
Towards a Type System for R
Alexi Turcotte

Northeastern University
alexi@ccs.neu.edu

Jan Vitek
Northeastern University & Czech Technical University in

Prague
j.vitek@northeastern.edu

Abstract
R is a fascinating language: It is dynamically typed, vector-
ized, both lazy and side-e�ecting, and it fosters an interactive
style of programming. This unique combination of features
makes it easy to use, but prone to errors and strange be-
haviour. R is the tool of choice for many data analysts, and
our aim is to empower them with a language that is not
simply easy to use, but easy to use well, so as to increase
their con�dence in the data analyses they undertake. To that
end, we are developing a type system for R that is simple
enough to be attractive to programmers while being expres-
sive enough to capture existing programming paradigms. In
this paper, we outline past, present, and future work as we
build up to a type system for R.

1 Introduction
Data collection and analysis occurs at an incredible scale,
and this process underpins modern decision-making. For
instance, government data analysts process census data to
inform policymaking decisions. Given that we are so im-
pacted by this process, we should have the utmost faith in
the tools which are used to perform this data analysis. The
R programming language is one such tool.
R is an interesting language: It is a dynamically typed,

vectorized, lazy, side-e�ecting language designed by and for
statisticians and data scientists. As a programming language,
R is quite fascinating, and the language sees widespread use
for data analysis tasks.

To increase our assurance in the products of R, we want to
design a type system for the language. Types are a great way
to make programming languages less bug prone: Catching
potentially insidious type errors ahead of time eliminates
a signi�cant source of run-time errors in programs. Good
statistical analysis are di�cult enough as it is, so we should

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for pro�t or commercial advantage and that
copies bear this notice and the full citation on the �rst page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior speci�c
permission and/or a fee. Request permissions from permissions@acm.org.
ICOOOLPs, July 2019, London, United Kingdom
© 2019 Copyright held by the owner/author(s). Publication rights licensed
to ACM.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00

empower data scientists with tools that they can rely on, and
in which we have con�dence.

We want R programmers to want to use our type system,
so we aim to propose a system that is informed by existing
programming paradigms. We will achieve this by using a
large-scale analysis of R programs as a sounding board, to
check and measure the e�ectiveness of possible type system
designs. When we �nalize a design, we will likely implement
it as a gradual type system: this will allow programmers
to opt-in to the type system where they deem appropriate,
and will allow typed and untyped R code to interoperate
seamlessly.
In this position paper, we discuss some of the challenges

of designing a type system for R, and outline next steps in
this journey towards building better R programs.

2 The R Programming Language
R [3] is a programming language developed by statisticians
for the purpose of data analysis. R is a successor to the S
programming language, and was originally designed to pro-
cess data into vectors to be used by Fortran data analysis
programs. It has since evolved into a full-�edged, general
purpose programming language with an estimated 2 million
users as of 2011 [6]. R is built to foster an interactive model
of programming, where the user works closely with the data:
a typical R program will read in some data, mutate and/or
transform it, and �nally perform an analysis on the modi�ed
data. Depending on the results of the analysis, the program
is then itself modi�ed and rerun by the analyst.
When considering what types would be relevant to R

users, we should be cognizant of the notions of “type" already
present in the language. These are discussed next.

2.1 Run-Time Type Information in R
R is highly re�ective, and a wealth of type-related informa-
tion is available to programmers at run-time. Some of R’s
re�ection functions are mentioned below, and examples of
each of them can be found in Figure 1.
First, the typeof function yields the run-time type tag

associated with a value—this tag represents the type of the
value according to the R internals. In a sense, typeof is the
programmer’s window into the R implementation.
Another source of run-time type information (RTTI) in

R are a value’s attributes: In R, values have an arbitrary
amount of (named) metadata, called attributes, which can be
easily modi�ed at run-time using the attributes and attr

1
DOI: 10.1145/3340670.3342426

ICOOOLPs, July 2019, London, United Kingdom Alexi Turco�e and Jan Vitek

typeof(5L) == class(5L) # integer

list() creates an empty list
typeof(list()) == class(list()) # list

data.frame() creates an empty data frame
typeof(data.frame()) # list
class(data.frame()) # data.frame
attr(data.frame(), �class�) # data.frame

x <- 5 # initialize x to 5
class(x) # numeric
class(x) <- �character�
class(x) # character

Figure 1. Examples of re�ective functions in R.

functions. Some R values, such as data frames, named lists,
and matrices, have default attributes which may be used by
R’s builtin functions.

