json

// (do not mention manifest.appdescr_variant since it

↪→ is only

// relevant for the rather "uncommon" App Variants)

throw new Error(

‘Could not find required manifest.json for project

↪→ ‘ +

‘${this._project.metadata.name}: ${
↪→ manifestJsonError.message}‘);

}

throw appDescVarError;

}

}

}

/* No refactoring made */

182

Table S3: Pattern - loopOverArrayWithAwait

Number Application Refactored Refactoring Comments
1 eleventy Yes Comments about the refactoring 1 go in here

Original Source → Refactored Source Code

for (let path of localDataPaths) {

// clean up data for template/directory data files only.

let dataForPath = await this.getDataValue(path, null, true);

let cleanedDataForPath = TemplateData.cleanupData(dataForPath);

TemplateData.mergeDeep(this.config, localData, cleanedDataForPath);

// debug("‘combineLocalData‘ (iterating) for %o: %O", path,

↪→ localData);

}

return localData;

}

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

let results = await Promise.all(

localDataPaths.map((path) => this.getDataValue(path, null, true)

↪→)

);

for (let dataForPath of results) {

let cleanedDataForPath = TemplateData.cleanupData(dataForPath);

TemplateData.mergeDeep(this.config, localData,

↪→ cleanedDataForPath);

// debug("‘combineLocalData‘ (iterating) for %o: %O", path,

↪→ localData);

}

return localData;

}

2 eleventy Yes Comments about the refactoring 2 go in here
Original Source → Refactored Source Code

try {

for (let pageEntry of map._pages) {

pageEntry.templateContent = await map.template.

↪→ getTemplateMapContent(

pageEntry

);

}

} catch (e) {

if (EleventyErrorUtil.isPrematureTemplateContentError(e)) {

usedTemplateContentTooEarlyMap.push(map);

} catch (e) {

try {

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

// for (let pageEntry of map._pages) { console.log("*** EXECUTING:

↪→ TemplateMap.js:458");

// pageEntry.templateContent = await map.template.

↪→ getTemplateMapContent(

// pageEntry

//);

// }

let ps = await Promise.all(

map._pages.map((pageEntry) =>

map.template.getTemplateMapContent(pageEntry)

)

);

map._pages.forEach((pageEntry, index) => {

pageEntry.templateContent = ps[index];

});

} catch (e) {

3 eleventy Yes Comments about the refactoring 3 go in here
Original Source → Refactored Source Code

for (let map of usedTemplateContentTooEarlyMap) {

try {

for (let pageEntry of map._pages) {

pageEntry.templateContent = await map.template.

↪→ getTemplateMapContent(

pageEntry

);

}

} catch (e) {

for (let map of usedTemplateContentTooEarlyMap) {

try {

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

let results = await Promise.all(

map._pages.map((pageEntry) =>

map.template.getTemplateMapContent(pageEntry)

)

);

map._pages.forEach((pageEntry, index) => {

pageEntry.templateContent = results[index];

});

} catch (e) {

4 eleventy Yes Comments about the refactoring 4 go in here
Original Source → Refactored Source Code

Continued on next page

183

Table S3 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

try {

for (let layoutEntry of layoutMap) {

fns.push(

await layoutEntry.template.compile(

await layoutEntry.template.getPreRender()

)

);

}

} catch (e) {

try {

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

let preRenders = await Promise.all(

layoutMap.map((layoutEntry) => layoutEntry.template.getPreRender()

↪→)

);

let compiled = await Promise.all(

layoutMap.map((layoutEntry, index) =>

layoutEntry.template.compile(preRenders[index])

)

);

layoutMap.forEach((_, index) => fns.push(compiled[index]));

} catch (e) {

5 browsertime Yes Comments about the refactoring 5 go in here
Original Source → Refactored Source Code

for (const filepath of dir) {

const name = path.basename(filepath, ’.js’);

const script = await readFile(filepath, ’utf8’);

result[name] = generateScriptObject(name, filepath, script);

}

// DR-ASYNC: REFACTOR AWAIT-IN-LOOP

let scripts = await Promise.all(dir.map(filepath => readFile(

↪→ filepath, ’utf8’)));

dir.forEach((filepath,index) => {

const name = path.basename(filepath, ’.js’);

result[name] = generateScriptObject(name, filepath, scripts[index

↪→]);

});

6 appcenter-cli Yes Comments about the refactoring 6 go in here
Original Source → Refactored Source Code

for (let i = 0; i < files.length; i++) {

const sourceEntry = path.join(source, files[i]);

const targetEntry = path.join(target, files[i]);

await cp(sourceEntry, targetEntry);

}

// DR-ASYNC: REFACTOR AWAIT-IN-LOOP

await Promise.all(

files.map((fileName) => {

const sourceEntry = path.join(source, fileName);

const targetEntry = path.join(target, fileName);

return cp(sourceEntry, targetEntry);

})

);

7 appcenter-cli Yes Comments about the refactoring 7 go in here
Original Source → Refactored Source Code

for (const file of await readdir(dir)) {

files = files.concat(await walk(path.join(dir, file)));

}

// DR-ASYNC: REFACTOR AWAIT-IN-LOOP

let files: string[] = [];

const filesInDir = await readdir(dir);

const results: any[] = await Promise.all(filesInDir.map((file) =>

↪→ walk(path.join(dir, file))));

results.forEach((result) => (files = files.concat(result)));

8 vuepress Yes Comments about the refactoring 8 go in here
Original Source → Refactored Source Code

for (const { value, name: pluginName } of this.appliedItems) {

const { name, content, dirname = ’dynamic’ } = value

await ctx.writeTemp(

‘${dirname}/${name}‘,
‘

/**

* Generated by "${pluginName}"
*/

${content}\n\n
‘.trim())

}

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

await Promise.all(this.appliedItems.map(({ value, name: pluginName

↪→ }) => {

const { name, content, dirname = ’dynamic’ } = value

ctx.writeTemp(

‘${dirname}/${name}‘,
‘

/**

* Generated by "${pluginName}"
*/

${content}\n\n
‘.trim())

})

)

Continued on next page

184

Table S3 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code
9 vuepress Yes Comments about the refactoring 9 go in here

Original Source → Refactored Source Code

for (const baseDir of baseDirs) {

if (!isString(baseDir)) {

continue

}

const files = await resolveComponents(baseDir) || []

code += files.map(file => genImport(baseDir, file)).join(’\n’) + ’

↪→ \n’

}

// DR-ASYNC REFACTOR AWAIT-IN-LOOP

const stringBaseDirs = baseDirs.filter(isString)

const results = await Promise.all(

stringBaseDirs.map((baseDir) => resolveComponents(baseDir))

)

results.forEach((files, index) => {

const baseDir = stringBaseDirs[index]

code += (files || []).map(file => genImport(baseDir, file)).join

↪→ (’\n’) + ’\n’

})

10 vuepress No Unable to refactor
Original Source → Refactored Source Code

async asyncApply (...args) {

const rawItems = this.items

this.items = []

this.appliedItems = this.items

for (const { name, value } of rawItems) {

try {

this.add(

name,

isFunction(value)

? await value(...args)

: value

)

} catch (error) {

logger.error(‘${chalk.cyan(name)} apply ${chalk.cyan(this.key)
↪→ } failed.‘)

throw error

}

}

this.items = rawItems

}

/* code 10 here */

185

Table S4: Pattern - promiseResolveThen

Number Application Refactored Refactoring Comments
1 Codecept Yes Comments about the refactoring 1 go in here

Original Source → Refactored Source Code

return Promise.resolve(res).then(fn)
return fn(res);

(in reaction)

2 Codecept Yes Comments about the refactoring 2 go in here
Original Source → Refactored Source Code

const retryRules = this.retries.slice().reverse();

return promiseRetry(Object.assign(defaultRetryOptions, retryOpts

↪→), (retry, number) => {

if (number > 1) log(‘${currentQueue()}Retrying... Attempt #${
↪→ number}‘);

return Promise.resolve(res).then(fn).catch((err) => {

for (const retryObj of retryRules) {

if (!retryObj.when) return retry(err);

if (retryObj.when && retryObj.when(err)) return retry(err)

↪→ ;

}

throw err;

});

});

const retryRules = this.retries.slice().reverse();

return promiseRetry(Object.assign(defaultRetryOptions, retryOpts

↪→), (retry, number) => {

if (number > 1) log(‘${currentQueue()}Retrying... Attempt #${
↪→ number}‘);

return Promise.resolve((res,reject) => {

for (const retryObj of retryRules) {

if (!retryObj.when) return retry(err);

if (retryObj.when && retryObj.when(err)) return retry(

↪→ err);

}

}).catch((err) => {

throw err;

});

});

3 Codecept Yes Comments about the refactoring 3 go in here
Original Source → Refactored Source Code

return Promise.resolve().then(() => printed.push(args.join(’␣’))); return Promise.resolve(printed.push(args.join(’␣’)));

4 fastify Yes Comments about the refactoring 4 go in here
Original Source → Refactored Source Code

test(’listen␣after␣Promise.resolve()’, t => {

t.plan(2)

const f = Fastify()

t.teardown(f.close.bind(f))

Promise.resolve()

.then(() => {

f.listen(0, (err, address) => {

f.server.unref()

t.equal(address, ’http://127.0.0.1:’ + f.server.address().

↪→ port)

t.error(err)

})

})

})

test(’listen␣after␣Promise.resolve()’, t => {

t.plan(2)

const f = Fastify()

t.teardown(f.close.bind(f))

// Promise.resolve().then(() => { // Removed this line

// Created function here, and removed ’then’

let func = () => f.listen(0, (err, address) => {

f.server.unref()

t.equal(address, ’http://127.0.0.1:’ + f.server.address().port

↪→)

t.error(err)

})

Promise.resolve(func());

})

5 fastify Yes Comments about the refactoring 5 go in here
Original Source → Refactored Source Code

Continued on next page

186

Table S4 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

test(’register␣after␣listen␣using␣Promise.resolve()’, t => {

t.plan(1)

const f = Fastify()

const handler = (req, res) => res.send({})

Promise.resolve()

.then(() => {

f.get(’/’, handler)

f.register((f2, options, done) => {

f2.get(’/plugin’, handler)

done()

})

return f.ready()

})

.catch(t.error)

.then(() => t.pass(’resolved’))

})

test(’register␣after␣listen␣using␣Promise.resolve()’, t => {

t.plan(1)

const f = Fastify()

const handler = (req, res) => res.send({})

let func = () => {

f.get(’/’, handler)

f.register((f2, options, done) => {

f2.get(’/plugin’, handler)

done()

})

return f.ready()

};

// Promise.resolve().then(() => {

Promise.resolve(func())

.catch(t.error)

.then(() => t.pass(’resolved’))

})

6 mercurius No very strange use of promises in the first place, the test for
this function seems to require the strange promise-based error
handling? the error is still thrown in the updated code, but
not in the way the tests expect

Original Source → Refactored Source Code

if (typeof this.onDisconnect === ’function’) {

Promise.resolve().then(() => this.onDisconnect(this.context)).

↪→ catch((e) => { this.fastify.log.error(e) })

}

/* No refactoring made*/

7 ui5-builder Yes Comments about the refactoring 7 go in here
Original Source → Refactored Source Code

async getModuleInfo(name) {

let info = this._dependencyInfos.get(name);

if (info == null) {

info = Promise.resolve().then(async () => {

const resource = await this.findResource(name);

return determineDependencyInfo(resource, this.

↪→ _rawModuleInfos.get(name), this);

});

this._dependencyInfos.set(name, info);

}

return info;

}

async getModuleInfo(name) {

let info = this._dependencyInfos.get(name);

if (info == null) {

const func = async () => {

const resource = await this.findResource(name);

return determineDependencyInfo(resource, this.

↪→ _rawModuleInfos.get(name), this);

};

info = Promise.resolve(func());

this._dependencyInfos.set(name, info);

}

return info;

}

8 ui5-builder Yes Comments about the refactoring 8 go in here
Original Source → Refactored Source Code

Continued on next page

187

Table S4 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

validate() {

const project = this._project;

return Promise.resolve().then(() => {

if (!project) {

throw new Error("Project␣is␣undefined");

} else if (!project.metadata || !project.metadata.name) {

throw new Error(‘"metadata.name" configuration is missing

↪→ for project ${project.id}‘);
} else if (!project.type) {

throw new Error(‘"type" configuration is missing for

↪→ project ${project.id}‘);
} else if (project.version === undefined) {

throw new Error(‘"version" is missing for project ${
↪→ project.id}‘);

}

if (!project.resources) {

project.resources = {};

}

if (!project.resources.configuration) {

project.resources.configuration = {};

}

if (!project.resources.configuration.paths) {

project.resources.configuration.paths = {};

}

if (!project.resources.configuration.paths.webapp) {

project.resources.configuration.paths.webapp = "webapp";

}

if (!project.resources.configuration.

↪→ propertiesFileSourceEncoding) {

if (["0.1", "1.0", "1.1"].includes(project.specVersion)) {

// default encoding to "ISO-8859-1" for old

↪→ specVersions

project.resources.configuration.

↪→ propertiesFileSourceEncoding = "ISO-8859-1";

} else {

// default encoding to "UTF-8" for all projects

↪→ starting with specVersion 2.0

project.resources.configuration.

↪→ propertiesFileSourceEncoding = "UTF-8";

}

}

if (!["ISO-8859-1", "UTF-8"].includes(project.resources.

↪→ configuration.propertiesFileSourceEncoding)) {

throw new Error(‘Invalid properties file encoding

↪→ specified for project ${project.id}. ‘ +

‘Encoding provided: ${project.resources.configuration.
↪→ propertiesFileSourceEncoding}. ‘ +

‘Must be either "ISO-8859-1" or "UTF-8".‘);

}

const absolutePath = path.join(project.path, project.resources

↪→ .configuration.paths.webapp);

return this.dirExists(absolutePath).then((bExists) => {

if (!bExists) {

throw new Error(‘Could not find application directory

↪→ of project ${project.id}: ‘ +

‘${absolutePath}‘);
}

});

});

}

validate() {

const project = this._project;

return new Promise((resolve, reject) => {

if (!project) {

reject(new Error("Project␣is␣undefined"));

} else if (!project.metadata || !project.metadata.name) {

reject(new Error(‘"metadata.name" configuration is

↪→ missing for project ${project.id}‘));
} else if (!project.type) {

reject(new Error(‘"type" configuration is missing

↪→ for project ${project.id}‘));
} else if (project.version === undefined) {

reject(new Error(‘"version" is missing for project

↪→ ${project.id}‘));
}

if (!project.resources) {

project.resources = {};

}

if (!project.resources.configuration) {

project.resources.configuration = {};

}

if (!project.resources.configuration.paths) {

project.resources.configuration.paths = {};

}

if (!project.resources.configuration.paths.webapp) {

project.resources.configuration.paths.webapp = "

↪→ webapp";

}

if (!project.resources.configuration.

↪→ propertiesFileSourceEncoding) {

if (["0.1", "1.0", "1.1"].includes(project.

↪→ specVersion)) {

// default encoding to "ISO-8859-1" for

↪→ old specVersions

project.resources.configuration.

