
55

The VM Already Knew That

Leveraging Compile-Time Knowledge to Optimize Gradual Typing

GREGOR RICHARDS, University of Waterloo, Canada, Canada

ELLEN ARTECA, University of Waterloo, Canada, Canada

ALEXI TURCOTTE, University of Waterloo, Canada, Canada

Programmers in dynamic languages wishing to constrain and understand the behavior of their programs
may turn to gradually-typed languages, which allow types to be specified optionally and check values at the
boundary between dynamic and static code. Unfortunately, the performance cost of these run-time checks can
be severe, slowing down execution by at least 10x when checks are present. Modern virtual machines (VMs)
for dynamic languages use speculative techniques to improve performance: If a particular value was seen once,
it is likely that similar values will be seen in the future. They combine optimization-relevant properties of
values into cacheable łshapesž, then use a single shape check to subsume checks for each property. Values with
the same memory layout or the same field types have the same shape. This greatly reduces the amount of type
checking that needs to be performed at run-time to execute dynamic code. While very valuable to the VM’s
optimization, these checks do little to benefit the programmer aside from improving performance. We present
in this paper a design for intrinsic object contracts, which makes the obligations of gradually-typed languages’
type checks an intrinsic part of object shapes, and thus can subsume run-time type checks into existing shape
checks, eliminating redundant checks entirely. With an implementation on a VM for JavaScript used as a
target for SafeTypeScript’s soundness guarantees, we demonstrate slowdown averaging 7% in fully-typed
code relative to unchecked code, and no more than 45% in pessimal configurations.

CCS Concepts: • Software and its engineering→ Just-in-time compilers; Runtime environments;

Additional Key Words and Phrases: Gradual typing, run-time type checking

ACM Reference Format:

Gregor Richards, Ellen Arteca, and Alexi Turcotte. 2017. The VM Already Knew That: Leveraging Compile-
Time Knowledge to Optimize Gradual Typing. Proc. ACM Program. Lang. 1, OOPSLA, Article 55 (October 2017),
27 pages. https://doi.org/10.1145/3133879

1 INTRODUCTION

Dynamic languages provide flexibility, and modern implementations of dynamic languages are
quite efficient. However, the dynamic nature of these languages makes it difficult for a programmer
to statically constrain their behavior. For example, a function may be written in anticipation of a
number as an argument, but can be called with an object, which will result in a runtime type error.
Programmers wishing to understand or constrain run-time behavior in dynamic languages

have the option to use gradually-typed programming languages. Gradually-typed languages are

Authors’ addresses: Gregor Richards, School of Computer Science, University of Waterloo, Canada, 200 University Avenue
West, Waterloo, Ontario, N2L 3G1, Canada, gregor.richards@uwaterloo.ca; Ellen Arteca, School of Computer Science,
University of Waterloo, Canada, 200 University Avenue West, Waterloo, Ontario, N2L 3G1, Canada, earteca@uwaterloo.ca;
Alexi Turcotte, School of Computer Science, University of Waterloo, Canada, 200 University AvenueWest, Waterloo, Ontario,
N2L 3G1, Canada, aturcotte@uwaterloo.ca.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for third-party components of this work must be honored. For all other uses,
contact the owner/author(s).

© 2017 Copyright held by the owner/author(s).
2475-1421/2017/10-ART55
https://doi.org/10.1145/3133879

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

This work is licensed under a Creative Commons Attribution 4.0 International License.

http://creativecommons.org/licenses/by/4.0/
https://www.acm.org/publications/policies/artifact-review-badging
https://doi.org/10.1145/3133879
https://doi.org/10.1145/3133879

55:2 Gregor Richards, Ellen Arteca, and Alexi Turcotte

typically compatible extensions of existing dynamically-typed languages, which allow typed and
untyped code to interact while still providing some type soundness guarantees. Typically, run-time
checks are used to verify types when values come from dynamic sources, and so can’t be trusted.
Implementing these checks faces a semantic mismatch, however: Types may be arbitrarily complex,
and indeed recursive, and thus cannot be checked quickly. Some gradually-typed languages resolve
this by restricting the type system in such a way that checks are always fast [Richards et al.
2015] [Bloom et al. 2009], but this naturally restricts the expressibility of types. Others work by
delaying checks until a first-order, easily checkable value is obtained.

In a typical implementation, first-order type checking is imposed on higher-order values through
run-time contracts. Run-time contracts interpose on values to check all accesses, guaranteeing that
the constraints of the specified types are not violated. Checking has proved to be a major overhead
in gradually typed languages [Takikawa et al. 2016]; depending on where checking is necessary, the
addition of contracts can slow down the execution of software by 100 times. Other implementation
techniques have been used, which can move the cost of checking, but slowdowns of 10x [Vitousek
et al. 2014] to 22x [Rastogi et al. 2015] are still reported when static and dynamic code interacts.
These slowdowns have led Takikawa et al. [2016] to ask, łis sound gradual typing dead?ž The goal
of this work is to demonstrate that with some help from the virtual machine, sound gradual typing
with usable performance is still practical.

Modern virtual machines (VMs) for dynamic languages optimize based on speculation: If a
particular value was seen once, it is likely that similar values will be seen in the future. This is
possible because of just-in-time (JIT) compilation, which blurs the line between compile-time
and run-time, and allows the compiler to utilize run-time information. Code may be compiled or
recompiled once crucial information is known. The code generated by JITs checks that certain
properties of values are similar to previously-seen values, and if they are, runs branches optimized
to those assumptions.
In particular, dynamic language VMs optimize access to object fields by giving every object a

łshapež, and assuring that similar objects have similar shapes. All objects with the same shape have
the same fields, and are laid out identically in memory, so optimizing based on the shape allows
such objects to be accessed efficiently.

Speculative JIT optimizations and gradual type checks are often checking similar properties, but
they are effectively unaware of each other. In the best case, the VM may be able to speculate based
on contract success, but nothing more. The goal of this work is to improve the performance of run-
time contracts for gradually-typed programming languages by leveraging the existing speculative
optimization framework in JITs, and taking advantage of the redundancies between these systems.

This paper illustrates the design of a contract system sufficient for the soundness checks required
by SafeTypeScript, a gradually-typed language based on JavaScript, and a VM which implements
these contracts with optimizations to substantially reduce the cost of run-time type checking. We
call this style of contracts intrinsic object contracts, and implement it in the Higgs [Chevalier-Boisvert
and Feeley 2016] [Chevalier-Boisvert and Feeley 2015] JavaScript research virtual machine, as
HiggsCheck. We demonstrate the efficacy of this system by reimplementing SafeTypeScript [Rastogi
et al. 2015] to provide its guarantees with our contract system, and show using SafeTypeScript’s
benchmarks that we achieve slowdown of 7% in the common case, and no worse than 45% in
intentionally pessimal configurations, as compared to 22x slowdowns in the original implementation
of SafeTypeScript. The presented implementation is on a JavaScript-based language on a JavaScript
virtual machine, but the technique does not depend deeply on JavaScript’s semantics.