Another re�ective function is class, which yields the class
of a value. In R, values have a class according to their class
attribute, and the class of a value can be easily (re)de�ned
by programmers at run-time. Importantly, dynamic dispatch
is done based on the class of function arguments.
In sum: R has an eclectic mix of RTTI, all of which is

available to the programmer. The ease with which program-
mers can modify RTTI makes for some interesting usage
patterns, and gives us a lot of interesting space to explore
when designing a type system for the language. R program-
mers creatively use this RTTI, and capturing the paradigms
of these creative programmers is an exciting undertaking.

3 Why Types?
Wewant to develop a type system for R for two main reasons.

First, types increase the assurance that programmers have
in their code. For example, a static type system allows type-
related errors to be caught statically, communicating bugs
to programmers early. A type system may also help IDEs or
analysis tools to identify issues while code is being written.

When we increase assurance in a programming language,
we are thereby increasing assurance in the products of that
language. For instance, one might have more faith in a web
server written in TypeScript than one written in JavaScript,
since TypeScript catches static type errors in annotated code.
So what are the products of R? R is a language primarily
used to perform data analysis, and the conclusions drawn
from these analyses go on to inform decisions in broader
organizations: For instance, census data analysis results go
on to inform policymaking decisions. It is critical that we
can trust the software used to draw these conclusions.

Besides giving us more faith in the language, a type system
can be used by just-in-time compilers (JIT compilers, or JITs)

to perform program optimizations at run-time. As an exam-
ple, statically-available type information could be leveraged
by a JIT to better speculate on call targets for generic func-
tions. Since R is absurdly dynamic, and arbitrary changes to
the run-time environment can be enacted during execution,
we cannot do away with speculation and pro�ling entirely,
but perhaps the types could be used as an initial guess for
the JIT compiler. Concretely, a call such as x + y could be
initially targeted at the implementation of + for whatever
types x and y are said to have ahead-of-time.

4 Concerns
Thus far, we have established that designing and implement-
ing a type system for R may prove useful. That said, develop-
ing such a type system is no simple task, and there is a huge
design space to consider. In this section, we explore some of
the design concerns we are likely to face.

4.1 Type System Granularity and Complexity
When designing a type system for an existing, dynamic lan-
guage, we have freedom to decide on the granularity of ex-
pressible type information. In a language such as R, choosing
the right level of granularity is not so straightforward.

As an example, consider vectors in R. Primitive types in R
are vectorized, meaning that primitives are always vectors
(e.g., the scalar 1 is implemented as a unit-length vector). This
is not the case in many other languages, where a distinction
is made between scalars and vectors; a distinction that carries
some performance bene�t. Thus, it may be worthwhile to
consider distinguishing scalars and vectors in R.
Going a step further, perhaps it would be valuable to in-

clude the dimensions of data in a vector type. R already
implements di�erent functionality for operators acting on
vectors depending on the lengths of the vectors. That func-
tionality is illustrated in the following code snippet, where
c(...) denotes R’s builtin vector constructor:

c(1, 2) + c(1, 2) # => c(2, 4)
c(1, 2, 3) + c(1, 2) # => c(2, 4, 4)
c(1, 2, 3, 4) + c(1, 2). # => c(2, 4, 4, 6)