↪→ propertiesFileSourceEncoding = "ISO-8859-1";

} else {

// default encoding to "UTF-8" for all

↪→ projects starting with specVersion 2.0

project.resources.configuration.

↪→ propertiesFileSourceEncoding = "UTF-8";

}

}

if (!["ISO-8859-1", "UTF-8"].includes(project.resources.

↪→ configuration.propertiesFileSourceEncoding)) {

reject(new Error(‘Invalid properties file encoding

↪→ specified for project ${project.id}. ‘ +

‘Encoding provided: ${project.resources.
↪→ configuration.propertiesFileSourceEncoding}. ‘ +

‘Must be either "ISO-8859-1" or "UTF-8".‘)

↪→);

}

const absolutePath = path.join(project.path, project.

↪→ resources.configuration.paths.webapp);

resolve(this.dirExists(absolutePath).then((bExists) => {

if (!bExists) {

throw new Error(‘Could not find application

↪→ directory of project ${project.id}: ‘ +

‘${absolutePath}‘);
}

});

});

}

9 ui5-builder Yes Comments about the refactoring 9 go in here
Original Source → Refactored Source Code

Continued on next page

188

Table S4 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async getModuleInfo(name) {

let info = this._dependencyInfos.get(name);

if (info == null) {

info = Promise.resolve().then(async () => {

const resource = await this.findResource(name);

return determineDependencyInfo(resource, this.

↪→ _rawModuleInfos.get(name), this);

});

this._dependencyInfos.set(name, info);

}

return info;

}

async getModuleInfo(name) {

let info = this._dependencyInfos.get(name);

if (info == null) {

info = (async () => {

const resource = await this.findResource(name);

return determineDependencyInfo(resource, this.

↪→ _rawModuleInfos.get(name), this);

})();

this._dependencyInfos.set(name, info);

}

return info;

}

10 strapi Yes Comments about the refactoring 10 go in here
Original Source → Refactored Source Code

const evaluatedConditions = await Promise.resolve(conditions)

.then(resolveConditions)

.then(filterValidConditions)

.then(evaluateConditions)

.then(filterValidResults);

const evaluatedConditions = filterValidResults(await

↪→ evaluateConditions(filterValidConditions(resolveConditions(

↪→ conditions))));

189

Table S5: Pattern - executorOneArgUsed

Number Application Refactored Refactoring Comments
1 ui5-builder Yes After refactoring new Promise() to Promise.resolve(), promise

construction could be avoided completely by using “return”
instead

Original Source → Refactored Source Code

}).then((archiveContent) => new Promise((resolve) => {

const zip = new yazl.ZipFile();

const basePath = ‘/resources/${namespace}/‘;
archiveContent.forEach((content, path) => {

if (!path.startsWith(basePath)) {

log.verbose(‘Not bundling resource with path ${path} since it is

↪→ not based on path ${basePath}‘);
return;

}

// Remove base path. Absolute paths are not allowed in ZIP files

const normalizedPath = path.replace(basePath, "");

zip.addBuffer(content, normalizedPath);

});

zip.end();

const pathPrefix = "/resources/" + namespace + "/";

const res = resourceFactory.createResource({

path: pathPrefix + bundleName,

stream: zip.outputStream

});

resolve([res]);

}));

}).then((archiveContent) => {

// console.log("*** EXECUTING /lib/processors/bundlers/

↪→ manifestBundler.js:151:171");

const zip = new yazl.ZipFile();

const basePath = ‘/resources/${namespace}/‘;
archiveContent.forEach((content, path) => {

if (!path.startsWith(basePath)) {

log.verbose(‘Not bundling resource with path ${path} since it is

↪→ not based on path ${basePath}‘);
return;

}

// Remove base path. Absolute paths are not allowed in ZIP files

const normalizedPath = path.replace(basePath, "");

zip.addBuffer(content, normalizedPath);

});

zip.end();

const pathPrefix = "/resources/" + namespace + "/";

const res = resourceFactory.createResource({

path: pathPrefix + bundleName,

stream: zip.outputStream

});

return [res]; // Promise.resolve([res]);

});

2 ui5-builder Yes Very convoluted code where resolve was called inside a reaction
of the newly created promise. Replaced with use of linked
promises

Original Source → Refactored Source Code

promises.push(new Promise((resolve) => {

return this._pool.getModuleInfo(info.name).then((moduleInfo) => {

if (moduleInfo.name) {

info.module = moduleInfo.name;

}

resolve();

});

}));

const p = Promise.resolve(this._pool.getModuleInfo(info.name).then((

↪→ moduleInfo) => {

if (moduleInfo.name) {

info.module = moduleInfo.name;

}

}));

promises.push(p);

3 vscode-js-debug No Cannot refactor because resolve is invoked asynchronously in
an event handler

Original Source → Refactored Source Code

dispose() {

return new Promise<void>(resolve => {

if (!this._ws) {

return resolve();

}

this._ws.addEventListener(’close’, resolve);

this._ws.close();

});

}

/* not refactored */

4 eleventy Yes new Promise() called with only resolve argument, which was
called in event-based fs.stat; replaced with promisified version

Original Source → Refactored Source Code

Continued on next page

190

Table S5 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

TemplatePath.isDirectory = async function (path) {

return new Promise((resolve) => {

fs.stat(path, (err, stats) => {

if (stats) {

resolve(stats.isDirectory());

}

resolve(false);

});

});

};

TemplatePath.isDirectory = async function (path) {

return fs.promises

.stat(path)

.then((stats) => stats.isDirectory())

.catch(() => false);

}

5 Boostnote No Cannot refactor because resolve is invoked asynchronously in
an event handler

Original Source → Refactored Source Code

return new Promise((resolve, reject) => {

const dstFolder = path.dirname(dstPath)

fx.ensureDirSync(dstFolder)

const input = fs.createReadStream(decodeURI(srcPath))

const output = fs.createWriteStream(dstPath)

output.on(’error’, reject)

input.on(’error’, reject)

input.on(’end’, () => {

resolve(dstPath)

})

input.pipe(output)

})

/* not refactored */

6 dash.js Yes Refactored new Promise() to Promise.resolve(). Replaced call
to resolve() inside a reaction with use of linked promises

Original Source → Refactored Source Code

function updateBufferTimestampOffset(representationInfo) {

return new Promise((resolve) => {

if (!representationInfo || representationInfo.MSETimeOffset

↪→ === undefined || !sourceBufferSink || !sourceBufferSink.

↪→ updateTimestampOffset) {

resolve();

return;

}

// Each track can have its own @presentationTimeOffset, so we

↪→ should set the offset

// if it has changed after switching the quality or updating

↪→ an mpd

sourceBufferSink.updateTimestampOffset(representationInfo.

↪→ MSETimeOffset)

.then(() => {

resolve();

})

.catch(() => {

resolve();

});

});

}

function updateBufferTimestampOffset(representationInfo) {

if (!representationInfo || representationInfo.MSETimeOffset ===

↪→ undefined || !sourceBufferSink || !sourceBufferSink.

↪→ updateTimestampOffset) {

return Promise.resolve();

} else {

// Each track can have its own @presentationTimeOffset, so we

↪→ should set the offset

// if it has changed after switching the quality or updating

↪→ an mpd

return sourceBufferSink.updateTimestampOffset(

↪→ representationInfo.MSETimeOffset)

.then(() => undefined)

.catch(() => undefined);

}

}

7 dash.js Yes Refactored new Promise() to Promise.resolve(). Replaced call
to resolve() inside a reaction with use of linked promises

Original Source → Refactored Source Code

Continued on next page

191

Table S5 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

function filterUnsupportedFeatures(manifest) {

return new Promise((resolve) => {

const promises = [];

promises.push(_filterUnsupportedCodecs(Constants.VIDEO,

↪→ manifest));

promises.push(_filterUnsupportedCodecs(Constants.AUDIO,

↪→ manifest));

Promise.all(promises)

.then(() => {

if (settings.get().streaming.capabilities.

↪→ filterUnsupportedEssentialProperties) {

_filterUnsupportedEssentialProperties(manifest);

}

_applyCustomFilters(manifest);

resolve();

})

.catch(() => {

resolve();

});

});

}

function filterUnsupportedFeatures(manifest) {

const promises = [];

promises.push(_filterUnsupportedCodecs(Constants.VIDEO, manifest))

↪→ ;

promises.push(_filterUnsupportedCodecs(Constants.AUDIO, manifest))

↪→ ;

return Promise.all(promises)

.then(() => {

if (settings.get().streaming.capabilities.

↪→ filterUnsupportedEssentialProperties) {

_filterUnsupportedEssentialProperties(manifest);

}

_applyCustomFilters(manifest);

return undefined;

})

.catch(() => {

return undefined;

});

}

8 dash.js No Cannot refactor because resolve() invoked in a callback
Original Source → Refactored Source Code

Continued on next page

192

Table S5 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

function updateAppendWindow(sInfo) {

return new Promise((resolve) => {

if (!buffer || !settings.get().streaming.buffer.

↪→ useAppendWindow) {

resolve();

return;

}

waitForUpdateEnd(() => {

try {

if (!buffer) {

resolve();

return;

}

let appendWindowEnd = mediaSource.duration;

let appendWindowStart = 0;

if (sInfo && !isNaN(sInfo.start) && !isNaN(sInfo.

↪→ duration) && isFinite(sInfo.duration)) {

appendWindowEnd = sInfo.start + sInfo.duration;

}

if (sInfo && !isNaN(sInfo.start)) {

appendWindowStart = sInfo.start;

}

if (buffer.appendWindowEnd !== appendWindowEnd ||

↪→ buffer.appendWindowStart !== appendWindowStart) {

buffer.appendWindowStart = 0;

buffer.appendWindowEnd = appendWindowEnd +

↪→ APPEND_WINDOW_END_OFFSET;

buffer.appendWindowStart = Math.max(

↪→ appendWindowStart - APPEND_WINDOW_START_OFFSET, 0);

logger.debug(‘Updated append window for ${
↪→ mediaInfo.type}. Set start to ${buffer.appendWindowStart}
↪→ and end to ${buffer.appendWindowEnd}‘);

}

resolve();

} catch (e) {

logger.warn(‘Failed to set append window‘);

resolve();

}

});

});

}

/* not refactored */

9 netlify No Cannot refactor because resolve is invoked asynchronously in
an callback function

Original Source → Refactored Source Code

Continued on next page

193

Table S5 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async function fetchFiles(

files: ImplementationFile[],

readFile: ReadFile,

readFileMetadata: ReadFileMetadata,

apiName: string,

) {

const sem = semaphore(MAX_CONCURRENT_DOWNLOADS);

const promises = [] as Promise<ImplementationEntry | { error:

↪→ boolean }>[];

files.forEach(file => {

promises.push(

new Promise(resolve =>

sem.take(async () => {

try {

const [data, fileMetadata] = await Promise.all([

readFile(file.path, file.id, { parseText: true }),

readFileMetadata(file.path, file.id),

]);

resolve({ file: { ...file, ...fileMetadata }, data: data

↪→ as string });

sem.leave();

} catch (error) {

sem.leave();

console.error(‘failed to load file from ${apiName}: ${
↪→ file.path}‘);

resolve({ error: true });

}

}),

),

);

});

return Promise.all(promises).then(loadedEntries =>

loadedEntries.filter(loadedEntry => !(loadedEntry as { error:

↪→ boolean }).error),

) as Promise<ImplementationEntry[]>;

}

/* not refactored */

10 fastify Yes Example in test code where new Promise() calls resolve in syn-
chronous setting.

Original Source → Refactored Source Code

fastify.get(’/return’, opts, function (req, reply) {

const promise = new Promise((resolve, reject) => {

resolve({ hello: ’world’ })

})

return promise

})

fastify.get(’/return’, opts, function (req, reply) {

const promise = Promise.resolve({ hello: ’world’ });

return promise

})

194

Table S6: Pattern - reactionReturnsPromise

Number Application Refactored Refactoring Comments
1 treeherder Yes Promise.resolve() returned in .catch; replace with return.

Original Source → Refactored Source Code

.catch((reason) =>

Promise.resolve({

result: {

status: ’error’,

message_of_the_day:

’Unable␣to␣connect␣to␣the␣https://mozilla-releng.net/

↪→ treestatus␣API’,

reason: reason.toString(),

tree: repoName,

},

}),

)

.catch((reason) => {

return {

result: {

status: ’error’,

message_of_the_day:

’Unable␣to␣connect␣to␣the␣https://mozilla-releng.net/

↪→ treestatus␣API’,

reason: reason.toString(),

tree: repoName,

},

};

})

2 treeherder Yes Return Promise.reject(e); throw e instead.
Original Source → Refactored Source Code

static getSeriesData(projectName, params) {

return fetch(

‘${getProjectUrl(
’/performance/data/’,

projectName,

)}?${queryString.stringify(params)}‘,
).then((resp) => {

if (resp.ok) {

return resp.json();

}

return Promise.reject(’No␣series␣data␣found’);

});

}

static getSeriesData(projectName, params) {

return fetch(

‘${getProjectUrl(
’/performance/data/’,

projectName,

)}?${queryString.stringify(params)}‘,
).then((resp) => {

if (resp.ok) {

return resp.json();

}

throw ’No␣series␣data␣found’;

});

}

3 ui5-builder Yes Can simply return, instead of returning Promise.resolve().
Original Source → Refactored Source Code

depPromise.then(() => {

if (projects[project.metadata.name]) {

return Promise.resolve();

}

// details elided

}

depPromise.then(() => {

if (projects[project.metadata.name]) {

return;

}

// details elided

}

4 ui5-builder Yes This reaction returned a promise, but reactions already return
promises! Removed outer promise, and had the code return,
rather than resolve.

Original Source → Refactored Source Code

Continued on next page

195

Table S6 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

.then((archiveContent) => new Promise((resolve) => {

const zip = new yazl.ZipFile();

const basePath = ‘/resources/${namespace}/‘;
archiveContent.forEach((content, path) => {

if (!path.startsWith(basePath)) {

log.verbose(‘Not bundling resource with path ${
↪→ path} since it is not based on path ${basePath}‘);

return;

}

// Remove base path. Absolute paths are not allowed in ZIP

↪→ files

const normalizedPath = path.replace(basePath, "");

zip.addBuffer(content, normalizedPath);

});

zip.end();

const pathPrefix = "/resources/" + namespace + "/";

const res = resourceFactory.createResource({

path: pathPrefix + bundleName,

stream: zip.outputStream

});

resolve([res]);

}))

.then((archiveContent) => {

const zip = new yazl.ZipFile();

const basePath = ‘/resources/${namespace}/‘;
archiveContent.forEach((content, path) => {

if (!path.startsWith(basePath)) {

log.verbose(‘Not bundling resource with path ${
↪→ path} since it is not based on path ${basePath}‘);

return;

}

// Remove base path. Absolute paths are not allowed in ZIP

↪→ files

const normalizedPath = path.replace(basePath, "");

zip.addBuffer(content, normalizedPath);

});

zip.end();

const pathPrefix = "/resources/" + namespace + "/";

const res = resourceFactory.createResource({

path: pathPrefix + bundleName,

stream: zip.outputStream

});

return [res];

});

5 appcenter-cli No This reaction does return a promise, but the promise is essen-
tially a roundabout case of custom promisification: it sets up
an error handler which resolves or rejects the promise, which
is challenging to refactor.