The contributions of this paper are

• the design of an intrinsic contract system at the VM level,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:3

• a technique for reducing the overhead of checking of such contracts,
• the implementation of that system on the Higgs virtual machine,
• the implementation of SafeTypeScript’s soundness guarantees on these contracts,
• an evaluation, demonstrating that the overhead of this contract system is practical.

The complete source code of this system is available at http://plg.uwaterloo.ca/~dynjs/higgscheck/.

2 BACKGROUND AND GOALS

We will demonstrate the goals of this system through a simple running example. Consider the
following JavaScript code, which sums the values in a list of numbers:

function sum(node) {

if (node.next)

return sum(node.next) + node.item;

else

return node.item;

}

It is evident from this code that node is expected to be an object, with fields next as a reference to
a similar object or null, and field item as a number. Called with the object {next: {next: null,

item: 40}, item: 2}, sum will return 42. However, due to the dynamic nature and peculiar
semantics of JavaScript, in practice this function will do somethingÐalbeit perhaps something
unpredictableÐwith many input objects. For instance, called with {next: 42}, which is obviously
not a node in a list, sum will return NaN (Not a Number), a consequence of the odd behavior of
accessing and performing arithmetic with nonexistent fields.

2.1 Optional and Gradual Typing

A programmer wishing to make their intents clearer may instead use TypeScript [Bierman et al.
2014], a language which extends, and compiles into, JavaScript, adding type annotations. In Type-
Script, this function and its expected type can be expressed as:

interface Node {

next: Node;

item: number;

}

function sum(node: Node) {

if (node.next)

return sum(node.next) + node.item;

else

return node.item;

}

Now, the call sum({next: 42}) will fail to compile, with an appropriate type error: Argument
of type '{ next: number; }' is not assignable to parameter of type 'Node'. However, TypeScript
is a strictly compile-time type checker, and is designed to interact with untyped code, so it’s trivial
to work around this type restriction by either calling sum from untyped code, or using the special
łanyž type to bypass checking. Indeed, the JavaScript code above is the compiled output of this
TypeScript snippet. This style of typing is often called optional typing, which implies that the types
are, of course, optional, but also that there are no run-time guarantees that the expressed types
are correct. TypeScript is intentionally unsound, allowing unchecked downcasts and covariant
function overloading, but it has a sound core, and fully-typed programs written in that sound core
are type sound [Bierman et al. 2014].
Gradually typed languages regain some of the assurance of statically typed languages, while

maintaining the flexibility of interacting with dynamic code. They define a distinct consistency
relation, by which a type may be consistent even if it is not a subtype, and the consistency relation
is used to allow dynamic and static code to interact. Typically, a single dynamic type (in TypeScript,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

http://plg.uwaterloo.ca/~dynjs/higgscheck/

55:4 Gregor Richards, Ellen Arteca, and Alexi Turcotte

any) is consistent with all types, and structural or higher-order types must be consistent in their
type members. In terms of dynamic semantics, the type correctness of this relationship is enforced
by injecting unsound casts, and implementing those casts as run-time checks. The standard criteria
by which their correctness is measured is that adding types does not affect behavior in the absence
of unsound casts, and in the presence of unsound casts, errors are always the fault of dynamic
code [Siek et al. 2015a] [Wadler and Findler 2009].
The caveat is how one performs run-time checks with higher-order types. Languages such as

StrongScript [Richards et al. 2015] and Thorn [Bloom et al. 2009] accomplish this by restricting
the type system to nominal, Java-like classes, such that all type checks can be performed eagerly,
or by allowing the programmer to explicitly specify whether checking is desired [Wrigstad et al.
2010], avoiding behavioral changes when checking is not performed. More general approaches,
such as Typed Racket [Tobin-Hochstadt and Felleisen 2008], Reticulated Python [Vitousek et al.
2014] and, relevant to this work, SafeTypeScript [Rastogi et al. 2015], perform their checks lazily:
When a first-order, primitive value is expected, it is checked immediately, but other checks are
delayed. This approach allows for higher-order types, such as structural object types and first-class
functions, in a way that nominal types cannot, and does not typically interfere with the behavior
of the underlying dynamic language except to introduce checks.
Three principle techniques have emerged for delayed run-time checks in gradually-typed lan-

guages, each with their own benefits and disadvantages. In each case, if a value undergoes an
unsound cast to a first-order, primitive type, it is simply checked eagerly, but casting to a higher-
order type invokes some form of run-time protection.
Typed Racket and Reticulated Python (in one configuration) use wrappers, or proxies. These

wrappers implement a general contract, which could notionally verify any property expressible in
the host language, but are typically used for types. The relationship between contracts and types
has been explored for both objects [Findler and Felleisen 2001] and functions [Findler and Felleisen
2002]. In a wrapper-based gradually-typed system, every time a value is obtained which may not
have the correct type, it is wrapped in a function or object which protects it and checks accesses.
This wrapper implements a run-time contract, guaranteeing that the value’s behavior matches the
specified type. For objects, for instance, each field is implemented as an accessor function. If the
field’s type is itself higher-order, this accessor wraps it; if it is first-order, the accessor checks it.
Further, these wrappers contain blame information, i.e., a label of where the wrapper itself was
applied. Because checks are delayed, if a check fails, the blame information stored in the wrapper
will ultimately tell the programmer where the incorrect cast was performed, rather than the point
where the error occurred.

Using the wrapping technique puts the cost of both allocation of wrappers and checking on
both statically-typed and dynamically-typed code, for any value which has been downcast. Thus,
fully-typed code incurs no cost, and fully-untyped code also incurs no cost, but mixed code can
have severe slowdown: When static and dynamic code is mixed, Typed Racket reports slowdowns
up to 100x [Takikawa et al. 2016].

Reticulated Python introduced two other semantics: transient checks and monotonic objects. The
technique of transient checks simply explicitly checks primitive types when they’re expected. That
is, no check would be performed to verify that an object is a Node (except perhaps that it is an
object), but if the item member of a Node-typed variable is accessed, its type is checked. Transient
checking cannot preserve blame information, as higher-order downcasts have no run-time behavior.
It’s likely that transient checks could be made to work well with the VM, but if they’re purely

superficial, they also cause significant slowdowns. Reticulated Python reports slowdowns of 10x in
this configuration [Vitousek et al. 2014].