Above, c(1, 2) denotes a vector with elements 1 and 2.
On vectorized primitives, the + operator will duplicate the
second argument until it matches the length of the �rst. The
3rd line above illustrates this clearly: the second argument
to + is treated as c(1, 2, 1, 2). This functionality can be
useful, and indeed users of R are familiar with it, but it does
introduce possible sources of error if used incorrectly. For
instance, imagine if we were working with some data, and
we wanted to normalize the data with respect to a known
vector of values. Consider:

norm <- function(data) {
data / c(1, 2, 4)

}

2

Towards a Type System for R ICOOOLPs, July 2019, London, United Kingdom

norm(c(5, 4, 8)) # => c(5, 2, 2)
norm(c(5, 2)) # => c(5, 1, 0.25)

In the �rst call to norm, we see that the argument to norm
was divided element-wise by the vector de�ned in the func-
tion itself. In the second call, we see how the division oper-
ator in R automatically pads vectors when the lengths do
not quite match: here, c(5, 2) is treated as c(5, 2, 1). In
general, this is rather harmless, but when we consider R’s
use case as a data analysis tool, this represents generating
arbitrary data: The value inserted by the division operator
is a data point fabricated by the implementation.

All that said, adding lengths to types may not prove to be
all that desirable. For one, the complexity of the type system
and associated annotations would be greater, and there is no
telling if users would subscribe to the restrictions imposed by
e.g. statically encoding vector lengths. As it happens, many
of the errors caused by vector lengths could be caught by
run-time checks, for instance with an explicit length check
in the norm function above, but it is as easy to write those
checks as it is to forget to put them.

No matter the complexity, we need to ensure that the type
system will be used by programmers. This is discussed next.

4.2 Ensuring User Engagement
If one of our goals is to increase our con�dence in R programs,
we need to ensure that R users will want to use our types.

R users represent an interesting point in this design space.
R is not designed by computer scientists, and R users are not
classically-trained programmers. The best way to understand
how they interact with the language is through observation
and analysis of the programs that they have written, but
even this is no small feat, as R programs are not published
the same way that the products of many other languages are
on e.g. GitHub. This last point will be discussed further in
Section 5.1.

Ultimately, we need to balance the complexity of the type
system with needs of R programmers. Perhaps a dependent
type system would be useful and capable of capturing large
swaths of existing R paradigms, but these types are di�cult
to express andmay be too burdensome for R users. The key to
adoption is to strike a balance, and conceive of a type system
which captures everything that R programmers would want
to capture. We have made some progress on this, discussed
further in Section 5.

4.3 Types for Data Frames
An integral component of R is the data frame, which serves
as the cornerstone of nearly all analyses written in R. As
we mentioned, the process of a typical R program is to load
data, modify and/or transform it, and perform an analysis.
Typically, imported data is a data frame: an R data type which
is e�ectively a list of lists, with a row for each observation
and a column for each thing that was observed. These objects

underpin data analysis in R, and understanding the shape of
the data is critical to successful data analysis.
As data frames are of utmost importance, it stands to

reason that we might like to create some type for them, but
how speci�c that type should be is unclear. Data frames can
have many columns, and writing a type for such a thing
would be tedious and perhaps not altogether informative if
the data frame is used in simple ways: If the only operation
performed on the data frame is to normalize some column
and plot it, then types are not supremely helpful. But what if,
during the modi�cation and transformation phase of a data
pipeline, the analyst is working with several data frames
and joining and collating them to create new data frames?
Many of these operations are dependent on the types of
some columns and the number of rows, and could fail if the
column types or row counts are not compatible; failures that
would be caught by sophisticated data frame types.

4.4 The Burden of Annotations
A nontrivial barrier to building types into R is the need for
annotations. For one, the syntax of the language is tricky
to extend, which makes designing a satisfying syntax for
types nontrivial. Further, as the type system becomes more
complex, so too do the annotations: R is rich in run-time
type information already, and statically encoding that via
annotations can quickly become burdensome. For instance,
if we would like to express that an argument to a function
is a list, with some class, and certain attributes, we have
over 3 things to annotate onto a single function argument.
Ultimately, friendly-looking annotations will be attractive
to users, and making the annotations easy to write and min-
imizing the burden of annotating is critical to adoption.