Original Source → Refactored Source Code

Continued on next page

196

Table S6 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

.then(() => {

if (!sourcemapOutput) {

// skip source map compose if source map is not enabled

return;

}

const composeSourceMapsPath = getComposeSourceMapsPath();

if (!composeSourceMapsPath) {

throw new Error("react-native␣compose-source-maps.js␣scripts␣is␣

↪→ not␣found");

}

const jsCompilerSourceMapFile = path.join(outputFolder, bundleName

↪→ + ".hbc" + ".map");

if (!fs.existsSync(jsCompilerSourceMapFile)) {

throw new Error(‘sourcemap file ${jsCompilerSourceMapFile} is

↪→ not found‘);

}

return new Promise((resolve, reject) => {

const composeSourceMapsArgs = [sourcemapOutput,

↪→ jsCompilerSourceMapFile, "-o", sourcemapOutput];

// https://github.com/facebook/react-native/blob/master/react.

↪→ gradle#L211

// https://github.com/facebook/react-native/blob/master/scripts/

↪→ react-native-xcode.sh#L178

// packager.sourcemap.map + hbc.sourcemap.map = sourcemap.map

const composeSourceMapsProcess = childProcess.spawn(

↪→ composeSourceMapsPath, composeSourceMapsArgs);

out.text(‘${composeSourceMapsPath} ${composeSourceMapsArgs.join(
↪→ "␣")}‘);

composeSourceMapsProcess.stdout.on("data", (data: Buffer) => {

out.text(data.toString().trim());

});

composeSourceMapsProcess.stderr.on("data", (data: Buffer) => {

console.error(data.toString().trim());

});

composeSourceMapsProcess.on("close", (exitCode: number) => {

if (exitCode) {

reject(new Error(‘"compose-source-maps" command exited with

↪→ code ${exitCode}.‘));
}

// Delete the HBC sourceMap, otherwise it will be included in

↪→ ’code-push’ bundle as well

fs.unlink(jsCompilerSourceMapFile, (err) => {

if (err) {

console.error(err);

reject(err);

}

resolve(null);

});

});

});

});

/* code 5 here */

6 strapi Yes Promise.reject(e); replace with throw e
Original Source → Refactored Source Code

Continued on next page

197

Table S6 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

const validateComponentInput = data => {

return yup

.object({

component: componentSchema,

components: nestedComponentSchema,

})

.noUnknown()

.validate(data, {

strict: true,

abortEarly: false,

})

.catch(error => Promise.reject(formatYupErrors(error)));

};

const validateComponentInput = data => {

return yup

.object({

component: componentSchema,

components: nestedComponentSchema,

})

.noUnknown()

.validate(data, {

strict: true,

abortEarly: false,

})

.catch(error => { throw formatYupErrors(error) });

};

7 strapi Yes Promise.reject(e); replace with throw e
Original Source → Refactored Source Code

const validateUpdateComponentInput = data => {

if (_.has(data, ’component’)) {

removeEmptyDefaults(data.component);

}

if (_.has(data, ’components’) && Array.isArray(data.components)) {

data.components.forEach(data => {

if (_.has(data, ’uid’)) {

removeEmptyDefaults(data);

}

});

}

return yup

.object({

component: componentSchema,

components: nestedComponentSchema,

})

.noUnknown()

.validate(data, {

strict: true,

abortEarly: false,

})

.catch(error => Promise.reject(formatYupErrors(error)));

};

const validateUpdateComponentInput = data => {

if (_.has(data, ’component’)) {

removeEmptyDefaults(data.component);

}

if (_.has(data, ’components’) && Array.isArray(data.components)) {

data.components.forEach(data => {

if (_.has(data, ’uid’)) {

removeEmptyDefaults(data);

}

});

}

return yup

.object({

component: componentSchema,

components: nestedComponentSchema,

})

.noUnknown()

.validate(data, {

strict: true,

abortEarly: false,

})

.catch(error => { throw formatYupErrors(error) });

};

8 netlify-cms Yes Promise.reject(e); replace with throw e
Original Source → Refactored Source Code

parseResponse(response: Response) {

const contentType = response.headers.get(’Content-Type’);

if (contentType && contentType.match(/json/)) {

return this.parseJsonResponse(response);

}

const textPromise = response.text().then(text => {

if (!response.ok) {

return Promise.reject(text);

}

return text;

});

return textPromise;

}

parseResponse(response: Response) {

const contentType = response.headers.get(’Content-Type’);

if (contentType && contentType.match(/json/)) {

return this.parseJsonResponse(response);

}

const textPromise = response.text().then(text => {

if (!response.ok) {

throw text;

}

return text;

});

return textPromise;

}

9 netlify-cms Yes Promise.resolve(e); replace with return e
Original Source → Refactored Source Code

Continued on next page

198

Table S6 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

async entryExist(collection: Collection, path: string, slug: string,

↪→ useWorkflow: boolean) {

const unpublishedEntry =

useWorkflow &&

(await this.implementation

.unpublishedEntry({ collection: collection.get(’name’), slug

↪→ })

.catch(error => {

if (error instanceof EditorialWorkflowError && error.

↪→ notUnderEditorialWorkflow) {

return Promise.resolve(false);

}

return Promise.reject(error);

}));

if (unpublishedEntry) return unpublishedEntry;

const publishedEntry = await this.implementation

.getEntry(path)

.then(({ data }) => data)

.catch(() => {

return Promise.resolve(false);

});

return publishedEntry;

}

async entryExist(collection: Collection, path: string, slug: string,

↪→ useWorkflow: boolean) {

const unpublishedEntry =

useWorkflow &&

(await this.implementation

.unpublishedEntry({ collection: collection.get(’name’), slug

↪→ })

.catch(error => {

if (error instanceof EditorialWorkflowError && error.

↪→ notUnderEditorialWorkflow) {

return Promise.resolve(false);

}

return Promise.reject(error);

}));

if (unpublishedEntry) return unpublishedEntry;

const publishedEntry = await this.implementation

.getEntry(path)

.then(({ data }) => data)

.catch(() => {

return false;

});

return publishedEntry;

}

10 eleventy Yes Promise.reject(e); replace with throw e
Original Source → Refactored Source Code

this._generateTemplate(mapEntry, to).catch(function (e) {

// Premature templateContent in layout render, this also happens

↪→ in

// TemplateMap.populateContentDataInMap for non-layout content

if (EleventyErrorUtil.isPrematureTemplateContentError(e)) {

usedTemplateContentTooEarlyMap.push(mapEntry);

} else {

return Promise.reject(

new TemplateWriterWriteError(

‘Having trouble writing template: ${mapEntry.outputPath}‘,
e

)

);

}

})

this._generateTemplate(mapEntry, to).catch(function (e) {

// Premature templateContent in layout render, this also happens

↪→ in

// TemplateMap.populateContentDataInMap for non-layout content

if (EleventyErrorUtil.isPrematureTemplateContentError(e)) {

usedTemplateContentTooEarlyMap.push(mapEntry);

} else {

throw new TemplateWriterWriteError(

‘Having trouble writing template: ${mapEntry.outputPath}‘,
e

);

}

})

199

Table S7: Pattern - customPromisification

Number Application Refactored Refactoring Comments
1 appcenter-cli Yes Simple call to util.promisify.

Original Source → Refactored Source Code

export function glob(pattern: string, options?: g.IOptions): Promise<

↪→ string[]> {

return new Promise<string[]>((resolve, reject) => {

g(pattern, options, (err, matches) => {

if (err) {

reject(err);

} else {

resolve(matches);

}

});

});

}

export function glob(pattern: string, options?: g.IOptions): Promise<

↪→ string[]> {

let g_promisified = util.promisify(g);

return g_promisified(pattern, options);

}

2 eleventy Yes Needed Function.prototype.call to util.promisify’d function to
set correct this.

Original Source → Refactored Source Code

return async function (data) {

return new Promise(function (resolve, reject) {

tmpl.render(data, function (err, res) {

if (err) {

reject(err);

} else {

resolve(res);

}

});

});

};

return async function (data) {

let tmpl_render_promise = util.promisify(tmpl.render);

return tmpl_render_promise.call(tmpl, data);

};

3 ui5-builder Yes Simple call to util.promisify.
Original Source → Refactored Source Code

const findFiles = (folder) => {

return new Promise((resolve, reject) => {

recursive(folder, (err, files) => {

if (err) {

reject(err);

} else {

resolve(files);

}

});

});

};

const findFiles = (folder) => {

let promisifiedRecursive = util.promisify(recursive);

return promisifiedRecursive(folder);

};

4 ui5-builder Yes Simple call to util.promisify.
Original Source → Refactored Source Code

const findFiles = (folder) => {

return new Promise((resolve, reject) => {

recursive(folder, (err, files) => {

if (err) {

reject(err);

} else {

resolve(files);

}

});

});

};

const findFiles = (folder) => {

let promisifiedRecursive = util.promisify(recursive);

return promisifiedRecursive(folder);

};

5 ui5-builder Yes Simple call to util.promisify.
Original Source → Refactored Source Code

Continued on next page

200

Table S7 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

const findFiles = (folder) => {

return new Promise((resolve, reject) => {

recursive(folder, (err, files) => {

if (err) {

reject(err);

} else {

resolve(files);

}

});

});

};

const findFiles = (folder) => {

let promisifiedRecursive = util.promisify(recursive);

return promisifiedRecursive(folder);

};

6 mercurius Yes Simple call to util.promisify.
Original Source → Refactored Source Code

function sendRequest (request, url) {

return function (opts) {

return new Promise((resolve, reject) => {

request({

url,

method: ’POST’,

body: opts.body,

headers: {

...opts.headers,

’content-type’: ’application/json’,

’content-length’: Buffer.byteLength(opts.body)

},

originalRequestHeaders: opts.originalRequestHeaders || {},

context: opts.context

}, (err, response) => {

if (err) {

return reject(err)

}

let data = ’’

response.stream.on(’data’, chunk => {

data += chunk

})

eos(response.stream, (err) => {

/* istanbul ignore if */

if (err) {

return reject(err)

}

try {

const json = sJSON.parse(data.toString())

if (json.errors && json.errors.length) {

// return a ‘FederatedError‘ instance to keep ‘graphql

↪→ ‘ happy

// e.g. have something that derives from ‘Error‘

return reject(new FederatedError(json.errors))

}

resolve({

statusCode: response.statusCode,

json

})

} catch (e) {

reject(e)

}

})

})

})

}

}

function sendRequest (request, url) {

return function (opts) {

const reqProm = util.promisify(request);

return reqProm({

url,

method: ’POST’,

body: opts.body,

headers: {

...opts.headers,

’content-type’: ’application/json’,

’content-length’: Buffer.byteLength(opts.body)

},

originalRequestHeaders: opts.originalRequestHeaders || {},

context: opts.context

}).then(response => {

let data = ’’

response.stream.on(’data’, chunk => {

data += chunk

})

let eosProm = util.promisify(eos);

return eosProm(response.stream).then(() => {

try {

const json = sJSON.parse(data.toString())

if (json.errors && json.errors.length) {

// return a ‘FederatedError‘ instance to keep ‘graphql‘

↪→ happy

// e.g. have something that derives from ‘Error‘

throw new FederatedError(json.errors);

}

return {

statusCode: response.statusCode,

json

};

} catch (e) {

throw e

}

}, err => {

throw err;

});

}, err => {

throw err;

});

}

}

Continued on next page

201

Table S7 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code
7 mercurius Yes Complex, event-driven control flow prevented us from refactor-

ing this code.
Original Source → Refactored Source Code

subscribe (topic, queue) {

return new Promise((resolve, reject) => {

function listener (value, cb) {

queue.push(value.payload)

cb()

}

const close = () => {

this.emitter.removeListener(topic, listener)

}

this.emitter.on(topic, listener, (err) => {

if (err) {

return reject(err)

}

resolve()

})

queue.close = close

})

}

// Not refactored.

8 mercurius Yes Simple call to util.promisify.
Original Source → Refactored Source Code

publish (event) {

return new Promise((resolve, reject) => {

this.pubsub.publish(event, (err) => {

if (err) {

return reject(err)

}

resolve()

})

}).catch(err => {

this.fastify.log.error(err)

})

}

publish (event) {

console.log(’CE␣--␣ihp␣--␣3’);

let thisPubsubPublish = util.promisify(this.pubsub.publish);

return thisPubsubPublish.call(this.pubsub, event).then(() => {

return

}).catch(err => {

this.fastify.log.error(err)

});

}

9 Boostnote Yes Simple call to util.promisify.
Original Source → Refactored Source Code

function saveToFile(data, filename) {

return new Promise((resolve, reject) => {

fs.writeFile(filename, data, err => {

if (err) return reject(err)

resolve(filename)

})

})

}

function saveToFile(data, filename) {

const writeFileProm = util.promisify(fs.writeFile);

return writeFileProm(filename, data);

}

10 appcenter-cli Yes Simple call to util.promisify.
Original Source → Refactored Source Code

const files = await new Promise<string[]>((resolve, reject) => {

glob(pattern, (err, matches) => {

if (err) {

reject(err);

} else {

resolve(matches);

}

});

});

const files = await new Promise<string[]>((resolve, reject) => {

const globPromisified = util.promisify(glob);

resolve(globPromisified(pattern));

});

202

Table S8: Pattern - explicitPromiseConstructor

Number Application Refactored Refactoring Comments
1 Boostnote Yes Here, we had to promisify writeFile. We could do this with

util.promisify, but the fs library comes with promise-based ver-
sions of their APIs (thanks to fs.promises). This refactoring is
possible because fetchSnippet already returns a promise.

Original Source → Refactored Source Code

function createSnippet(snippetFile) {

return new Promise((resolve, reject) => {

const newSnippet = {

id: crypto.randomBytes(16).toString(’hex’),

name: ’Unnamed␣snippet’,

prefix: [],

content: ’’,

linesHighlighted: []

}

fetchSnippet(null, snippetFile)

.then(snippets => {

snippets.push(newSnippet)

fs.writeFile(

snippetFile || consts.SNIPPET_FILE,

JSON.stringify(snippets, null, 4),

err => {

if (err) reject(err)

resolve(newSnippet)

}

)

})

.catch(err => {

reject(err)

})

})

}

function createSnippet(snippetFile) {

return fetchSnippet(null, snippetFile)

.then(snippets => {

const newSnippet = {

id: crypto.randomBytes(16).toString(’hex’),

name: ’Unnamed␣snippet’,

prefix: [],

content: ’’,

linesHighlighted: []

}

snippets.push(newSnippet)

return fs.promises.writeFile(

snippetFile || consts.SNIPPET_FILE,

JSON.stringify(snippets, null, 4))

.then(() => newSnippet)

.catch(err => { throw err })

})

}

2 Boostnote Yes We similarly had to promisify writeFile. This refactoring is
possible because fetchSnippet already returns a promise.