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:5

Reticulated Python’s third mode, monotonic objects, assures that values in the heap which
undergo unsound casts may only monotonically become more precisely typed and their behavior
more constrained. So long as objects monotonically become more precisely typed, static code can
be free from performing checks: Static code accesses members directly, assured that they will be
correctly typed, while dynamic code is redirected to perform checks, thus not sullying the objects
that static code expects. Thus, a direct implementation of monotonic objects makes static code very
efficient, but at a severe cost to dynamic code. The monotonic semantics has been shown to be
sound and correct with respect to blame [Siek et al. 2015b]. Reticulated Python reports slowdowns
of 3.4x of monotonic objects over transient checks, so approximately 34x of monotonic objects over
unchecked code.
SafeTypeScript’s technique, though it carries the types in a separate łtag heapž, has the same

semantics: When objects pass through an unsound cast, it is shallowly checked and tagged in the
heap, and all unsound (i.e., dynamic) updates have their values checked against the tag. The tag
may be made more precise, but never less precise. The tag corresponds to a resolved structural
object type, which in TypeScript is a list of typed fields, and a list of a call signatures, and we thus
design our system of contracts to be sufficient for these types.

SafeTypeScript reports small slowdowns, on average 6.5%, in fully-typed code, but in mixed code,
the cost of maintaining type soundness is on average 22x for one suite of benchmarks.
Our work implements the syntax of SafeTypeScript (and thus TypeScript) and the semantics

required by SafeTypeScript’s tag heap, but does not avoid checks in fully-static code, for reasons of
polymorphism which will be discussed in later sections. We highly optimize dynamic soundness
checks by taking advantage of existing checks in the infrastructure of the language implementation,
substantially reducing the cost on dynamic code. Our implementation reports in Section 6 similar
slowdowns to the original implementation of SafeTypeScript’s tag heap for fully typed code, 6.61%
in the average case, but our optimization brings the performance to a slowdown of at worst just
44.8% in intentionally pessimal mixes of typed and untyped code.

2.2 Just-in-Time Compilation

Modern virtual machines (VMs) for dynamic languages use Just-in-Time (JIT) compilation. This
allows for speculative optimizations, which optimize code based on values seen at run-time: The
program is allowed to run until a particular function or block must be compiled, and then it is
compiled under the assumption that the values it interacts with will be similar to the ones previously
seen. Checks are inserted to validate these assumptions, and code is recompiled if those checks are
violated.

In particular, deriving from work in Self [Chambers et al. 1989], modern implementations of
JavaScript and similar dynamic languages represent objects as a shape and a store. The store is
a simple array containing the values of every field in the object, but not their names. The shape
(in other contexts called łmapž or łhidden classž) is a table mapping field names to their position
in the store. Every object with the same fields and same layout of those fields in the store refers
to the same shape. This fact is used to avoid dynamically looking up fields in a technique which
in JavaScript is called inline caching: The shape of a seen object is cached, and the surrounding
function or block is compiled with knowledge of that seen shape, and thus the lookup consists only
of accessing a known offset in an array.
To assure that every object with the same layout has the same shape, shapes are stored in a

global tree. Empty objects all share the same empty shape, and to add a field to an object, one
follows the transition in that tree from the object’s current shape labeled with the field being added.
For instance, in Figure 1, if field item is added to an empty object (i.e., an object with shape 0),
the object’s shape is updated to shape 1 and the value is stored at offset 0 of the store. If next is

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:6 Gregor Richards, Ellen Arteca, and Alexi Turcotte

shape 0
{}

shape 1
{item→0}

item

shape 3
{toString→0}

toString

shape 2
{item→0, next→1}

next

shape 4
{toString→0, next→1}

next

Fig. 1. Basic shape tree.

shape 0
{}
{}

shape 1a
{item→0}

{item→number}

item:number

shape 1b
{item→0}

{item→string}

item:string

shape 3
{toString→0}

{toString→function}

toString:function

shape 2a
{item→0, next→1}

{item→number,
 next→object}

next:object

shape 2b
{item→0, next→1}

{item→string,
 next→object}

next:object

shape 4
{toString→0, next→1}

{toString→function,
 next→object}

next:object

Fig. 2. Higgs shape tree.

then added to the object, its shape will be updated to shape 2. If no transition exists for a necessary
addition to an object, a new shape is created and added to the shape tree to satisfy the request.
Thus, in our previous example, Nodes will have1 shape 2.

This work builds on the Higgs virtual machine [Chevalier-Boisvert and Feeley 2016] [Chevalier-
Boisvert and Feeley 2015], a research JavaScript virtual machine with competitive performance.
Higgs implements many modern JavaScript optimizations, as well as a few unique ones which we
utilize.
Higgs implements speculative optimizations through lazy basic block versioning. In lazy basic

block versioning, each basic block is compiled speculatively with assumptions about the types of
data that it accesses, and those assumptions are checked before execution is allowed to proceed
into such a speculatively compiled block. Single basic blocks may have multiple compiled versions,
corresponding to different sets of assumptions, and execution will choose which block to proceed
into through run-time checks. When checks of those assumptions fail, a new version of the basic
block and all following basic blocks is built to fit the new assumptions. These assumptions propagate
into further blocks, so rechecks are elided. Thus, the compiled code for a function becomes a graph
of basic block versions, each representing the compilation of a basic block under a particular set of
assumptions. To avoid code blowup, limits are placed on how large this graph can get, but they are
rarely reached in practice.
For instance, consider our sum function. A direct compilation of this function to basic blocks,

with control flow replaced by gotos, is:

(1) if (!node.next) goto 4

(2) tmp1 = sum(node.next); tmp2 = node.item;

(3) return tmp1 + tmp2;

(4) return node.item;

Blocks 2 and 3 must be split, because the compilation of the + operator depends on the types of
its operands, creating implicit control flow for those types to be checked.

Upon the first compilation of this function, as block 1 requires the shape of node, the shape seen
will be cached, resulting in a compiled procedure as in Figure 3. Assuming the function is called
with a non-null node.next, it will proceed through block 2, and then be compiled again, into a
procedure as in Figure 4.
Higgs, building on work in TruffleJS [Würthinger et al. 2013], extends shapes by encoding

member types into them as well. Objects built of the same fields but distinct primitive types of

1This assumes that they are built in a particular order, as in JavaScript VMs the store is never rearranged.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:7

node: shape 2?

1 (node:2)
node.next==null?

yes

recompile

no

2 (node:2)

no

4

yes

Fig. 3. First compilation of

sum.

node: shape 2?

1 (node:2)
node.next==null?

yes

recompile

no4

yes

2 (node:2)

no

tmp1:number&&
tmp2:number?

no

3 (node:2,
 tmp1:number,
 tmp2:number)

yes

Fig. 4. Second compilation.

node: shape 2a?