5 Outlook
Our aim is to design and implement a type system for R
which will make correct R programs easier to write, and be
widely adopted by R users. Thus the type system must be
able to capture established programming paradigms, and
to ensure this we will ground our design on a large-scale
analysis of existing R programs.

In this section, we will describe our plan to build this type
system. First, we discuss how we will ensure that the type
system we design is practical for R users. Then, we describe
a metric that we have established to measure how well a
type system captures language usage in order to compare
candidate type systems.

5.1 A Practical Type System
As we endeavour to design a type system which appeals
to R programmers, we should take steps to ensure that it
is grounded in the paradigms that are familiar to said pro-
grammers. To this end, we leverage some forthcoming work
which performed a large-scale analysis of existing R code.

3

ICOOOLPs, July 2019, London, United Kingdom Alexi Turco�e and Jan Vitek

End-user R code is typically some small script which im-
ports some data and modi�es it in some way before per-
forming an analysis. In many cases, the data being fed to
the script is proprietary (e.g. customer data) or con�dential
(e.g. census data), which results in an inability to publish the
script, even if the analyst were so inclined. In short, end-user
R programs are rarely published.
Thankfully, all is not lost: the Comprehensive R Archive

Network (CRAN) is a repository of publicly available R
package (i.e. library) code. Packages made available through
CRANmust be accompanied by some examples, tests, and/or
vignettes to showcase package functionality. These examples
are about as close as one can get to end-user R code, and
serve as a starting point for any analysis of R programming
patterns.
We will test candidate type systems against a corpus of

code consisting of millions of lines of R code across over
10,000 packages. The full treatment of this corpus will be
made available in a forthcoming paper.

5.2 Measuring E�ectiveness
One metric for measuring the e�ectiveness of a particular
type system is to consider the percentage of functions which
are observed to be polymorphic when viewed through the
lens of that system. The polymorphism we are concerned
with is ad hoc polymorphism, where a function is polymor-
phic if it can be applied to arguments of di�erent types. This
may need to be balanced against a (perhaps subjective) di-
mension of “usefulness”, as e.g. ascribing the “Any” type to
all values would see 100% of functions being monomorphic.
To quickly illustrate, consider the following snippet:

addVec <- function(a, b) {
if (length(a) == length(b)) { a + b }
else NULL

}

addVec(c(1L, 3L), c(1L, 3L))
addVec(c(1.5), c(1.5))

Note that the type of c(1L, 3L) (according to the typeof
function) is integer, and the type of c(1.5) is double.
Considering only these two calls, the addVec function is

polymorphic, as it is called with two integer and separately
two double arguments. This polymorphic behaviour is preva-
lent throughout R, and we claim that we can capture this
polymorphic behaviour by de�ning the type “integer” to be
a subtype of “double”. With integer <: double, then addVec
would be monomorphic (accepting two double arguments).

Now, can we do more? We could encode more information
in the types, say the lengths of the vectors, and then the
function would once again be polymorphic, accepting vec-
tors of varying lengths of type double. We could just as well
parameterize over the length, in which case addVec would
be monomorphic, accepting double vectors of length n. A

polymorphism-based metric captures how e�ective a partic-
ular type system is at capturing function usage patterns.

In sum, even for this very simple function, we might well
consider the following types:

1. {dbl, dbl}! dbl, {int, int}! int
2. {dbl, dbl}! dbl, with int <: dbl
3. {dbl[2], dbl[2]} ! dbl[2], {dbl[1], dbl[1]} ! dbl[1],

where dbl[x] denotes a double vector of length x
4. {dbl[n], dbl[n]}! dbl[n]

Ultimately, we want our design to have the broadest ap-
peal, and we will endeavour to balance the richness of our
annotations with the needs of everyday R programmers.
To give a concrete example from forthcoming work, we

have found that nearly 20% of functions were polymorphic
with respect to R’s typeof function, meaning that nearly
20% of functions were called with at least one polymorphic
argument. Here, a polymorphic argument is one that was
inhabited by at least two values which would return di�erent
results if passed to typeof. The addVec function is an exam-
ple. We can reduce the proportion of polymorphic functions
by explicitly de�ning subtypes (e.g. taking integer <: double),
and exploring this space is a part of said forthcoming work.