Original Source → Refactored Source Code

function deleteSnippet(snippet, snippetFile) {

return new Promise((resolve, reject) => {

fetchSnippet(null, snippetFile).then(snippets => {

snippets = snippets.filter(

currentSnippet => currentSnippet.id !== snippet.id

)

fs.writeFile(

snippetFile || consts.SNIPPET_FILE,

JSON.stringify(snippets, null, 4),

err => {

if (err) reject(err)

resolve(snippet)

}

)

})

})

}

function deleteSnippet(snippet, snippetFile) {

return fetchSnippet(null, snippetFile).then(snippets => {

snippets = snippets.filter(

currentSnippet => currentSnippet.id !== snippet.id

)

return fs.promises.writeFile(

snippetFile || consts.SNIPPET_FILE,

JSON.stringify(snippets, null, 4)).then(err => {

if (err) throw err

return snippet

})

})

}

3 Boostnote No This code sets up complex control flow through a request han-
dler. Control flow passes up through a callback, into the origi-
nal promise—we did not feel comfortable refactoring this code.

Original Source → Refactored Source Code

Continued on next page

203

Table S8 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

return new Promise((resolve, reject) => {

const td = createTurndownService()

// ...

const req = request.request(url, res => {

let data = ’’

res.on(’data’, chunk => {

data += chunk

})

res.on(’end’, () => {

const markdownHTML = td.turndown(data)

if (dispatch !== null) {

createNote(storage, {

type: ’MARKDOWN_NOTE’,

folder: folder,

title: ’’,

content: markdownHTML

}).then(note => {

// ...

resolve({ result: true, error: null })

})

} else {

createNote(storage, {

/* ... */

}).then(note => {

resolve({ result: true, note, error: null })

})

}

})

})

req.on(’error’, e => {

console.error(’error␣in␣parsing␣URL’, e)

reject({

result: false,

error: ERROR_MESSAGES[e.code] || ERROR_MESSAGES.UNEXPECTED

})

})

req.end()

})

//

// We did not refactor this instance.

//

4 dash.js Yes The function used to return a promise which resolved with
a promise—we removed the outer promise, and returned the
promise that was returned originally.

Original Source → Refactored Source Code

Continued on next page

204

Table S8 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

function _updateRepresentation(currentRep) {

return new Promise((resolve, reject) => {

const hasInitialization = currentRep.hasInitialization();

const hasSegments = currentRep.hasSegments();

// If representation has initialization and segments

↪→ information we are done

// otherwise, it means that a request has to be made to get

↪→ initialization and/or segments information

const promises = [];

promises.push(segmentsController.updateInitData(currentRep,

↪→ hasInitialization));

promises.push(segmentsController.updateSegmentData(currentRep,

↪→ hasSegments));

Promise.all(promises)

.then((data) => {

if (data[0] && !data[0].error) {

currentRep = _onInitLoaded(currentRep, data[0]);

}

if (data[1] && !data[1].error) {

currentRep = _onSegmentsLoaded(currentRep, data

↪→ [1]);

}

_setMediaFinishedInformation(currentRep);

_onRepresentationUpdated(currentRep);

resolve();

})

.catch((e) => {

reject(e);

});

});

}

function _updateRepresentation(currentRep) {

const hasInitialization = currentRep.hasInitialization();

const hasSegments = currentRep.hasSegments();

// If representation has initialization and segments information

↪→ we are done

// otherwise, it means that a request has to be made to get

↪→ initialization and/or segments information

const promises = [];

promises.push(segmentsController.updateInitData(currentRep,

↪→ hasInitialization));

promises.push(segmentsController.updateSegmentData(currentRep,

↪→ hasSegments));

return Promise.all(promises)

.then((data) => {

if (data[0] && !data[0].error) {

currentRep = _onInitLoaded(currentRep, data[0]);

}

if (data[1] && !data[1].error) {

currentRep = _onSegmentsLoaded(currentRep, data[1]);

}

_setMediaFinishedInformation(currentRep);

_onRepresentationUpdated(currentRep);

return;

})

.catch((e) => {

throw e;

});

}

5 dash.js Yes Similar to the previous case, the function returned a promise
which returned a promise, and we removed the outer one.

Original Source → Refactored Source Code

function startPreloading(mediaSource, previousBuffers) {

return new Promise((resolve, reject) => {

if (getPreloaded()) {

reject();

return;

}

logger.info(‘[startPreloading] Preloading next stream with id

↪→ ${getId()}‘);
setPreloaded(true);

_commonMediaInitialization(mediaSource, previousBuffers)

.then(() => {

for (let i = 0; i < streamProcessors.length &&

↪→ streamProcessors[i]; i++) {

streamProcessors[i].setExplicitBufferingTime(

↪→ getStartTime());

streamProcessors[i].getScheduleController().

↪→ startScheduleTimer();

}

resolve();

})

.catch(() => {

setPreloaded(false);

reject();

});

});

}

function startPreloading(mediaSource, previousBuffers) {

if (getPreloaded()) {

reject();

return Promise.reject();

}

logger.info(‘[startPreloading] Preloading next stream with id ${
↪→ getId()}‘);

setPreloaded(true);

return _commonMediaInitialization(mediaSource, previousBuffers)

.then(() => {

for (let i = 0; i < streamProcessors.length &&

↪→ streamProcessors[i]; i++) {

streamProcessors[i].setExplicitBufferingTime(

↪→ getStartTime());

streamProcessors[i].getScheduleController().

↪→ startScheduleTimer();

}

return;

})

.catch(() => {

setPreloaded(false);

throw undefined;

});

}

205

Table S9: Pattern - explicitPromiseConstructor

Number Application Refactored Refactoring Comments
6 dash.js No We felt that we should be able to refactor this case, but refac-

toring introduced synchrony that caused a failing test.
Original Source → Refactored Source Code

function _commonMediaInitialization(mediaSource, previousBufferSinks)

↪→ {

return new Promise((resolve, reject) => {

checkConfig();

isUpdating = true;

addInlineEvents();

let element = videoModel.getElement();

MEDIA_TYPES.forEach((mediaType) => {

if (mediaType !== Constants.VIDEO || (!element || (element

↪→ && (/^VIDEO$/i).test(element.nodeName)))) {

_initializeMediaForType(mediaType, mediaSource);

}

});

_createBufferSinks(previousBufferSinks)

.then((bufferSinks) => {

isUpdating = false;

if (streamProcessors.length === 0) {

const msg = ’No␣streams␣to␣play.’;

errHandler.error(new DashJSError(Errors.

↪→ MANIFEST_ERROR_ID_NOSTREAMS_CODE, msg, manifestModel.

↪→ getValue()));

logger.fatal(msg);

} else {

_checkIfInitializationCompleted();

}

// All mediaInfos for texttracks are added to the

↪→ TextSourceBuffer by now. We can start creating the tracks

textController.createTracks(streamInfo);

resolve(bufferSinks);

})

.catch((e) => {

reject(e);

});

});

}

//

// We did not refactor this instance.

//

7 ui5-builder Yes Again, a promise within a promise, and we removed the outer
promise.

Original Source → Refactored Source Code

promises.push(new Promise((resolve) => {

return this._pool.getModuleInfo(info.name).then((moduleInfo) => {

if (moduleInfo.name) {

info.module = moduleInfo.name;

}

resolve();

});

}));

promises.push(this._pool.getModuleInfo(info.name).then((moduleInfo) =>

↪→ {

if (moduleInfo.name) {

info.module = moduleInfo.name;

}

return;

}));

8 ui5-builder Yes The promise returned by the function was very busy, and
was doing roundabout custom promisification. We explicitly
promisified the function call, and returned that with error han-
dling mimicking the logic of the original.

Original Source → Refactored Source Code

Continued on next page

206

Table S9 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

_analyze(xml, info, isFragment) {

// ...

return new Promise((resolve, reject) => {

this._parser.parseString(xml, (err, result) => {

// parse error

if (err) {

this.busy = false;

reject(new Error(‘Error while parsing XML document ${info.name
↪→ }: ${err.message}‘));
return;

}

if (!result) {

// Handle empty xml views/fragments

reject(new Error("Empty␣XML␣Document."));

return;

}

if (isFragment) {

// all fragments implicitly depend on the fragment class

this.info.addImplicitDependency(FRAGMENT_MODULE);

this._analyzeNode(result);

} else {

// views require a special handling of the root node

this._analyzeViewRootNode(result);

}

Promise.all(this.promises).then(() => {

this.busy = false;

resolve(info);

});

});

});

}

_analyze(xml, info, isFragment) {

// ...

let promisified = util.promisify(this._parser.parseString);

return promisified(xml).then(result => {

if (!result)

throw new Error("Empty␣XML␣Document.");

if (isFragment) {

this.info.addImplicitDependency(FRAGMENT_MODULE);

this._analyzeNode(result);

} else {

this._analyzeViewRootNode(result);

}

return Promise.all(this.promises).then(() => {

this.busy = false;

return info;

});

}, err => {

this.busy = false;

throw new Error(‘Error while parsing XML document ${info.name}: ${
↪→ err.message}‘);

});

}

9 appcenter-cli Yes Another instance where custom promisification and the explicit
promise constructor co-occur.

Original Source → Refactored Source Code

function createFakeAppFile(appFilePath: string, entryNames: string[]):

↪→ Promise<string> {

return new Promise<string>((resolve, reject) => {

temp.mkdir("app-validator-tests", (error, dirPath) => {

try {

if (error) {

reject(error);

return;

}

const inputFile = path.join(dirPath, appFilePath);

const zip = new JsZip();

for (const entryName of entryNames) {

zip.file(entryName, Buffer.from("Fake␣file"));

}

JsZipHelper.writeZipToPath(inputFile, zip, "STORE").then(

() => resolve(inputFile),

(writingError) => reject(writingError)

);

} catch (err) {

reject(err);

}

});

});

}

function createFakeAppFile(appFilePath: string, entryNames: string[]):

↪→ Promise<string> {

let tempMkdirPromise = util.promisify(temp.mkdir);

return tempMkdirPromise("app-validator-tests").then((dirPath : any

↪→) => {

const inputFile = path.join(dirPath, appFilePath);

const zip = new JsZip();

for (const entryName of entryNames) {

zip.file(entryName, Buffer.from("Fake␣file"));

}

return JsZipHelper.writeZipToPath(inputFile, zip, "STORE").then(

() => inputFile,

(writingError : any) => { throw writingError; }

);

}).catch((err : any) => {

throw err;

});

}

10 strapi No Any refactorings involving setTimeout are fraught.
Original Source → Refactored Source Code

Continued on next page

207

Table S9 – Continued from previous page
Number Application Refactored Refactoring Comments

Original Source → Refactored Source Code

const initialize = middlewareKey => {

if (this.middleware[middlewareKey].loaded === true) return;

const module = this.middleware[middlewareKey].load;

return new Promise((resolve, reject) => {

const timeout = setTimeout(

() => reject(‘(middleware: ${middlewareKey}) is taking too

↪→ long to load.‘),

middlewareConfig.timeout || 1000

);

this.middleware[middlewareKey] = merge(this.middleware[

↪→ middlewareKey], module);

Promise.resolve()

.then(() => module.initialize())

.then(() => {

clearTimeout(timeout);

this.middleware[middlewareKey].loaded = true;

resolve();

})

.catch(err => {

clearTimeout(timeout);

if (err) {

return reject(err);

}

});

});

};

//

// We did not refactor this instance.

//

208

Appendix B

Database Usage Optimizations

This appendix contains complete information for the experiments conducted in Chapter 5.
First, links to the code corresponding to each HTTP Request ID are given in Table S1.

B.1 Raw Data

RQ3: How do the refactorings affect performance?

The first part of this research question, wherein the performance difference of all refactoring
opportunities was examined, is presented first. Each column corresponds to the “HTTP
Request ID” from the graph in the chapter. 10 run times were gathered before (first 10
rows), and after (last 10 rows) refactoring. The graph in the chapter reports means and
standard deviations for these data sets. The raw numbers are given in the black cells.

The next part of the research question examines how the refactoring opportunities
scale. Five sets of results are provided corresponding to each HTTP request being studied.
Three database scales are investigated for each. The raw numbers are in the black cells,
and aggregates are computed throughout.

209

ID 0 1 2 3 4 5
Run 1 Before 296.5422087 342.3916879 439.6706128 660.5764589 379.8503571 236.455646
Run 2 Before 297.2173848 334.0338912 436.371685 514.7209811 357.3590293 260.0362577
Run 3 Before 296.7770619 319.0932541 427.3306279 625.0453887 345.5173397 236.075304
Run 4 Before 306.6585417 349.8703504 407.0242591 606.6610117 377.5784178 251.6018581
Run 5 Before 327.048172 350.4867721 429.1028571 541.465981 370.9511352 252.0939388
Run 6 Before 319.0272932 353.3099599 422.9840903 561.8722239 350.3729053 258.1072946
Run 7 Before 301.8668461 365.006474 423.3101697 546.3098879 356.7801609 241.9330091
Run 8 Before 310.4705081 353.9094543 435.9675951 607.7707334 357.9924269 240.0164981
Run 9 Before 285.3387799 352.1118441 411.8937869 560.5535321 343.7547359 239.818984
Run 10 Before 296.5833168 331.2777181 426.4606433 544.488255 358.2252998 235.3724079
Run 1 After 112.6107941 116.0074501 262.6131229 411.7019057 111.3897181 131.9535041
Run 2 After 112.0591736 115.8520789 221.1474237 392.8332429 124.4094291 116.2680387
Run 3 After 100.94871 114.7537441 224.8161006 306.5939159 115.9604883 110.7396469
Run 4 After 102.5760531 166.4302011 225.8762507 347.4592581 113.1825919 121.155684
Run 5 After 109.465014 112.3772321 237.2390442 358.220077 163.2544618 100.02877
Run 6 After 97.59109831 123.9580231 218.9853449 338.1895022 126.7860384 101.9255929
Run 7 After 98.79903793 127.8616757 267.5582781 352.95013 126.0931506 95.06175566
Run 8 After 95.76102209 117.886333 223.2188554 312.6392736 121.0590048 93.60310078
Run 9 After 114.1138463 114.7114372 229.1717229 311.760932 120.9552608 99.40444517
Run 10 After 98.45451641 118.4825902 215.3943319 321.3568254 112.1688318 100.329926

6 7 8 9 10 11 12
255.5270448 31.54890823 37.47572422 30.19251537 383.3687129 84.24210215 84.52796698
261.5263901 29.17892075 38.50778913 29.73556089 268.8404732 64.59138489 67.06114769
254.4934812 29.24011087 39.18856335 31.11564922 273.0344238 62.55630398 63.55715609
320.1583767 28.79978704 49.51084423 29.23689079 271.2723522 56.82597017 60.92186975
257.5286303 28.17663002 38.37754869 30.2588501 266.7931714 59.99328184 64.33243656
257.7469811 29.06025362 39.0714612 28.90237379 260.5706091 63.15875578 62.72778606
239.7154741 31.41610718 37.35225487 28.83481503 279.4610162 48.51346397 56.35801697
273.9802361 28.87679386 31.90088511 32.19949436 249.8038549 62.25871897 59.65124035
248.1825027 29.27708387 59.0689683 29.44326591 280.0218821 61.4637866 59.45785904
258.1743531 25.97849178 35.62498426 29.12376213 264.6863651 61.11528063 73.93431377
86.45106888 24.3463006 14.71561813 23.68372011 37.87574339 30.14804268 29.4408083
73.05752563 22.33225107 21.37562227 22.43517399 34.91607189 26.09172201 27.69058418
79.25007915 22.87772655 21.58984804 32.12573624 37.09590673 29.67933273 37.11771631
65.5976429 23.76235294 21.38733006 24.30892897 30.95006895 33.36138439 41.78159809
71.08857393 21.40966797 21.51010609 25.71847105 35.3449707 27.21611023 21.80800962
75.41383028 20.39828777 22.70023298 25.79724407 33.05799627 43.15440416 44.62874699
71.54601097 22.014503 22.70336914 27.41158867 47.20662498 35.04477406 42.24501705
67.7587328 22.20355415 21.66755199 25.67760611 41.8272953 26.51093817 30.12857103
63.52026463 21.23545408 22.39611387 24.03600502 34.3089633 27.40306807 25.13212967
71.86879301 25.27088881 22.06269693 26.00050211 32.25929689 33.27373123 28.15039921