1 (node:2a)
node.next==null?

yes

recompile

no4

yes

2 (node:2a)

no

tmp1:number?

no

3 (node:2a,
 tmp1:number,
 tmp2:number)

yes

Fig. 5. With typed shapes.

their members will have distinct shapes, and objects with identical layouts and types have the
same shape. This is accomplished by extending shapes with a map of names to primitive types.
The transitions in this extended shape tree are labeled with both a name and a primitive type. For
instance, in Figure 2, if field item is added to an empty object with type number, the object’s shape
is updated to shape 1a. If it’s added with type string, the object’s shape is updated to shape 1b.
Because fields are typically mutable, this means the shape can also change when a field is modified:
If an object with shape 2a’s item field is updated to a string, the object’s shape must be updated to
2b. That is, the shape is only a snapshot of the current state of the object, not a guarantee of future
state.
The benefit of adding types to shape is twofold: First, as primitive types are available in the

shape, it’s unnecessary to tag or box values in the heap [Wöß et al. 2014]. Objects can thus be
laid out more efficiently, avoiding wasting bits on type information that’s identical between many
objects. Second, speculating on a shape allows the compiler not only to optimize field access, but to
eliminate type checks over the accessed field values: The check of the containing object’s shape
subsumes the check of the accessed value’s type. For instance, sum can be compiled to the procedure
in Figure 5 with typed shapes, avoiding a check for the type of tmp2, which is implied by the shape
of node. This optimization is important to our goal: If a tag in SafeTypeScript’s tag heap obliges the
item field of an object to be a number, and that object’s shape is shape 2a, that obligation cannot
fail, and so does not need to be checked.
Lazy basic block versioning is in many ways similar to tracing [Gal et al. 2009] and even meta-

tracing [Bolz et al. 2009], and all of the optimizations of contracts discussed herein could be
applied equally to those contexts. That is, our performance improvement comes from careful use of
speculation, not from the particular implementation of speculation in Higgs.

2.3 Efficient Contracts

The checks present in dynamically typed programming languages, and thus the guards and checks
present in speculatively-compiled dynamic code, are fundamentally similar to the run-time contracts
generated by gradually-typed languages. The principle difference is simply that the properties a
JIT is checking are not requested by the user, but by speculative compilation, and thus violating
such a guard is not an error, merely a cause for recompilation. We implement in HiggsCheck, an
extension of Higgs, a system of intrinsic object contracts, which integrates with the shape tree to
make type contracts as intrinsic a part of an object’s run-time implementation as its memory layout.
Shapes in HiggsCheck encode the layout, types, and contractual obligations of object members,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:8 Gregor Richards, Ellen Arteca, and Alexi Turcotte

and the compiler is aware of these obligations. The contracts themselves, while not as general as
true pre- and post-condition contracts, correspond to structural object types, and delay type checks
of fields and function returns until the relevant field access or function call is performed, similarly
to wrappers. Whenever a field of an object with contracts is read, a check is incurred, and if the
contract stipulates that the value itself have a higher-order type, then a contract is applied to the
value. Contracts may be added but never removed, and so values are monotonic, and may only
become more restrictiveÐmore precisely typedÐduring the execution of a program as they are
used with contracts.

In the remainder of this paper we discuss the implementation of contracts and how they bridge
the gap between the VM and gradually-typed languages. In Section 3 we discuss the design of
intrinsic object contracts in isolation. Section 4 discusses how these contracts can be implemented
efficiently, and Section 5 how they are used in the reimplementation of SafeTypeScript.

3 CONTRACTS

In this section we discuss the features and basic implementation of the contracts provided by
HiggsCheck, independent of their optimizations and the direct use of these contracts by gradually-
typed languages. We call this style of contracts intrinsic object contracts, as the contracts are intrinsic
to the protected objects. In particular, we focus on how its design differs from other underlying
systems of higher-order checks.

3.1 Design

The behavior of intrinsic object contracts in HiggsCheck is semantically simple: Values may be
tested against contracts, and those contracts describe a number of obligations the values must
adhere to. These obligations are intended to support gradual typing, and so are to type-related
properties that are useful for languages and supported by the VM. That is, a contract is a set of
typing obligations over a value, and a value may be tested against a contract to assure that it
conforms to those obligations.

We divide the supported obligations into basic obligations, which can be checked quickly and in
constant time for any value, and higher-order obligations, which cannot. Higher-order obligations
correspond approximately to higher-order types, while basic obligations correspond to first-order,
or primitive, types. We call a contract with only basic obligations a basic contract, and a contract
with at least one higher-order obligation a higher-order contract. The empty contract, i.e. the
contract with no obligations at all, is also a basic contract. When a value is tested against a contract,
conceptually it is tested against all of that contract’s obligations.

The basic obligations are to the primitive run-time types and nullness. For instance, the obliga-
tion łnumberž corresponds naturally to the JavaScript type number. These basic obligations are
trivial to check with no contract system at all, as JavaScript’s built-in typeof operator is sufficient.
Higher-order obligations are requirements over object fields and function return values. We

focus first on object fields. These obligations require that the values yielded by accessing a field
complies to a given contract, and thus incur testing of the value against the contract whenever it is
accessed. A higher-order contract with several field obligations is equivalent to a structural object
type, with each obligation referring to the type of a particular field. For instance, a contract can be
built for the Node type as follows: Contract α ’s sole obligation is łnumberž. Contract β , the contract
for Node, has three obligations: The basic obligation łobjectž, the higher-order obligation that field
item be tested against contract α , and the obligation that field next be tested against contract β .
To support array indices, which in JavaScript are simply fields with numeric names, a contract

may have an obligation over all numeric fields. So, to support arrays of Nodes, we may create a

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:9

contract γ with two obligations: The basic obligation łobjectž, and the higher-order obligation that
all fields with numeric name be tested against contract β .
Because these obligations allow the recursive testing of contracts, they cannot be checked

eagerly. Even in the case that they’re not recursive, they cannot be checked quickly, and because
objects in JavaScript are typically mutable, a check of such a higher-order contract would only
be a momentary guarantee. As such, testing a value against such a contract checks only the basic
obligations immediately, and delays testing of higher-order obligations until the relevant field is
accessed. Testing an object x against contract β , our contract for Node, for instance, will immediately
verify that x is an object, but will only test that x.item is a number when, and if, x.item is accessed.

Higher-order obligations may additionally restrict function returns. For instance, a contract
δ may have the obligation that return values comply to contract α above. If a function is tested
against δ , it cannot be checked eagerly, and so instead the system asserts that the function’s return
will be tested in all future calls. This is a simple obligation not sufficient for more sophisticated
functional programming, and the reasons for this limitation and possible enhancements to support
functional programming are discussed in Section 4.3.