6 Related Work
Part of our process for ensuring the practicality of our type
system is to use a large-scale language analysis as a sounding
board, and there is a wealth of literature on analyzing lan-
guage usage patterns. For instance, some work [4] explored
the dynamic behaviour of JavaScript programs, testing as-
sumptions that appeared frequently in the literature. Other,
similar work [1] explored the dynamic behaviour of Python
programs. Our aim is to use a similar analysis of R programs
to check our type system, and keep our design grounded in
the day-to-day usage of the language.

When we �nalize a type system, our implementation will
likely be a gradual type system [8]. In gradually typed lan-
guages, type annotations are optional, and typed and un-
typed code is allowed to interact seamlessly within the same
program. In this design space, there are even more consider-
ations: for instance, should we implement a sound gradual
type system, where checks are inserted at the boundary of
typed and untyped code? Or should we leave that boundary
unchecked, as is the case in languages like TypeScript? If we
insert checks at the boundary, we catch dynamic type errors
at run-time, but a possibly steep performance cost may be
incurred [7].

Python, the other eminent data processing language, has
been the object of similar work. Mypy [2] is an optional static
type checker for Python, with rather rich type system which
includes generics and inheritance. Reticulated Python [5] is
full-�edged gradual type system for Python. While Python is
heavily utilized for data analysis, it was not designed by data

4

Towards a Type System for R ICOOOLPs, July 2019, London, United Kingdom

scientists and feels a lot more like other general-purpose
programming languages than R does.

7 Conclusion
With an unprecedented wealth of data at our �ngertips, we
should ensure that we have the utmost con�dence in the
tools that we use to analyze that data. To this end, we aim
to build a type system for the R programming language, the
tool of choice for millions of data analysts worldwide, and
have outlined our plans to do so in this short paper.

Acknowledgments
This work received funding from the European Research
Council under the European Union’s Horizon 2020 research
and innovation programme (grant agreement 695412), the
NSF (awards 1544542 and 1518844), the ONR (grant 503353),
the Czech Ministry of Education, Youth, and Sports (grant
agreement CZ.02.1.01/0.0/0.0/15__003/0000421), and NSERC.

References
[1] Alex Holkner and James Harland. 2009. Evaluating the Dynamic Be-

haviour of Python Applications. In Australasian Computer Science Con-
ference (ACSC). 19–28.

[2] The mypy Project. 2014. mypy. h�p://www.mypy-lang.org.
[3] R Core Team. 2018. R Language Manual. h�ps://stat.ethz.ch/R-manual/

R-devel/doc/manual/R-lang.html.
[4] Gregor Richards, Sylvain Lesbrene, Brian Burg, and Jan Vitek. 2010. An

Analysis of the Dynamic Behavior of JavaScript Programs. In Proceed-
ings of the ACM Programming Language Design and Implementation
Conference (PLDI).

[5] Jeremy Siek, Michael Vitousek, Andrew Kent, and Jim Baker. 2014.
Design and Evaluation of Gradual Typing for Python. Technical Report.
Indiana University.

[6] David Smith. 2011. The R Ecosystem. In The R User Conference 2011.
[7] Asumu Takikawa, Daniel Feltey, Ben Greenman, Max New, Jan Vitek,

and Matthias Felleisen. 2016. Is sound gradual typing dead?. In
Symposium on Principles of Programming Languages (POPL). h�ps:
//doi.org/10.1145/2837614.2837630

[8] Sam Tobin-Hochstadt and Matthias Felleisen. 2006. Interlanguage Mi-
gration: From Scripts to Programs. In Dynamic Language Symposium
(DLS).

5