13 14 15 16 17 18 19
37.39189816 33.11767292 10.63178492 54.81344128 84.93616056 82.35615921 99.73111868
68.1372509 32.97045374 7.013574123 53.68588591 83.27398014 94.85325432 84.99699163
47.01346493 33.56807327 8.029529095 51.6089592 85.24731398 85.550354 75.72969532
56.18071604 34.47556877 7.581944942 55.25237226 84.87770891 81.72766399 92.80006981
50.03034306 33.82006216 6.800681114 49.55034685 84.49906063 81.47541761 91.03131199
53.88670588 34.12095976 7.817266941 55.33009958 89.28994942 83.76673985 84.85094976
48.11879206 34.04524374 8.438535213 48.34311914 86.20543003 85.07974434 77.52989578
45.26379204 33.96441031 7.557134151 54.3865428 86.5872016 81.72254133 84.8077879
71.28859806 34.37111568 7.022022724 55.97233963 83.40580368 88.55902386 87.66806698
52.94946194 33.76622105 7.312335968 57.21450329 83.69869423 85.61793804 78.61269522
36.44192076 23.38076782 5.471279621 49.95228624 82.55388451 81.14607239 79.05474329
32.68654299 23.54316568 5.415356159 52.86624002 83.79175138 81.44713211 87.32302809
41.93791676 25.95669317 6.261838913 42.5189333 80.33034897 79.65381527 80.80437183
33.59411812 23.65199232 5.902676105 46.0874753 80.88407183 76.12237024 71.12371016
30.72180223 24.8035841 5.860949993 43.84358025 81.29878283 78.69846201 81.22189283
41.33065605 23.92762995 5.831378937 49.11858511 71.89520502 78.32153988 71.29275322
31.54559374 23.83484125 5.433281898 45.17965269 71.80862808 77.98308516 79.14591217
32.82648802 24.04220581 5.7937603 44.12644291 68.60209799 81.00055885 69.80568314
38.26809692 24.97240496 5.546839714 48.06220913 81.89066124 81.23598766 80.09354782
40.37186003 24.94411182 5.286148071 47.95165491 79.13215113 80.9926548 80.02868891

20 21 22 23 24 25 26
178.1560512 54.28825903 70.68257904 61.35862303 60.25461388 53.20445919 48.54474258
121.1437821 60.8412118 57.92955065 73.34398413 56.83326101 52.971591 40.76281834
128.681201 54.51878023 61.09590721 60.37153864 48.49744701 61.51666164 49.47641563
112.902308 189.8686132 52.36235094 56.59376431 61.45610094 67.48612309 37.97711182

130.3009109 98.30597734 60.34437561 60.05402899 56.18875599 69.4939661 43.04938984
118.6056561 66.85883713 52.76358604 60.23706007 49.76257133 68.20813465 72.60159969
115.0580769 62.03088808 55.48856926 68.86966896 53.71933794 74.83953285 59.77196217
110.9197898 72.85479307 52.38694 62.49248075 57.24282932 64.37456131 68.42672062
106.5751801 65.01906538 51.21576691 54.24013519 53.40640879 104.3642292 48.74887562
112.6409097 56.1626091 56.06521177 59.30028296 56.45391417 55.14083004 46.08584309
78.13118124 25.08976984 33.39959431 39.3816328 31.95464516 53.74621773 46.96408367
74.44669914 18.67787838 32.80821991 27.38890696 29.48304319 52.39632511 38.30247784
66.62766504 23.19646025 30.37513208 36.63254499 30.83614302 51.41365051 40.47464466
51.93525219 18.87626886 31.69210482 42.38354683 31.04445314 72.07255459 36.94680119
62.63871002 22.23526621 24.90387011 41.90424013 32.92012787 51.56147957 36.10220051
72.67511606 21.42924166 29.44344616 29.09028769 28.53861332 55.80633354 41.38393879
73.01624012 21.96119881 23.98497677 30.60761595 31.15051413 49.91593075 37.88137054
67.67755175 19.22198296 27.42753363 33.70332384 30.52470684 52.11841393 37.9589262
68.408494 24.62135696 23.77592993 33.4468298 29.65719795 62.46364975 39.71023655

68.89422512 18.05610418 27.86280394 31.35187101 29.34483385 50.41362858 39.12059021

Project HTTP Request ID Link
youtube-clone 0 link [244]
youtube-clone 1 link [245]
youtube-clone 2 link [246]
youtube-clone 3 link [247]
youtube-clone 4 link [248]
youtube-clone 5 link [249]
youtube-clone 6 link [250]
eventbright 7 link [80]
eventbright 8 link [81]
eventbright 9 link [82]
eventbright 10 link [83]
eventbright 11 link [84]
eventbright 12 link [85]
eventbright 13 link [86]
employee-tracker 14 link [78]
employee-tracker 15 link [79]
Graceshopper-Elektra 16 link [104]
Math Fluency App 17 link [145]
Math Fluency App 18 link [146]
Math Fluency App 19 link [147]
property-manage 20 link [178]
NetSteam 21 link [162]
NetSteam 22 link [163]
NetSteam 23 link [164]
NetSteam 24 link [165]
wall 25 link [228]
wall 26 link [229]

Table S1: HTTP Request ID Code Mappings

214

https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L46-L80
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L103-L146
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L148-L224
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L226-L251
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L253-L289
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/user.js#L299-L332
https://github.com/manikandanraji/youtubeclone-backend/blob/master/src/controllers/video.js#L269-L299
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L17-L31
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L32-L43
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L44-L63
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L64-L76
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/events.js#L104-L114
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/like.js#L6-L16
https://github.com/twincarlos/eventbright/blob/main/backend/routes/api/order.js#L6-L21
https://github.com/daedadev/employee-tracker/blob/main/index.js#L9-L44
https://github.com/daedadev/employee-tracker/blob/main/index.js#L169-L219
https://github.com/Elektra-GHP/Graceshopper-Elektra/blob/master/server/api/checkout.js#L7-L47
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L428-L511
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L603-L686
https://github.com/rayace5/Math_Fluency_App/blob/main/routes/results.js#L259-L336
https://github.com/mikethecodegeek/property-manage/blob/master/backend/routes/api/properties.js#L123-L146
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L14-L42
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L44-L80
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L82-L120
https://github.com/W-the-V/NetSteam/blob/main/backend/routes/api/reviews.js#L122-L157
https://github.com/adam-dill/wall/blob/main/schema/groups.js#L144-L152
https://github.com/adam-dill/wall/blob/main/schema/images.js#L206-L224

Scale = 10 (Before) Scale = 10 (After) Scale = 100 (Before) Scale = 100 (After) Scale = 1000 (Before) Scale = 1000 (After)
Application Link to Fn Under Test Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
employee-tracker viewEmployees 57.15258532 2.26226939 34.32257767 3.319099893 374.7352178 19.83148014 153.9784529 5.646152874 2495.929026 105.3503482 1010.470114 59.82907639

56.08637714 30.24459362 354.5324516 152.8123074 2422.508628 903.4403372
Perf Factor 10 56.80902481 34.00312424 395.461688 153.270895 2768.550002 1008.342466
1.665160055 62.07994938 30.64050102 392.6381264 159.4298534 2415.134962 1002.464498

54.68844128 36.34280872 363.3562689 155.3109932 2439.126434 991.7239799
Perf Factor 100 57.45268822 34.44225025 333.8408365 157.1890478 2433.156911 925.33459

2.433686082 55.91737366 33.72490883 375.5795937 159.5867023 2449.278038 1018.92368
54.32898808 42.13974094 376.848156 151.0016356 2512.663528 1084.713685

Perf Factor 1000 56.80100632 34.13665199 380.5106592 153.8688593 2477.418863 1079.240101
2.470067142 58.4928875 34.92978191 397.9133177 140.1046219 2485.711101 1031.864879

58.86911678 32.62141514 376.6710796 157.2096128 2555.741795 1058.652921
eventbright getEvents4 111.3764592 12.27972081 31.93800249 6.445866555 797.3474434 59.6995168 49.52956829 3.342988163 7001.482782 327.2739117 214.6137006 34.19465845

111.6727104 23.41290951 897.7271814 47.36740875 6756.523119 196.8082781
Perf Factor 10 121.9671812 28.53225327 811.6809139 45.62192726 6717.610682 205.0658092
3.487270666 117.4528599 36.25894928 882.9317036 46.06086922 7572.294622 211.6975899

105.7877245 31.02360439 695.0254841 51.14043903 6756.973058 210.0827236
Perf Factor 100 86.90520191 41.11800766 799.5384426 51.5728178 6952.402718 205.4706707

16.09841295 105.817009 25.49963474 746.8349237 46.35743141 7059.229768 202.157588
111.1030636 39.85428429 803.0140829 53.73471928 7478.30205 303.9714079

Perf Factor 1000 127.2731037 25.73008823 764.1296511 47.31891918 7248.967765 177.0932636
32.62365246 124.925931 38.15420246 791.9611063 51.60024166 6699.241446 201.9867306

100.859807 29.79609108 780.6309443 54.52090931 6773.282589 231.8029442
property-manage getProperties 56.90932913 9.531586852 33.70714617 4.207218461 246.0574474 23.67101414 111.0540639 4.848989794 1333.635854 76.6832396 786.4386488 32.1491564

54.60064602 27.05339336 229.9760456 117.7619658 1211.464869 782.7760344
Perf Factor 10 51.4209671 33.16272259 211.7035236 115.2461777 1285.810678 739.3372889

1.68834611 49.64558411 31.62069893 240.3335018 106.370266 1238.919923 780.0881462
81.32437897 35.95491314 249.6863194 111.3240986 1347.678996 779.4366665

Perf Factor 100 49.66529655 37.73286057 302.1370163 113.8987141 1395.609416 812.6235361
2.215654599 60.70725155 35.05593872 237.0385818 112.2086439 1415.996384 838.0991144

50.98642159 38.96317101 260.3886957 112.8055725 1308.922302 742.93573
Perf Factor 1000 61.01507187 35.77504253 237.5855112 113.4886856 1440.91305 771.1791363

1.695791345 53.11094093 35.3135519 240.6365461 104.4201488 1303.593621 824.5596857
56.6167326 26.43916893 251.0887327 103.016366 1387.449304 793.3511496

NetSteam getReviewsForVid 77.05017395 14.72160379 39.00994816 9.172634262 337.6645753 81.77039376 41.62413406 6.119287515 2129.344193 161.8408128 108.0597514 12.90249138
55.35832405 36.49987602 332.4349146 39.01986217 2136.904094 124.0966644

Perf Factor 10 100.835494 32.45882702 519.9663191 41.06946564 2239.967981 111.5521526
1.975141665 75.66722584 40.86222076 269.2389965 35.65230656 2460.963181 87.86075687

69.98494625 42.66977978 353.4762383 39.2476387 2137.441291 108.635087
Perf Factor 100 98.25138474 30.76279068 361.3187485 31.76107883 1809.50442 100.2336445

8.11223063 59.73704243 36.73888588 229.3985672 43.55233097 2031.759841 91.6466608
83.05284691 27.13776684 280.2233133 39.37084675 2096.688244 106.4584732

Perf Factor 1000 71.1099062 35.36546898 347.5319557 52.21240997 2132.039043 112.0710535
19.70524793 73.83765507 50.18377209 397.5482674 45.08726025 2109.063425 129.7673531

82.66691399 57.42009354 285.5084324 49.26814079 2139.110408 108.2756681
youtube-clone searchUser 360.3031902 20.95403345 118.0600576 7.118029594 1937.424227 36.84084409 152.9622237 10.24310423 18171.8628 968.6944864 471.0747257 252.9187266

354.6113157 116.2387857 1998.543572 146.8941793 17687.24106 1177.905577
Perf Factor 10 399.9294786 108.682826 1967.930428 168.1511545 18411.40728 366.9729233
3.051863581 334.3724871 131.3627262 1913.916061 141.2384701 17866.41601 355.8913021

351.0997753 118.9472589 1910.133828 148.6189346 17708.71675 362.1227856
Perf Factor 100 366.7486725 117.9075928 1895.572589 140.4665251 17897.74838 354.1614819

12.66603073 356.8432655 111.736908 1989.267398 144.8240299 20865.91642 433.6041231
390.8570023 123.5586615 1909.695372 153.3905878 17923.81666 454.5385752

Perf Factor 1000 340.8059597 119.8625383 1929.934538 156.2924147 17811.13509 361.7325869
38.57532958 345.4486322 108.8637619 1950.429159 163.6325703 17808.927 358.7040863

362.3153133 123.439517 1908.819321 166.1133709 17737.30336 485.1138163

RQ5: What is the running time of reformulator?

The next pages show the raw run times gathered from: installing projects, building QLDBs,
and running the query. Times were gathered using the Unix time command; usr time
corresponds to CPU time, sys time corresponds to system CPU cycles originating from
user code, and real time corresponds to the wall clock time. Note that QLDB and query
run times take advantage of multiple cores, while npm install time does not.