When an object or function (in JavaScript, functions are objects) is tested against a higher-order
contract, assuming all basic obligations succeed, the higher-order obligations are imposed on the
object through delayed checks. To assure that these delayed checks happen, the contract is applied
to the object. Objects in this system may have any number of contracts applied to them, and each
object retains a list of applied contracts for its lifetime. This contract application is what assures
that future accesses will be tested against the higher-order obligations: When a field is read from an
object with applied contracts, if any of its contracts have obligations over that field, that obligation’s
contract is tested against the value seen at run-time. As higher-order obligations each test a value
against a contract, this contract application may occur recursively. For instance, if an object x
has the contract for Node applied, an access to x.next will be tested against the Node contract,
applying it if applicable. If an object is tested against a contract which has already been applied, it
isn’t applied a second time.
Contracts are monotonic: While an object may always have more contracts applied, and thus

gain more specific type information and a more restrictive API, it may never lose contracts. It is
possible to add incompatible contracts, for instance Node along with a contract that demands that
item be a string, in which case accessing such contradicting fields will inevitably cause a contract
violation. They are independent of JavaScript’s particular system of inheritance, and treat objects
as black boxes. Thus, if it happens that the value of a field is fulfilled by accessing a prototype, or
by using an accessor function, it is checked the same as a simple, local field.
Built-in functions, intended to be used by the implementation of a gradually-typed language,

are provided to build contracts. Basic contracts for the primitive types (objects, functions, strings,
numbers and booleans) and the empty contract are built in, and other contracts are built by
extending them through further built-in functions which add field, index and function return
obligations.

3.2 Blame

When a contract is applied to an object, an actual violation associated with that contract may occur
later in the execution of the program, when a primitive value is obtained. With wrapper-based
systems, the wrapper object carries with it blame information, such as the code location of the
cast which caused a contract to be added, and with monotonic objects, the blame is stored in the
object itself. Intrinsic contracts in HiggsCheck contain similar blame information: A contract test
may provide an additional argument which represents the relevant blame label, typically a code
location, and that blame will be reported if the contract’s obligations are violated on the object.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:10 Gregor Richards, Ellen Arteca, and Alexi Turcotte

When testing the obligations of a contract requires testing another value against another contract,
the blame information from the parent contract is passed on to the child.
This gives intrinsic object contracts support for blame as in Findler and Felleisen [2002]. As

contracts are only applied once, an object cannot accrue multiple blame labels for a single contract,
and so-called łthreesomesž [Siek andWadler 2010] naturally collapse: We do not re-apply a contract
if only its blame has changed. Given a fixed number of higher-order types in a program, there are
thus a fixed number of contracts that an object may ever acquire. However, only the first blame
label applied is kept.

The creation of useful blame information itself is left to the contract-utilizing code. It is assumed
that contracts will usually be used by code generated from compilation of gradually-typed pro-
gramming languages, and so it is the role of that compiler to provide useful information. The
compiler described in Section 5 simply uses code lines as blame labels, but using e.g. stack traces is
an alternativeÐalbeit slowerÐoption.

3.3 Discussion

The design of our contract system was intended to satisfy two requirements: That it be usable for
the contracts usually needed by gradually-typed object-oriented programming languages, and that
it be implementable in an optimal way. Relative to wrapper-based contracts, our contracts are less
easily generalizable to other kinds of checks, but are implementable with a significantly reduced
performance penalty, as demonstrated in Section 6.

Our contracts implement the semantics of monotonic objects, and so all references to an object
have the same contractual obligations. In wrapper-based systems, references derived from the
one to which the wrapper was applied will conform, and others will not. Both semantics have
advantages, and both have been demonstrated to be correct, but monotonic semantics do mean that
objects cannot be łchameleonsž: They cannot change their behavior in non-backwards-compatible
ways once contracts have been applied.

Unlike wrapper-based implementations, there is no question of object identity, and no possibility
of distinct identities for the same object, as no stand-in is ever created for an object. The application
of contracts does not affect an object’s identity or, equivalently, it affects the identity of all references
to the object in the same way.
As intrinsic object contracts are a new language-level feature, backwards compatibility is a

problem. Reticulated Python demonstrates [Vitousek et al. 2014] that monotonic objects are imple-
mentable through accessor functions, and these would be sufficient to implement intrinsic object
contracts as well with no changes to the VM, but such implementations are slow. As contracts do not
change the behavior of programs except to raise contract violation errors, the behavior of a correct
program is not altered by removing its contracts. Thus, a simple shim library which implements
the contract built-in functions with no behavior can be used to support standard implementations
(with no checking), while still using contracts on supporting implementations.

4 IMPLEMENTATION

Using a similar technique to Reticulated Python’s monotonic objects, it would be possible to create a
correct implementation of the contracts presented in Section 3 with pure JavaScript2. The requisite
checking of all values, however, would be untenably slow. HiggsCheck implements contracts at
the VM level, and uses compile-time knowledge to optimize them. In this section we describe the

2If implemented at the VM level, contracts will be naturally resistant to malicious tampering, which may be impossible in
an implementation in pure JavaScript.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:11

implementation first of intrinsic object contracts, and second of the optimizations to avoid contract
checks where possible.

4.1 Contract System

Contracts in HiggsCheck are objects in the VM, exposed to the programmer only as opaque integer
handles. Every contract in the system has such a handle. Basic, built-in contracts are obtained
through a built-in function contract_for, which simply maps string contract names to their
handles. These contracts are created by the VM during initialization and cannot be changed. The
remaining built-in functions create and modify contract objects in the VM and apply them to
objects.
Every higher-order contract has a parent contract, and inherits all of the parent’s obligations.

Each link in this chain adds a single obligation, and the contract is the sum of all of the obligations
in this chain. contract_oblige_member and contract_oblige_return are provided to oblige
fields and return values, respectively, and each takes a parent contract as an argument, and create a
new contract as return. The new contract has all the obligations of the parent contract, plus one
new higher-order obligation.

To support the definition of recursive contracts, contracts are mutable by default. An obligation
over a field or returnmay be replaced by contract_reoblige_member. contract_reoblige_member
follows the chain of parent contracts until either an immutable contract is found or the correct
obligation is found. If the correct obligation is found, it is updated. contract_freeze explicitly
freezes the contract and all of its parents, and unfrozen contracts are frozen automatically if applied
to objects, to assure that live contracts do not change.
For instance, Node’s contract can be written as:

1 var c = contract_for("object");

2 var cn = contract_for("number");

3 c = contract_oblige_member(c, "item", cn);

4 c = contract_oblige_member(c, "next", c);

5 contract_reoblige_member(c, "next", c);

6 contract_freeze(c);

The contract c at line 4 has its next field obliged to the contract generated at line 3. That is,
it is not recursive: Its next field is not required itself to have a next field. Line 5 establishes this
contract’s necessary recursivity, and line 6 makes it immutable.