216

employee-tracker eventbright
Install QLDB Query Time Install QLDB Query Time
real 0m4.346s real 0m6.798s real 0m5.061s real 0m8.645s real 0m8.199s real 0m8.471s
user 0m2.826s user 0m21.630s user 0m27.364s user 0m10.485s user 0m27.181s user 0m31.262s
sys 0m1.686s sys 0m1.633s sys 0m1.303s sys 0m1.165s sys 0m2.105s sys 0m1.421s

real 0m1.958s real 0m7.177s real 0m5.218s real 0m8.960s real 0m8.601s real 0m8.369s
user 0m2.424s user 0m22.571s user 0m28.223s user 0m9.947s user 0m26.348s user 0m31.176s
sys 0m1.521s sys 0m1.646s sys 0m1.428s sys 0m1.215s sys 0m2.436s sys 0m1.458s

real 0m2.022s real 0m7.018s real 0m5.088s real 0m8.526s real 0m8.319s real 0m8.439s
user 0m2.526s user 0m21.296s user 0m28.748s user 0m10.269s user 0m27.932s user 0m31.474s
sys 0m1.602s sys 0m1.590s sys 0m1.497s sys 0m1.274s sys 0m2.140s sys 0m1.364s

real 0m1.910s real 0m6.969s real 0m5.289s real 0m8.056s real 0m8.297s real 0m8.397s
user 0m2.308s user 0m22.061s user 0m28.662s user 0m9.531s user 0m25.566s user 0m30.251s
sys 0m1.546s sys 0m1.688s sys 0m1.652s sys 0m1.147s sys 0m2.226s sys 0m1.405s

real 0m2.018s real 0m7.239s real 0m5.270s real 0m8.580s real 0m8.305s real 0m8.356s
user 0m2.462s user 0m21.817s user 0m28.981s user 0m10.225s user 0m26.533s user 0m30.848s
sys 0m1.724s sys 0m1.853s sys 0m1.600s sys 0m1.244s sys 0m2.268s sys 0m1.340s

real 0m2.237s real 0m7.128s real 0m5.002s real 0m8.641s real 0m8.266s real 0m8.447s
user 0m2.821s user 0m21.039s user 0m27.109s user 0m10.301s user 0m26.792s user 0m31.909s
sys 0m1.733s sys 0m1.835s sys 0m1.436s sys 0m1.354s sys 0m2.132s sys 0m1.312s

real 0m1.886s real 0m7.179s real 0m5.217s real 0m8.719s real 0m8.166s real 0m8.191s
user 0m2.341s user 0m22.896s user 0m29.180s user 0m9.987s user 0m26.910s user 0m28.744s
sys 0m1.560s sys 0m1.863s sys 0m1.476s sys 0m1.357s sys 0m2.008s sys 0m1.378s

real 0m2.193s real 0m6.900s real 0m5.142s real 0m8.661s real 0m8.547s real 0m8.444s
user 0m2.549s user 0m21.586s user 0m27.854s user 0m10.424s user 0m26.768s user 0m32.726s
sys 0m1.975s sys 0m1.565s sys 0m1.474s sys 0m1.343s sys 0m2.236s sys 0m1.500s

real 0m2.006s real 0m6.886s real 0m4.942s real 0m8.441s real 0m8.268s real 0m8.530s
user 0m2.353s user 0m21.262s user 0m26.242s user 0m10.073s user 0m25.795s user 0m30.972s
sys 0m1.803s sys 0m1.539s sys 0m1.256s sys 0m1.239s sys 0m2.152s sys 0m1.411s

real 0m1.935s real 0m7.033s real 0m4.904s real 0m8.606s real 0m8.185s real 0m8.415s
user 0m2.296s user 0m21.231s user 0m27.414s user 0m10.229s user 0m24.875s user 0m30.466s
sys 0m1.935s sys 0m1.702s sys 0m1.234s sys 0m1.347s sys 0m1.968s sys 0m1.435s

Graceshopper-Elektra Math_Fluency_App
Install QLDB Query Time Install QLDB Query Time
real 0m11.411s real 0m7.795s real 0m5.882s real 0m2.957s real 0m7.306s real 0m10.023s
user 0m12.885s user 0m25.418s user 0m30.272s user 0m3.191s user 0m22.177s user 0m33.285s
sys 0m12.589s sys 0m1.994s sys 0m1.443s sys 0m1.946s sys 0m1.485s sys 0m1.567s

real 0m10.773s real 0m7.822s real 0m5.684s real 0m2.982s real 0m7.319s real 0m10.002s
user 0m11.861s user 0m24.591s user 0m28.328s user 0m3.191s user 0m21.669s user 0m31.434s
sys 0m12.600s sys 0m2.071s sys 0m1.289s sys 0m2.592s sys 0m1.543s sys 0m1.526s

real 0m11.573s real 0m7.768s real 0m5.767s real 0m2.496s real 0m7.513s real 0m10.141s
user 0m13.365s user 0m23.464s user 0m26.850s user 0m2.992s user 0m23.902s user 0m31.639s
sys 0m11.613s sys 0m2.013s sys 0m1.390s sys 0m1.381s sys 0m1.706s sys 0m1.456s

real 0m11.579s real 0m7.909s real 0m5.799s real 0m2.561s real 0m7.388s real 0m9.953s
user 0m13.367s user 0m23.956s user 0m28.813s user 0m3.023s user 0m21.587s user 0m32.104s
sys 0m11.507s sys 0m2.136s sys 0m1.339s sys 0m1.814s sys 0m1.620s sys 0m1.425s

real 0m11.633s real 0m7.750s real 0m5.806s real 0m2.672s real 0m7.490s real 0m10.304s
user 0m13.494s user 0m25.284s user 0m29.384s user 0m3.003s user 0m23.463s user 0m32.897s
sys 0m12.138s sys 0m2.060s sys 0m1.443s sys 0m1.736s sys 0m1.657s sys 0m1.586s

real 0m10.429s real 0m7.969s real 0m5.999s real 0m2.882s real 0m7.685s real 0m10.137s
user 0m12.003s user 0m25.646s user 0m30.554s user 0m3.438s user 0m22.874s user 0m30.893s
sys 0m10.399s sys 0m2.077s sys 0m1.534s sys 0m1.634s sys 0m1.792s sys 0m1.258s

real 0m11.266s real 0m7.869s real 0m5.695s real 0m2.722s real 0m7.461s real 0m10.018s
user 0m12.832s user 0m25.917s user 0m29.252s user 0m3.173s user 0m23.799s user 0m33.256s
sys 0m12.057s sys 0m2.084s sys 0m1.341s sys 0m1.564s sys 0m1.796s sys 0m1.360s

real 0m10.657s real 0m7.778s real 0m5.834s real 0m2.885s real 0m7.331s real 0m10.116s
user 0m12.307s user 0m24.296s user 0m30.690s user 0m3.462s user 0m23.027s user 0m33.333s
sys 0m10.609s sys 0m1.913s sys 0m1.641s sys 0m1.798s sys 0m1.672s sys 0m1.503s

real 0m11.379s real 0m7.914s real 0m5.749s real 0m2.570s real 0m7.293s real 0m9.691s
user 0m13.284s user 0m23.948s user 0m27.625s user 0m2.995s user 0m22.935s user 0m29.432s
sys 0m11.607s sys 0m1.960s sys 0m1.332s sys 0m1.440s sys 0m1.646s sys 0m1.220s

real 0m10.142s real 0m7.932s real 0m5.708s real 0m2.444s real 0m7.536s real 0m10.235s
user 0m11.604s user 0m23.992s user 0m27.512s user 0m2.895s user 0m22.043s user 0m33.485s
sys 0m10.757s sys 0m2.065s sys 0m1.261s sys 0m1.472s sys 0m1.722s sys 0m1.579s

NetSteam property-manage
Install QLDB Query Time Install QLDB Query Time
real 0m11.003s real 0m8.410s real 0m6.155s real 0m10.658s real 0m9.149s real 0m7.442s
user 0m13.064s user 0m28.245s user 0m31.081s user 0m12.716s user 0m28.052s user 0m30.424s
sys 0m1.606s sys 0m2.308s sys 0m1.381s sys 0m1.601s sys 0m2.514s sys 0m1.436s

real 0m11.016s real 0m8.498s real 0m6.264s real 0m11.130s real 0m8.931s real 0m7.641s
user 0m13.240s user 0m27.928s user 0m30.930s user 0m13.114s user 0m29.058s user 0m31.780s
sys 0m1.608s sys 0m2.396s sys 0m1.598s sys 0m1.860s sys 0m2.491s sys 0m1.436s

real 0m10.628s real 0m8.410s real 0m6.272s real 0m10.674s real 0m9.063s real 0m7.509s
user 0m12.755s user 0m25.213s user 0m29.528s user 0m12.862s user 0m29.383s user 0m32.237s
sys 0m1.506s sys 0m2.230s sys 0m1.540s sys 0m1.517s sys 0m2.589s sys 0m1.362s

real 0m10.498s real 0m8.450s real 0m6.348s real 0m22.907s real 0m8.859s real 0m7.593s
user 0m12.587s user 0m27.427s user 0m31.182s user 0m14.907s user 0m28.432s user 0m31.413s
sys 0m1.495s sys 0m2.233s sys 0m1.459s sys 0m1.723s sys 0m2.284s sys 0m1.287s

real 0m10.942s real 0m8.563s real 0m6.382s real 0m11.036s real 0m8.823s real 0m7.828s
user 0m13.029s user 0m26.890s user 0m29.999s user 0m13.131s user 0m28.182s user 0m31.304s
sys 0m1.720s sys 0m2.419s sys 0m1.474s sys 0m1.638s sys 0m2.348s sys 0m1.446s

real 0m11.067s real 0m8.513s real 0m6.208s real 0m10.890s real 0m8.997s real 0m7.706s
user 0m13.432s user 0m27.484s user 0m29.898s user 0m13.076s user 0m29.630s user 0m33.316s
sys 0m1.496s sys 0m2.418s sys 0m1.286s sys 0m1.713s sys 0m2.353s sys 0m1.684s

real 0m10.742s real 0m8.466s real 0m6.080s real 0m10.098s real 0m9.020s real 0m7.733s
user 0m12.947s user 0m26.769s user 0m29.782s user 0m11.846s user 0m28.422s user 0m32.422s
sys 0m1.603s sys 0m2.337s sys 0m1.266s sys 0m1.487s sys 0m2.522s sys 0m1.533s

real 0m9.926s real 0m8.154s real 0m6.289s real 0m10.691s real 0m8.966s real 0m7.779s
user 0m11.754s user 0m25.842s user 0m30.434s user 0m12.670s user 0m27.840s user 0m31.788s
sys 0m1.476s sys 0m2.053s sys 0m1.601s sys 0m1.698s sys 0m2.360s sys 0m1.596s

real 0m13.321s real 0m8.377s real 0m6.123s real 0m11.067s real 0m9.163s real 0m7.666s
user 0m13.650s user 0m26.024s user 0m30.409s user 0m12.838s user 0m26.896s user 0m30.960s
sys 0m1.479s sys 0m2.276s sys 0m1.418s sys 0m1.677s sys 0m2.610s sys 0m1.445s

real 0m11.349s real 0m8.428s real 0m6.162s real 0m11.313s real 0m8.788s real 0m7.621s
user 0m13.210s user 0m25.486s user 0m30.325s user 0m13.144s user 0m28.734s user 0m31.450s
sys 0m1.340s sys 0m2.257s sys 0m1.343s sys 0m1.605s sys 0m2.368s sys 0m1.398s

wall youtubeclone
Install QLDB Query Time Install QLDB Query Time
real 0m16.770s real 0m7.658s real 0m5.719s real 0m2.892s real 0m7.108s real 0m6.191s
user 0m9.730s user 0m24.902s user 0m29.430s user 0m3.502s user 0m24.347s user 0m27.984s
sys 0m6.870s sys 0m2.019s sys 0m1.422s sys 0m1.905s sys 0m1.767s sys 0m1.341s

real 0m17.404s real 0m7.752s real 0m5.920s real 0m3.186s real 0m7.014s real 0m6.056s
user 0m10.657s user 0m23.775s user 0m29.759s user 0m3.882s user 0m23.523s user 0m28.593s
sys 0m6.709s sys 0m2.007s sys 0m1.495s sys 0m2.247s sys 0m1.700s sys 0m1.400s

real 0m16.907s real 0m7.583s real 0m5.742s real 0m2.926s real 0m6.987s real 0m6.402s
user 0m9.638s user 0m24.011s user 0m28.888s user 0m3.613s user 0m22.635s user 0m28.533s
sys 0m6.544s sys 0m2.022s sys 0m1.300s sys 0m1.843s sys 0m1.656s sys 0m1.395s

real 0m19.291s real 0m7.559s real 0m5.864s real 0m2.874s real 0m7.122s real 0m6.315s
user 0m10.778s user 0m24.830s user 0m28.538s user 0m3.693s user 0m23.734s user 0m27.837s
sys 0m7.192s sys 0m2.017s sys 0m1.350s sys 0m1.600s sys 0m1.824s sys 0m1.239s

real 0m18.052s real 0m7.422s real 0m5.684s real 0m2.680s real 0m6.829s real 0m6.273s
user 0m10.614s user 0m24.567s user 0m28.092s user 0m3.393s user 0m23.008s user 0m28.773s
sys 0m7.106s sys 0m1.973s sys 0m1.313s sys 0m1.429s sys 0m1.517s sys 0m1.629s

real 0m18.024s real 0m7.688s real 0m5.906s real 0m3.064s real 0m7.082s real 0m6.312s
user 0m10.881s user 0m24.239s user 0m28.830s user 0m3.418s user 0m23.157s user 0m29.004s
sys 0m7.557s sys 0m2.043s sys 0m1.531s sys 0m2.480s sys 0m1.687s sys 0m1.357s

real 0m17.687s real 0m7.649s real 0m5.940s real 0m2.836s real 0m7.102s real 0m6.490s
user 0m10.695s user 0m24.003s user 0m28.382s user 0m3.568s user 0m23.123s user 0m29.695s
sys 0m7.459s sys 0m2.166s sys 0m1.387s sys 0m1.758s sys 0m1.703s sys 0m1.652s

real 0m17.266s real 0m7.558s real 0m5.823s real 0m2.855s real 0m7.217s real 0m6.360s
user 0m10.170s user 0m24.295s user 0m28.224s user 0m3.456s user 0m23.559s user 0m30.007s
sys 0m6.561s sys 0m1.947s sys 0m1.283s sys 0m1.972s sys 0m1.852s sys 0m1.592s

real 0m17.494s real 0m7.568s real 0m5.792s real 0m2.821s real 0m6.914s real 0m6.279s
user 0m10.752s user 0m24.158s user 0m28.084s user 0m3.424s user 0m22.914s user 0m28.492s
sys 0m6.487s sys 0m1.978s sys 0m1.398s sys 0m1.861s sys 0m1.652s sys 0m1.423s

real 0m16.911s real 0m7.745s real 0m5.842s real 0m2.820s real 0m6.989s real 0m6.210s
user 0m9.803s user 0m24.355s user 0m26.820s user 0m3.546s user 0m22.581s user 0m27.702s
sys 0m6.659s sys 0m2.174s sys 0m1.249s sys 0m1.567s sys 0m1.672s sys 0m1.318s

RQ4: How much do the refactorings affect page load times?

First, we show the raw data observations yielding the averages reported in the chapter.
Times were estimated from the screenshot timeline described in Figure S1. We drew
observations 10 times to the nearest quarter second.

In the following pages you’ll find screenshots of the front-end for each of the four
applications considered in the RQ4 case study. Screenshots are of the Chrome Developer
Tools “Performance” tab; there are before and after screenshots at each database scale.
Figure S1 explains the views in more detail, with an example from youtubeclone at the
100 scale.

221

Scale = 10 (Before) Scale = 10 (After) Scale = 100 (Before) Scale = 100 (After) Scale = 1000 (Before) Scale = 1000 (After)
Application Link to Fn Under Test Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev Mean StDev
eventbright getEvents4 0.375 0.1317615692 0.25 0 1 0 0.25 0 7.725 0.9010025281 1.375 0.1317615692

0.25 0.25 1 0.25 7.5 1.5
0.5 0.25 1 0.25 7.75 1.25
0.25 0.25 1 0.25 7.5 1.25
0.25 0.25 1 0.25 7.5 1.25
0.25 0.25 1 0.25 7.25 1.25
0.5 0.25 1 0.25 7.5 1.5
0.5 0.25 1 0.25 7.25 1.5
0.25 0.25 1 0.25 10.25 1.5
0.5 0.25 1 0.25 7.25 1.5
0.5 0.25 1 0.25 7.5 1.25

property-manage getProperties 0.25 0 0.25 0 0.5 0 0.5 0 2.95 0.1972026594 2.825 0.1207614729
0.25 0.25 0.5 0.5 2.75 2.75

The times were very consisten in this
application, likely because the N+1
pattern query (i.e., the query in the
loop) was not used to construct the
response.