Recall that JavaScript VMs encode object shapes into a tree separate from the objects themselves.
This means that two objects which have the same members, with the same layout, share a referen-
tially identical shape. Higgs, further, encodes member types into these shapes. HiggsCheck extends
them in one additional way: Contracts applied to an object become part of its shape as well. As
well as maps of member names to offsets within the store and to types, shapes contain an array of
contracts applied. Applying a contract to an object thus becomes a new kind of transition in the
shape tree. Only objects for which the layout, member types and contracts applied are identical
share the same shape, and as contract application is a transition, contracts must be applied in the
same order to share a shape as well.
This relationship is crucial: When a contract is applied to an object, if the same contract has

been assigned to another object with the same shape, nothing is allocated. The shape of the current
object is updated, and the contract-object relationship is encoded into that shared shape. This is
the first major optimization, as the number of allocations is equal to the number of contract-shape
relationships, instead of the presumably much larger number of contract-object relationships.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:12 Gregor Richards, Ellen Arteca, and Alexi Turcotte

Fig. 6. Run-time state with shapes and contracts.

Adding contracts to the shape tree can increase polymorphism. Inline caches work by checking
whether the shape of an object is identical to a shape seen in the past; if otherwise-identical objects
which differ only in contracts have different shapes, then this inline cache must check more possible
shapes, and thus take more time. As such, the mixing of typed and untyped code is expected to
increase polymorphism. This is the primary cause of slowdown in the benchmarks in Section 6.

In HiggsCheck, the blame is also stored as part of the shape tree. That is, a transition which adds
a contract is for a particular contract-blame tuple, and if a contract violation occurs, the blame
information is found in the shape. This allows objects which share identical blame information
to avoid duplicating it, and works well for simple benchmarks, but may not scale well to larger
programs, as objects could acquire contracts through various code paths. An alternative is to store
the blame information in the object itself, in which case each contract transition in the shape must
also reserve a position in the store, where the blame information can be saved.
Figure 6 shows a complete shape tree and contract trees for a system in which objects with

shapes 3a and 3b are contractually obliged to behave as Nodes. Dotted lines in Figure 6 indicate
contractual obligations, and solid lines indicate the parent/child relationships in the shape and
contract trees. An object with shape 3a, for instance, has an item field of type number and a next
field of type object. Further, objects with shape 3a are contractually obligated to have item fields of
type number, by way of contract 3, and next fields which also conform to contract 3, by way of
contract 2. It may seem unusual that shape 3b exists: Such objects have item fields of type string,
but are obliged to have item fields of type number.

There are two reasons to allow such seeming contradictions: First, the design of our contracts is
to check only on access to fields with obligations, and so a contract can be applied but never checked
at all. Second, updates can bring the object into conformance, and types in TypeScript are often used
before the object has actually been updated to conform. For instance, in the TypeScript compiler
itself, types are stored abstractly and then eventually łresolvedž with their fields, transforming an
object from type Type to type ResolvedType:

function setTypeMembers(type: Type , members: SymbolTable , [...]): ResolvedType {

(<ResolvedType >type).members = members;

[...]

return <ResolvedType >type;

}

If this is implemented with contracts, when the ResolvedType contract is initially applied to type,
it does not yet have a members field. However, this is immediately fixed, and so raising a contract
violation would be unhelpful.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:13

When fields are read from or written to objects and the object shape has contracts, or when a
function is called and its shape has contracts, their obligations are checked. If the obligations are
higher-order, the shape of the read field or retrieved value may itself need to be changed, and it
inherits the blame from the parent object.
Finally, values may be tested against contracts with test_contract. test_contract simply

takes a value to be checked, a contract, and blame information, and performs the appropriate
check: If the contract has any primitive obligations, they are checked immediately. If it has any
higher-order obligations, it is applied to the checked object with the specified blame. After creating
contracts, test_contract is the only function a gradually-typed programming language compiler
needs to use to perform its run-time checks.
A contract is applied to an object as described in the following pseudocode:

function apply_contract(object, contract, blame):

shape := object.shape

if shape.hasContract(contract):

Nothing

else if shape.hasChild(contract, blame):

That is, there is an existing child shape with this contract and blame

object.shape := shape.child(contract, blame)

else:

newShape := shape.clone()

newShape.contracts.add(contract, blame)

shape.addChild(contract, blame, newShape)

object.shape := newShape

When fields are changed that force shape changes, an equivalent shape with equivalent contracts
must be found or created, just as when a type is changed in a Higgs shape tree, a shape with the
correct types must be found.

When an object has contracts applied, those contracts are checked every time a member of that
object is accessed or, if the object is a function, when it is called. This checking is transparent to the
program, and objects with contracts are semantically identical to objects without contracts except
that these accesses may fail.

4.2 Optimization of Checks

The design of contracts in HiggsCheck lends itself to speculative optimizations. Contracts and
shapes, while serving different purposes, are partially redundant: If a shape has contracts applied,
and the types specified in each basic obligation are supertype of those specified by the shape, those
basic obligations cannot be violated. It is thus unnecessary to check such obligations: the run-time
checks are subsumed by the inline cache.

Object field access in JavaScript is implemented using inline caching. In Higgs, this is implemented
using an inlined JavaScript function, the core of which captures the object’s shape, then performs
the property access. In other systems this is done explicitly by the JIT compiler, inlined implicitly
through tracing; while we will discuss these optimizations in the context of Higgs, the important
consideration is speculation: what is computed at compile-time and what is computed at run-time.
Higgs’ property accessors, simplified for presentation, are:

1 function getProp(obj , prop) {

2 while (! capture_shape(obj)) {}

3 return obj_get_prop(obj , prop);

4 }

1 function setProp(obj , prop , val) {

2 while (! capture_shape(obj)) {}

3 obj_set_prop(obj , prop , val);

4 }

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:14 Gregor Richards, Ellen Arteca, and Alexi Turcotte

The loop on line 2 uses the built-in function capture_shape to implement an inline cache. In this
section, code sample lines highlighted in grey are implemented partially or entirely at compile-time,
and thus the code emitted and executed at run-time corresponds to part, or in some cases none,
of the original code. capture_shape’s semantics are unusual: It implements inline caching by
checking the shape of obj against a hidden cache. If the shape is already known at compile-time,
then capture_shape evaluates to true, and so no code whatsoever is emitted for line 2. Otherwise,
the shape of obj during the particular execution is captured into a cache, and the generated code is a
check of the shape against that cached value. Since Higgs’ fundamental design is to recompile basic
blocks under different sets of assumptions, this means that further basic blocks will be compiled
with a known shape for obj, and the łelsež branch of that check will be a recompilation to capture a
new shape. Thus, line 3, the internal operation which actually gets/sets the field, is always compiled
with full knowledge of the shape of the object. obj_set_prop may change the shape, but as the
shape is known at compile-time, the full change is known, and so the shape change itself is a
simple assignment of a static value. Because this function is always inlined, further blocks in the
containing function are also compiled with knowledge of the object’s shape.
To implement contracts, this field access is extended to perform checks. We extend the built-in

property retrieval function with two new built-in functions:

1 function getProp(obj , prop) {

2 while (! capture_shape(obj)) {}

3 var val = obj_get_prop(obj , prop);

4 if (contract_can_fail(obj , prop ,

val))

5 contract_check(obj , prop , val);

6 return val;