0.25 0.25 0.5 0.5 3 3
0.25 0.25 0.5 0.5 3 2.75
0.25 0.25 0.5 0.5 2.75 3
0.25 0.25 0.5 0.5 3.25 2.75
0.25 0.25 0.5 0.5 3.25 2.75
0.25 0.25 0.5 0.5 3 2.75
0.25 0.25 0.5 0.5 2.75 2.75
0.25 0.25 0.5 0.5 2.75 2.75
0.25 0.25 0.5 0.5 3 3

NetSteam getReviewsForVid 3.825 0.2058181506 2 0.2041241452
* * 0.5 * 4 2.25

* indicates that the reviews loaded
before the animation completed

* * * * 3.75 2.25
* * * * 3.75 1.75
* * * * 4.25 2
* * * * 3.75 1.75
* * * * 3.75 2
* * * * 3.5 2
* * 0.5 * 3.75 2.25
* * * * 3.75 1.75
* * * * 4 2

youtube-clone searchUser 1.175 0.1207614729 0.525 0.141911553 3.825 0.1687371394 0.825 0.2371708245 19.875 0.242956329 1.95 0.2838231061
1 0.5 3.75 0.5 19.75 1.25

1.25 0.5 4 1 19.5 2
1.25 0.75 3.75 1 19.75 2
1.25 0.5 3.75 0.75 20.25 2
1.25 0.5 4 1 20 2.25
1.25 0.5 3.75 0.5 19.75 2

1 0.5 4 0.5 19.75 1.75
1 0.25 4 1 20.25 2

1.25 0.75 3.75 1 20 2.25
1.25 0.5 3.5 1 19.75 2

Figure S1: Two screenshots from the Chrome DevTools’ Performance Tab profiling a search turning up
100 users in youtubeclone. The profile corresponding to the original code is on top, and the refactored
one is on the bottom. The two (E) labels show time series of application activity, where higher values
correspond to more CPU cycles. (C) and (D) show spikes in activity when the the HTTP response was
received by the client before and after refactoring, resp. The two (F) labels show a series of screenshots
taken of the front-end as it loads and is populated by data. (A) and (B) show the span of time that the
screen was idle before and after refactoring, resp, and the two boxes in the timelines highlights that the
screen is empty during that span.

223

(a) eventbright, 10 scale, before

(b) eventbright, 10 scale, after

Figure S2: The front-end load time difference is imperceptible here.

224

(a) eventbright, 100 scale, before

(b) eventbright, 100 scale, after

Figure S3: Here, the timeline clearly shows that the number of idle frames is quite different before and
after refactoring. The page appears to become populated ∼0.8s faster after refactoring.

225

(a) eventbright, 1000 scale, before

(b) eventbright, 1000 scale, after

Figure S4: There is a huge difference in page load times in this configuration. Each of these timelines spans
approximately 10s, and the time taken before is noticeably longer before refactoring, as the refactored page
appears to load 4 to 5 times faster.

226

(a) NetSteam, 10 scale, before

(b) NetSteam, 10 scale, after

Figure S5: Judging by the time taken and the activity profiles, there is no measurable difference in front-
end load times at this scale.

227

(a) NetSteam, 100 scale, before

(b) NetSteam, 100 scale, after

Figure S6: Here, there is no measurable difference in when the page is populated with data. There is an
animation, which you can see in the screenshot timeline, with many screenshots that are slightly different;
this animation essentially hides any improvement to page loading. You can see by the lack of dead time
in the activity timeline that the data was received from the server more quickly after refactoring.

228

(a) NetSteam, 1000 scale, before

(b) NetSteam, 1000 scale, after

Figure S7: There is a notable difference in page load time here, of approximately 2s. To see it, note the
activity time series: at around the 2s mark, the HTTP request to load reviews was sent. In the “before”
case, it takes much longer for the server to respond, before a flurry of activity seen on the time series in
yellow. In the “after” case, in contrast, the server almost immediately responds, allowing the page to build
the UI more quickly.

229

(a) property-manage, 10 scale, before

(b) property-manage, 10 scale, after

Figure S8: The difference in load times is just noise here.

230

(a) property-manage, 100 scale, before

(b) property-manage, 100 scale, after

Figure S9: The difference in load times is just noise here.

231

(a) property-manage, 1000 scale, before

(b) property-manage, 1000 scale, after

Figure S10: The difference in load times is just noise here.

232

(a) youtubeclone, 10 scale, before

(b) youtubeclone, 10 scale, after

Figure S11: There isn’t a notable difference in load times here. The server responds a little faster after
refactoring, but it would likely not be noticeable to users.

233

(a) youtubeclone, 100 scale, before

(b) youtubeclone, 100 scale, after

Figure S12: Here we see a large difference in load times. Before refactoring, there is a lot of dead time
while the page waits for the server to respond which can be seen in the activity graph, and also the number
of idle frames. The page appears to load 2.5s faster with the refactored code.

234

(a) youtubeclone, 1000 scale, before

(b) youtubeclone, 1000 scale, after

Figure S13: The load time difference in this configuration is extreme, the page loads nearly 10 times faster
in the refactored version.

235

Appendix C

Software Debloating

This is the supporting material for Chapter 6. It includes the following content:

• Results for clients of all projects;

• Results for clients of all projects with guarded execution mode enabled;

• Example of the dynamically loaded code when running in guarded execution mode.

The artifact contains the full source code of of our tool, the full data from our experi-
ments and our associated data processing code, and an environment set up to easily rerun
our experiments and test the tool. A link can be found in the chapter.

236

Results for clients of all projects
Client Static Callgraph Dynamic Callgraph

Proj Client Proj T(s) T(s) SD Fls Fcts Exp.KB T(s) SD Fls Fcts Exp.KB

artgen 9.78 10.28 5% 0 0 0.00 10.26 5% 0 0 0.00
class-component-converter 9.73 10.45 7% 15 0 118.96 9.82 1% 15 0 118.96

memfs jaxon-ts 19.23 19.29 0% 15 0 118.96 20.70 7% 15 0 118.96
webpack-dev-middleware 11.86 12.71 7% 15 0 118.96 12.75 7% 15 0 118.96

zenobia-ts 18.63 18.97 2% 15 0 118.96 21.19 12% 15 0 118.96

adset-DEPRECATED 0.34 0.36 5% 8 0 13.11 0.33 -2% 0 0 0.00
AdvancedJS 0.29 0.29 0% 0 0 0.00 0.31 7% 0 0 0.00

fs- better-klasa 0.27 0.34 22% 0 0 0.00 0.31 14% 0 0 0.00
nextra core 1.53 1.86 18% 8 0 13.11 1.54 1% 0 0 0.00

klasa 2.15 2.15 0% 8 0 13.11 2.16 1% 0 0 0.00

appium-base-driver 8.66 10.04 14% 39 0 146.10 9.26 6% 8 0 6.69
body express 1.05 1.89 45% 48 0 231.69 1.21 14% 14 0 79.70
- karma 2.08 2.12 2% 40 0 199.57 2.09 1% 12 0 79.03
parser moleculer-web 5.80 6.46 10% 48 0 231.69 6.38 9% 14 0 79.70

typescript-rest 13.17 14.89 12% 48 0 231.69 14.48 9% 14 0 79.70

html-minifier 9.13 10.20 11% 0 0 0.00 10.13 10% 0 0 0.00
comm lint-staged 20.23 20.30 0% 0 0 0.00 20.56 2% 0 0 0.00
ander metalsmith 1.44 1.47 2% 0 0 0.00 1.47 2% 0 0 0.00

nunjucks 35.25 35.17 0% 0 0 0.00 35.41 0% 0 0 0.00
sheetjs 23.15 23.31 1% 0 0 0.00 23.35 1% 0 0 0.00

astroturf 19.94 20.11 1% 16 5 45.92 23.88 17% 9 0 16.86
memory mochapack 52.49 52.47 0% 16 2 43.82 52.70 0% 9 0 16.86
-fs rax 23.35 25.09 7% 0 0 0.00 24.37 4% 0 0 0.00

vue-builder 1.98 1.98 0% 16 6 46.85 2.02 2% 9 0 16.86
webpack 340.46 342.72 1% 0 0 0.00 342.96 1% 0 0 0.00

copyfiles 1.18 1.45 18% 6 10 18.44 1.39 15% 2 0 8.68
dot-object 2.02 2.12 5% 6 9 11.85 1.89 -7% 2 0 8.68

glob node-glob-all 0.28 0.29 4% 6 7 8.87 0.27 -2% 2 0 8.68
replace-in-file 2.27 2.52 10% 6 10 17.04 2.29 1% 2 0 8.68

stylus 2.67 3.07 13% 6 1 14.10 2.69 1% 2 0 8.68

Choices 5.06 5.16 2% 1 0 20.06 5.05 0% 1 0 20.06
found 30.61 31.83 4% 1 0 20.06 31.34 2% 1 0 20.06

redux Griddle 8.93 8.91 0% 1 0 20.06 9.03 1% 1 0 20.06
react-beautiful-dnd 61.70 63.49 3% 2 0 20.06 62.12 1% 2 0 20.06

redux-ignore 0.57 0.58 2% 1 0 20.06 0.59 3% 1 0 20.06

astroturf 18.32 20.38 10% 88 0 336.11 20.23 9% 215 0 787.53
css- custom-react-script 1.65 1.72 4% 0 0 0.00 1.71 3% 0 0 0.00
loader docusaurus 135.03 134.64 0% 0 0 0.00 135.55 0% 0 0 0.00

playroom 2.65 2.63 -1% 0 0 0.00 2.64 0% 0 0 0.00
powerbi-visual-tools 442.16 441.07 0% 0 0 0.00 449.38 2% 0 0 0.00

decompress-zip 0.70 0.74 6% 1 0 63.25 0.78 10% 0 5 2.98
downshift 1.43 1.44 1% 1 0 63.25 1.44 1% 0 1 0.88

237

https://github.com/hisorange/artgen
https://github.com/HearTao/class-component-converter
https://github.com/plastikfan/jaxom-ts
https://github.com/webpack/webpack-dev-middleware
https://github.com/plastikfan/zenobia-ts
https://github.com/PyroTechniac/adset-DEPRECATED
https://github.com/PyroTechniac/AdvancedJS
https://github.com/bananaboy21/klasa
https://github.com/dirigeants/core
https://github.com/appium/appium-base-driver
https://github.com/expressjs/express
https://github.com/karma-runner/karma
https://github.com/moleculerjs/moleculer-web
https://github.com/thiagobustamante/typescript-rest
https://github.com/kangax/html-minifier
https://github.com/okonet/lint-staged
https://github.com/segmentio/metalsmith
https://github.com/mozilla/nunjucks.git
https://github.com/SheetJS/sheetjs
https://github.com/4Catalyzer/astroturf
https://github.com/sysgears/mochapack
https://github.com/alibaba/rax
https://github.com/xpepermint/vue-builder
https://github.com/webpack/webpack
https://github.com/calvinmetcalf/copyfiles
https://github.com/rhalff/dot-object
https://github.com/jpillora/node-glob-all
https://github.com/adamreisnz/replace-in-file
https://github.com/stylus/stylus
https://github.com/jshjohnson/Choices
https://github.com/4Catalyzer/found
https://github.com/GriddleGriddle/Griddle
https://github.com/atlassian/react-beautiful-dnd
https://github.com/omnidan/redux-ignore
https://github.com/4Catalyzer/astroturf
https://github.com/kitze/custom-react-scripts
https://github.com/facebook/docusaurus
https://github.com/seek-oss/playroom
https://github.com/Microsoft/PowerBI-visuals-tools
https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift

q node-ping 3.80 4.20 10% 1 0 63.25 4.08 7% 0 6 2.86
passport-saml 0.41 0.44 6% 0 0 0.00 0.42 2% 0 0 0.00
requestify 2.92 2.99 2% 1 0 63.25 3.05 4% 0 2 0.86

connect-gzip-static 0.51 0.64 20% 18 10 27.97 0.53 2% 4 0 3.71
gitbook 4.91 4.92 0% 0 0 0.00 4.91 0% 0 0 0.00

send lasso 13.26 13.39 1% 0 0 0.00 13.19 -1% 0 0 0.00
node-restify 23.24 24.71 6% 18 11 28.89 24.29 4% 4 0 3.71
serve-static 0.62 0.64 3% 18 18 33.07 0.64 2% 4 0 3.71

appium-base-driver 8.34 8.39 1% 2 0 3.11 8.38 1% 0 0 0.00
serve- enb 3.87 3.91 1% 2 0 0.00 3.90 1% 0 0 0.00
favicon express-octoblu 0.81 0.85 6% 2 3 0.00 0.82 2% 0 0 0.00

loopback 29.45 29.64 1% 2 0 3.11 29.50 0% 0 0 0.00
server 9.91 10.08 2% 2 3 3.11 10.02 1% 0 0 0.00

appium-base-driver 8.58 8.58 0% 10 0 16.34 8.54 0% 2 0 3.04
ember-cli 89.96 92.96 3% 10 5 19.55 93.62 4% 2 0 3.04

morgan gulp-contrib-connect 0.89 0.92 3% 10 0 16.34 0.94 6% 2 0 3.04
json-server 19.79 20.40 3% 10 1 17.32 19.92 1% 2 0 3.04
superstatic 0.94 0.97 3% 10 1 16.83 1.04 10% 2 0 3.04

connect-gzip-static 0.56 0.57 3% 23 1 45.53 0.57 3% 4 0 3.71
serve- gulp-connect 0.69 0.70 2% 23 1 45.53 0.70 2% 4 0 3.71
static moleculer-web 6.37 6.44 1% 23 1 45.53 6.39 0% 4 0 3.71

reload 8.00 8.06 1% 23 1 45.53 8.16 2% 4 0 3.71
soap 1.42 1.45 2% 0 0 0.00 1.44 1% 0 0 0.00

react-dates 18.61 18.67 0% 7 0 37.25 18.58 0% 7 0 37.25
prop- react-loadable 52.16 51.58 -1% 7 0 37.25 52.73 1% 7 0 37.25
types react-redux 7.02 7.08 1% 7 0 37.25 7.12 1% 7 0 37.25

redux-form 15.48 15.24 -2% 7 0 37.25 15.93 3% 7 0 37.25
wd 18.06 20.45 12% 7 0 37.25 18.53 3% 7 0 37.25

cordova-serve 0.62 0.62 -1% 0 0 0.00 0.63 1% 0 0 0.00
compr ember-cli 88.46 88.77 0% 0 0 0.00 89.02 1% 0 0 0.00
ession hexo-server 0.90 0.91 1% 0 0 0.00 0.91 1% 0 0 0.00

koop-core 1.48 1.49 0% 0 0 0.00 1.48 0% 0 0 0.00
server 10.01 10.08 1% 0 0 0.00 10.07 1% 0 0 0.00