7 }

1 function setProp(obj , prop , val) {

2 while (! capture_shape(obj)) {}

3 obj_set_prop(obj , prop , val);

4 if (contract_can_fail(obj , prop ,

val))

5 contract_check(obj , prop , val);

6 }

Conceptually, contract_can_fail and contract_check are both checking contractual obliga-
tions for the property prop in the object obj with the value val. The difference is when the checks
are performed: contract_can_fail uses only information available at compile-time, and is evalu-
ated at compile-time. In contrast, contract_check is just a thin wrapper around test_contract,
determining which contract(s) need to be tested against val due to obligations on obj, and calling
test_contract for each.
contract_can_fail evaluates to either true or false, and emits for execution at run-time at

most a change to the shape of val to make its assertions true. If contract_can_fail evaluates
to false, the entire if branch is trivially removed; thus, when contracts cannot fail, no call to
contract_check is emitted, and the generated code is identical to that of the original getProp.
contract_can_fail uses the following logic:

function contract_can_fail(obj, prop, val):

Note that obj and val are static references, not instances. Their type and

shape might be known due to previous capturing.

if !shapeIsKnown(obj):

return true

shape := obj.knownShape()

if !shape.hasContracts():

return false

obligations := shape.obligationsForProperty(prop)

if obligations is empty:

return false

for each obligation in obligations:

if obligation is basic:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:15

if !val.typeIsKnown() or val.knownType() != obligation.type:

return true

else:

if !val.shapeIsKnown():

return true

valShape := val.knownShape()

if !valShape.hasContract(obligation.contract):

We cause a contract application at run-time

emit: apply_contract(val, obligation.contract, obligation.blame)

return false

That is, if there are no relevant obligations or all obligations are known to be followed,
contract_can_fail evaluates to false at compile-time. If insufficient information is known, it
evaluates to true. If sufficient information is known but val is known not to have a necessary
contract, the contract application is emitted, and thus run at run-time, and false is returned at
compile-time.

Since this function is compiled speculatively, the shape of obj is known, which includes both the
type of fields of obj and contracts over obj. This means that primitive contracts over fields will
be evaluated at compile-time at no run-time cost. However, if the field assigned or retrieved is an
object, and obj has higher-order obligations over that field, its shape is needed to check whether
obj’s obligations have been met. Thus, as a further optimization, we capture the shape of val and
call contract_can_fail a second time using that captured shape:

1 function getProp(obj , prop) {

2 while (! capture_shape(obj)) {}

3 var val = obj_get_prop(obj , prop);

4 if (contract_can_fail(obj , prop ,

val)) {

5 while (! capture_shape(val)) {}

6 if (contract_can_fail(obj , prop ,

val))

7 contract_check(obj , prop , val)

8 }

9 return val;

10 }

1 function setProp(obj , prop , val) {

2 while (! capture_shape(obj)) {}

3 obj_set_prop(obj , prop , val);

4 if (contract_can_fail(obj , prop ,

val)) {

5 while (! capture_shape(val)) {}

6 if (contract_can_fail(obj , prop ,

val))

7 contract_check(obj , prop , val)

8 }

9 return val;

10 }

Like any other captured shape, the shape of valmay be used after this accessor, and so if valwas
to be accessed as an object anyway, we’ve merely moved back a check that would have occurred
later. In the worst case, val’s shape check is not redundant with any other checks, and so contract
checking incurs one additional check, and possibly one shape change, if contract_can_fail
requires it. With the shape of val known, and contract_can_fail free to update the shape with
a contract if necessary, the only case in which contract_check can be reached is if contracts
definitely will fail, or if the shape of obj or val cannot be captured.

Speculative compilation assures that most of the cost of getProp is at compile-time, not run-time.
The basic blocks of getProp, with control code replaced by gotos, are:

(1) if (!capture_shape(obj)) goto 1

(2) val = obj_get_prop(obj, prop); if (!contract_can_fail(obj, prop, val)) goto

6

(3) if (!capture_shape(val)) goto 3

(4) if (!contract_can_fail(obj, prop, val)) goto 6

(5) contract_check(obj, prop, val);

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:16 Gregor Richards, Ellen Arteca, and Alexi Turcotte

1
obj: shape 3a?

2 (obj:3a)

yes

recompile

no

6

Fig. 7. Compilation of getProp

for shape 3a, property item.

3 (obj:3a) recompile

1
obj: shape 3a?

no2 (obj:3a)

yes

Fig. 8. First compilation of

getProp for shape 3a, property

next.

3 (obj:3a)
val: shape 2a?

recompile
no

4 (obj:3a, val:2a)
val shape → 3a

yes

6

1
obj: shape 3a?

no2 (obj:3a)

yes

Fig. 9. Final compilation of

getProp for shape 3a, property

next with shape 2a.

(6) return val;

For instance, consider the compilation of getProp when called for the item member of an object
with shape 3a from Figure 6. Upon the first compilation, the shape of obj will be captured, so
block 1 is compiled into a simple check of that cached shape. Access to that object’s item field
cannot fail if that object has shape 3a: While shape 3a does have a contractual obligation over
item, the obligation is that item be a number, and shape 3a defines it as a number. Thus, the
contract_can_fail in block 2 can be evaluated to false with no further recompilation, resulting
in a procedure as in Figure 7.
When accessing next, because the shape of obj.next will be unknown, the first

contract_can_fail is resolved to false at compile-time. Thus, upon the first compilation, the
compiler will reach block 3, as in Figure 8. val’s shape will be captured upon the first compilation,
at which point blocks 4 and 6 can be compiled. If the captured shape of val does not have the
needed contract applied, e.g. shape 2a, then the behavior of block 4 will be to transform val’s shape
to one which does, e.g. shape 3a. The resulting procedure is shown in Figure 9.
test_contract, the language’s front-end to checking and applying contracts, is also imple-

mented as an inline function, and also uses an inline cache:

1 function test_contract(val , contract , blame) {

2 while (! capture_shape(val)) {}

3 while (! capture_contract(contract)) {}

4 if (! test_contract_primitives(val , contract))

5 throw new ContractError(blame);

6 if (contract_is_higher_order(contract))

7 obj_apply_contract(val , contract , blame);

8 }

capture_contract is equivalent to capture_shape, but captures the exact contract bound to
contract. If contracts are always stored in const variables, no code is emitted to capture them.
Lines 4ś5 test the primitive obligations of the contract, throwing an exception if they are violated. If
sufficient information about val is known to test the primitive obligations at compile-time, they are,
and no code is evaluated for the if. If the contract is higher-order, obj_apply_contract performs
the actual shape change, using the captured shape such that both the from- and to-shape are known.
Since the contract is known at compile time from line 3, contract_is_higher_order is always
evaluated at compile-time.