238

https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify
https://github.com/pirxpilot/connect-gzip-static
https://github.com/GitbookIO/gitbook
https://github.com/lasso-js/lasso
https://github.com/restify/node-restify
https://github.com/expressjs/serve-static
https://github.com/appium/appium-base-driver
https://github.com/enb/enb
https://github.com/octoblu/express-octoblu
https://github.com/strongloop/loopback
https://github.com/franciscop/server
https://github.com/appium/appium-base-driver
https://github.com/ember-cli/ember-cli
https://github.com/gruntjs/grunt-contrib-connect
https://github.com/typicode/json-server
https://github.com/firebase/superstatic
https://github.com/pirxpilot/connect-gzip-static
https://github.com/avevlad/gulp-connect
https://github.com/moleculerjs/moleculer-web
https://github.com/alallier/reload
https://github.com/vpulim/node-soap
https://github.com/airbnb/react-dates
https://github.com/jamiebuilds/react-loadable
https://github.com/reduxjs/react-redux
https://github.com/redux-form/redux-form
https://github.com/admc/wd
https://github.com/apache/cordova-serve
https://github.com/ember-cli/ember-cli
https://github.com/hexojs/hexo-server
https://github.com/koopjs/koop-core
https://github.com/franciscop/server

Results for clients of all projects with guarded execution mode enabled
Client Static Callgraph Dynamic Callgraph

Proj Client Proj T(s) SD Exp.KB T(s) SD Exp.KB

artgen 10.46 7% 0 10.66 8% 0
class-component-converter 13.65 29% 906.67 11.42 15% 906.67

memfs jaxon-ts 24.46 21% 906.67 22.38 14% 906.67
webpack-dev-middleware 14.56 19% 906.67 14.41 18% 906.67

zenobia-ts 22.33 17% 906.67 20.73 10% 906.67

adset-DEPRECATED 0.34 0% 94.01 0.37 9% 0.00
AdvancedJS 0.34 14% 0.00 0.31 7% 0.00

fs- better-klasa 0.37 27% 0.00 0.31 14% 0.00
nextra core 1.94 21% 94.01 1.53 0% 0.00

klasa 2.1527 0% 94.01 2.65 19% 0.00

appium-base-driver 10.48 17% 548.94 10.29 16% 21.92
body express 4.55 77% 740.02 3.05 66% 180.91
- karma 2.66 22% 614.78 2.35 12% 177.69
parser moleculer-web 8.16 29% 740.02 6.52 11% 180.91

typescript-rest 14.85 11% 740.02 14.83 11% 180.91

html-minifier 10.20 11% 0.00 10.36 12% 0.00
comm lint-staged 20.30 0% 0.00 20.56 2% 0.00
ander metalsmith 1.43 1% 0.00 1.42 2% 0.00

nunjucks 37.97 7% 0.00 37.84 7% 0.00
sheetjs 23.31 1% 0.00 23.35 1% 0.00

astroturf 22.60 12% 252.45 21.95 9% 43.11
memory mochapack 54.31 3% 247.20 59.42 12% 43.11
-fs rax 30.21 23% 0.00 25.77 9% 0.00

vue-builder 2.84 30% 255.09 1.99 1% 43.11
webpack 400.67 15% 0.00 403.21 16% 0.00

copyfiles 1.53 23% 126.81 1.33 11% 32.36
dot-object 1.84 -10% 111.15 1.80 12% 32.36

glob node-glob-all 0.30 7% 100.19 0.28 3% 32.36
replace-in-file 2.50 9% 122.88 2.31 2% 32.36

stylus 3.07 13% 80.65 2.83 6% 32.36

Choices 5.37 6% 59.42 5.38 6% 59.42
found 37.78 19% 59.42 37.11 18% 59.42

redux Griddle 9.36 5% 59.42 9.77 9% 59.42
react-beautiful-dnd 63.86 3% 59.42 67.31 8% 59.42

redux-ignore 0.57 1% 59.42 0.59 4% 59.42

astroturf 20.23 9% 910.56 20.50 11% 3947.90
css- custom-react-script 1.79 8% 0.00 1.74 5% 0.00
loader docusaurus 142.66 5% 0.00 143.02 6% 0.00

playroom 2.90 8% 0.00 2.88 8% 0.00
powerbi-visual-tools 472.62 6% 0.00 496.00 11% 0.00

decompress-zip 1.22 43% 240.87 0.78 10% 16.57
downshift 1.47 3% 240.87 1.63 13% 3.16

239

https://github.com/hisorange/artgen
https://github.com/HearTao/class-component-converter
https://github.com/plastikfan/jaxom-ts
https://github.com/webpack/webpack-dev-middleware
https://github.com/plastikfan/zenobia-ts
https://github.com/PyroTechniac/adset-DEPRECATED
https://github.com/PyroTechniac/AdvancedJS
https://github.com/bananaboy21/klasa
https://github.com/dirigeants/core
https://github.com/appium/appium-base-driver
https://github.com/expressjs/express
https://github.com/karma-runner/karma
https://github.com/moleculerjs/moleculer-web
https://github.com/thiagobustamante/typescript-rest
https://github.com/kangax/html-minifier
https://github.com/okonet/lint-staged
https://github.com/segmentio/metalsmith
https://github.com/mozilla/nunjucks.git
https://github.com/SheetJS/sheetjs
https://github.com/4Catalyzer/astroturf
https://github.com/sysgears/mochapack
https://github.com/alibaba/rax
https://github.com/xpepermint/vue-builder
https://github.com/webpack/webpack
https://github.com/calvinmetcalf/copyfiles
https://github.com/rhalff/dot-object
https://github.com/jpillora/node-glob-all
https://github.com/adamreisnz/replace-in-file
https://github.com/stylus/stylus
https://github.com/jshjohnson/Choices
https://github.com/4Catalyzer/found
https://github.com/GriddleGriddle/Griddle
https://github.com/atlassian/react-beautiful-dnd
https://github.com/omnidan/redux-ignore
https://github.com/4Catalyzer/astroturf
https://github.com/kitze/custom-react-scripts
https://github.com/facebook/docusaurus
https://github.com/seek-oss/playroom
https://github.com/Microsoft/PowerBI-visuals-tools
https://github.com/bower/decompress-zip
https://github.com/downshift-js/downshift

q node-ping 4.89 22% 240.87 4.69 19% 14.86
passport-saml 0.48 13% 0.00 0.51 19% 0.00
requestify 3.30 12% 240.87 3.43 15% 4.30

connect-gzip-static 0.71 27% 234.09 0.60 15% 12.68
gitbook 5.00 2% 0.00 4.93 0% 0.00

send lasso 13.20 0% 0.00 13.49 2% 0.00
node-restify 24.50 5% 240.59 24.60 6% 12.68
serve-static 0.68 9% 258.33 0.68 8% 12.68

appium-base-driver 8.97 7% 14.36 8.56 3% 0.00
serve- enb 4.16 7% 14.36 3.89 1% 0.00
favicon express-octoblu 0.91 11% 23.00 0.82 1% 0.00

loopback 30.81 4% 14.36 30.11 2% 0.00
server 10.55 6% 23.00 10.37 4% 0.00

appium-base-driver 9.32 8% 130.51 9.29 8% 10.49
ember-cli 93.78 4% 141.86 92.52 3% 10.49

morgan gulp-contrib-connect 1.00 11% 130.51 1.01 12% 10.49
json-server 23.34 15% 135.27 22.43 12% 10.49
superstatic 1.01 7% 132.44 1.19 21% 10.49

connect-gzip-static 0.64 13% 356.58 0.56 1% 12.87
serve- gulp-connect 0.74 7% 356.58 0.71 3% 12.87
static moleculer-web 6.50 2% 356.58 6.48 2% 12.87

reload 9.82 19% 356.58 9.15 13% 12.87
soap 1.41 -1% 0.00 1.55 8% 0.00

react-dates 18.95 2% 116.81 22.79 18% 116.81
prop- react-loadable 53.70 3% 116.81 52.81 1% 116.81
types react-redux 7.49 6% 116.81 7.27 4% 116.81

redux-form 16.29 5% 116.81 15.73 2% 116.81
wd 20.43 12% 116.81 19.66 8% 116.81

cordova-serve 0.72 14% 0.00 0.69 10% 0.00
compr ember-cli 97.89 10% 0.00 96.75 9% 0.00
ession hexo-server 1.02 12% 0.00 1.03 13% 0.00

koop-core 1.70 13% 0.00 1.70 13% 0.00
server 11.35 12% 0.00 11.28 11% 0.00

240

https://github.com/danielzzz/node-ping
https://github.com/node-saml/passport-saml
https://github.com/ranm8/requestify
https://github.com/pirxpilot/connect-gzip-static
https://github.com/GitbookIO/gitbook
https://github.com/lasso-js/lasso
https://github.com/restify/node-restify
https://github.com/expressjs/serve-static
https://github.com/appium/appium-base-driver
https://github.com/enb/enb
https://github.com/octoblu/express-octoblu
https://github.com/strongloop/loopback
https://github.com/franciscop/server
https://github.com/appium/appium-base-driver
https://github.com/ember-cli/ember-cli
https://github.com/gruntjs/grunt-contrib-connect
https://github.com/typicode/json-server
https://github.com/firebase/superstatic
https://github.com/pirxpilot/connect-gzip-static
https://github.com/avevlad/gulp-connect
https://github.com/moleculerjs/moleculer-web
https://github.com/alallier/reload
https://github.com/vpulim/node-soap
https://github.com/airbnb/react-dates
https://github.com/jamiebuilds/react-loadable
https://github.com/reduxjs/react-redux
https://github.com/redux-form/redux-form
https://github.com/admc/wd
https://github.com/apache/cordova-serve
https://github.com/ember-cli/ember-cli
https://github.com/hexojs/hexo-server
https://github.com/koopjs/koop-core
https://github.com/franciscop/server

Example of dynamically loaded code when running in

guarded execution mode

Consider this small demonstrative example: function hello takes a function as an argument
and calls it with argument args (line 2740); hello is then called once with console.log

(line 2743), and once with eval (line 2744).

2738 // file.js

2739 function hello(callback, arg) {

2740 callback(arg);

2741 }

2742

2743 hello(console.log, "hi");

2744 hello(eval, "danger!!")

If this code was part of an expanded stub, in guarded execution mode every func-
tion call is wrapped in a check to see if the function being called is one of the specified
“dangerous” functions, that in this case are eval, process.exec, child process.spawn, and
child process.fork. The code above gets transformed into:

2745 let dangerousFunctions = [eval];

2746 if(process){dangerousFunctions += [process.exec]};

2747 if(child_process){dangerousFunctions += [

↪→ child_process.exec, child_process.fork,

↪→ child_process.spawn]}

2748

2749 function hello(callback, arg) {

2750 (() => {

2751 let tempExp__uniqID = callback;

2752 if (dangerousFunctions.indexOf(tempExp__uniqID)

↪→ > -1) console.warn("[STUBBIFIER]␣WARNING:␣

↪→ Dangerous␣call␣in␣expansion␣of␣file.js");

2753 return callback(arg);

2754 })();

2755 }

2756

2757 (() => {

2758 let tempExp__uniqID = hello;

2759 if (dangerousFunctions.indexOf(tempExp__uniqID) >

↪→ -1) console.warn("[STUBBIFIER]␣WARNING:␣

↪→ Dangerous␣call␣in␣expansion␣of␣file.js");

2760 return hello(console.log, "hi");

2761 })();

2762

2763 (() => {

2764 let tempExp__uniqID = hello;

2765 if (dangerousFunctions.indexOf(tempExp__uniqID) >

↪→ -1) console.warn("[STUBBIFIER]␣WARNING:␣

↪→ Dangerous␣call␣in␣expansion␣of␣file.js");

2766 return hello(eval, "danger!!");

2767 })();

241

On line 2745 we see the array of “dangerous” functions is initialized, then expanded over the
next few lines. Then, in the original code, every function call is wrapped in an Immediately
Invoked Function Expression (IIFE), that:

• creates an alias to the function in question (var tempExp uniqID)

• checks the array of dangerous functions to see if it contains this function, and if so
prints a warning

• returns the call to the original function

• calls itself (since it is an IIFE)

Note that the call to the eval would be caught on line 2752, when it is passed as the
parameter callback of function hello.

The purpose of the IIFE wrappers is to create closures, to avoid polluting the namespace
of the program and enable us to use the same temporary variable name for every check.

Note: in our implementation, we design the guarded execution mode so that the original
program behaviour is preserved modulo some warnings being printed. However, this would
be easy to customize to (for example) throw an error, or exit the program, if a dangerous
function call is encountered. The change would simply be to insert the desired code in
place of the current console.warn.

242

	Examining Committee
	Author's Declaration
	Abstract
	Acknowledgements
	Dedications
	Introduction
	Soundness of Program Analysis
	Thesis Overview

	The JavaScript Language and Ecosystem
	JavaScript Language Primer
	Executing Arbitrary Strings as Code
	Dynamic Property Access and Extension

	Asynchronous JavaScript
	The Event Loop
	Callbacks
	Promises and async/await

	The npm Package Manager
	JavaScript Import Mechanisms

	Related Work
	Analysis of JavaScript
	Static Analysis
	Dynamic Analysis
	Combining Static and Dynamic Analysis

	Refactoring
	Program Understanding
	Debloating
	Conclusion

	Anti-Pattern Identification
	Introduction
	Promises and async/await
	Motivating Examples
	Anti-Patterns
	Implementation
	Static Analysis
	Dynamic Analysis
	Interactive Visualization

	Case Study
	Evaluation
	Experimental Setup
	RQ1: How often do anti-patterns occur?
	RQ2: Can detected anti-patterns be refactored?
	RQ3: Can the elimination of anti-patterns improve performance?
	RQ4: What is the performance of DrAsync?

	Threats to Validity
	Relation to Previous Research
	JavaScript Anti-Patterns
	Profiling Concurrent Applications
	Software Visualization

	Conclusion
	Discussion
	Data Availability

	Database Usage Optimizations
	Introduction
	Background and Motivation
	Approach
	Data-Flow Analysis
	Refactoring
	Helper Function Reference

	Implementation
	Evaluation
	Threats to Validity
	Relation to Previous Work
	Conclusion
	Discussion

	Software Debloating
	Introduction
	Background and Motivation
	Approach
	Call Graph Construction
	Introducing Stubs
	Guarded Execution Mode
	Asynchrony
	Bundler Integration

	Evaluation and Discussion
	Experimental Setup and Methodology
	Overview of Results
	Comparison with Mininode

	Threats to Validity
	Relation to Previous Work
	Control Flow Integrity
	Vulnerability Detection and Reduction

	Conclusion
	Discussion

	Lazy Loading
	Introduction
	Background
	Lazy Loading
	Approach
	Identify Candidate Packages for Lazy Loading
	Validate and Determine Transformations Required
	Code Transformations
	Implementation

	Evaluation
	Threats to Validity
	Relation to Previous Work
	Conclusion
	Discussion

	Conclusion
	Discussion
	Dynamic vs. Static Analysis
	Empowering Programmers
	Finding Precision Where You Can

	Closing Thoughts

	References
	APPENDICES
	Anti-Pattern Detection
	Query Run Times
	Case Study Summary Tables

	Database Usage Optimizations
	Raw Data

	Software Debloating