Now we may consider a function which uses contracts. Consider a function which adds the item
field of a node to a constant value, using contracts to assure its argument type:

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:17

function add5(ln) {

test_contract(ln, Node , "blame");

return ln.item + 5;

}

Bearing in mind that the contract test and property access will automatically inline the functions
described above, the compilation of this function to basic blocks, with control code replaced by
gotos, is:

(1) if (!capture_shape(ln)) goto 1

(2) if (!capture_contract(Node)) goto 2

(3) if (test_contract_primitives(ln, Node)) goto 5

(4) throw new ContractError("blame");

(5) if (!contract_is_higher_order(Node)) goto 7

(6) obj_add_contract(ln, Node, "blame");

(7) if (!capture_shape(ln)) goto 7

(8) val = obj_get_prop(ln, "item"); if (!contract_can_fail(ln, "item", val))

goto 12

(9) if (!capture_shape(val)) goto 9

(10) if (!contract_can_fail(ln, "item", val)) goto 12

(11) contract_check(ln, "item", val);

(12) return val + 5;

Upon the first execution of this function, block 1 will invoke a recompilation to capture the
shape of ln. Assuming that Node is a constant value, it will not need explicit capturing, so block 2
will emit no code. Blocks 3 and 5 are checks of information known at compile-time, and so will
also emit no code. Block 6 performs a known shape change, and block 7 depends only on known
information, emitting no code. Then, blocks 8ś11 are generated similarly to Figure 7, and block 12
performs integer arithmetic, resulting in the procedure in Figure 10.

If this function is called again with an object of a different shape, recompilation will be forced. For
instance, if it is called with ln having shape 2b, the block versions will be generated as in Figure 11.
Blocks 2 and 3 are the same, but block 4 now retrieves a string, and as contract_can_fail is true,
proceeds to block 5. At run-time, of course, block 11 will throw an exception, as the contract has
been violated.

Contracts over function returns and array indices are checked similarly through similar inlined
functions. Like with field contracts, these checks are two-stage, possibly checking the type and
shape of the retrieved value to allow contract_can_fail to be evaluated at compile-time. If the

1
ln: shape 2a?

6 (ln: 2a)yes

recompile
no

8 (ln: 3a) 12 (ln: 3a,val: number)

Fig. 10. add5 basic blocks after first compilation.

1
ln: shape 2a?

6 (ln: 2a)yes

1
ln: shape 2b?

no

8 (ln: 3a)

6 (ln: 2b)yes

recompile
no

8 (ln: 3b, val: string)

12 (ln: 3a,val: number)

10 (ln: 3b, val: string)

11 (ln: 3b, val: string) 12 (val: string)

Fig. 11. add5 basic blocks after second compilation.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:18 Gregor Richards, Ellen Arteca, and Alexi Turcotte

value is used later in the function, later checks are elided, and so the cost of run-time checking is
similarly made redundant with existing checks.

4.3 Summary and Discussion

The core optimization allowed by intrinsic object contracts is simply the relationship between
contracts and objects: Many objects may refer to the same contract, via their shape, and the objects
needn’t be deeply modified or wrapped to do so. This is fundamental to the design, causing intrinsic
object contracts to incur far fewer allocations than wrapper-based solutions and less severe cost of
applying contracts than other monotonic solutions.
With existing solutions, performance depends on functions being inlined or checks matching

those performed by the JIT. Implementing contracts at the VM level allows HiggsCheck to use
them in a reliable, predictable way.

The remaining optimizations are the result of the relationship between inline caching of object
shapes and integrating shapes with contracts. Since inline caching allows speculative compilation
of code with object shapes intact, integrating contracts into object shapes allows the speculative
compilation of code with known contracts. In the context of typed object shapes, this makes contract
checks mostly redundant, but even without typed object shapes, it would allow the VM to perform
the relevant checks as part of its own speculative optimizations.

While HiggsCheck does support contracts over function returns, we have found them insufficient
in practice. The problem arises from polymorphic functions, e.g. function id(x) { return x;

}. Although the type of this function is easily defined, T → T, no intrinsic object contract as
currently defined can encompass that relationship. The problem of polymorphic contracts has been
explored [Guha et al. 2007], and is, at the most basic level, solved by parameterizing contracts in
such a way that the type parameter can be removed from generated results. This is difficult to
rectify with the monotonic semantics, but in order for interesting, higher-order functions to be
supported, we will need to support such polymorphic contracts. A possible solution to this problem
is modifying the semantics of function calls to specify explicitly what types the arguments have in
their local context, so that contract parameters can be applied in a strictly-local setting, but it is
unclear how this information should be communicated, and so it has not yet been implemented.
Reticulated Python encountered a similar problem with monotonic functions in Python [Vitousek
et al. 2014], and solved it by using wrappers for functions instead of monotonicity. In practice we
bypass contracts on function returns, instead falling back on explicit checks.

5 SAFETYPESCRIPT

We have reimplemented SafeTypeScript [Rastogi et al. 2015], using a later version of TypeScript
(2.2.1) and intrinsic object contracts, to be both an impetus for their implementation and a demon-
stration of their ability. SafeTypeScript’s checks arise from a łtag heapž, which stores an association
between values in the runtime heap and types those values have been expected to adhere to.
For instance, if an object from dynamic code reaches a variable with type Node, the tag heap

will store that association, and if the member item is read from that object, it is verified to be a
number. If the member next is read, it will be tagged as a Node in the tag heap. This tag heap
has a direct analog in our intrinsic object contracts: Every object in our system has a (possibly
empty) list of contracts, each of which corresponds to a type the object has been associated with.
Thus, we don’t consider this language to be a new, SafeTypeScript-based language, but simply a
reimplementation of SafeTypeScript with a different method for implementing the tag heap. We
describe in this section how SafeTypeScript’s semantics map to our implementation.
Values are either primitive or objects. Types of primitives can be checked directly using the

JavaScript typeof operator, and checks are performed as such both in our implementation and in

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:19

the original implementation of SafeTypeScript. However, objects are more complex: they can be
updated at runtime, and thus functionality must exist to assure that they remain consistent with
their tags.
SafeTypeScript’s semantics describe three main auxiliary functions involved with tagging and

checking:

• comb: This function combines two tags into one intersection type, or returns an error if this
is not possible. This is used in object tag updates, as each object can only have one tag, and it
must be able to adapt to reflect changes to the object during runtime. As our objects may
have any number of contracts, comb is implicit in applying multiple contracts to an object.
• shallowTag: This function updates the tag of the specified location with the specified type. It
combines the old tag with the new tag through comb, and returns this new tag. shallowTag is
implemented as an implicit part of test_contract and by the contract checking performed
in getProp and setProp.
• checkAndTag: Checks the primitive type of a value, and tags it with higher-order types. It
is of course implemented through test_contract. checkAndTag checks the primitive type
of fields eagerly, while test_contract does not, but this recursivity is not necessary for
SafeTypeScript’s soundness properties, as the tags are checked while reading and writing
fields regardless.

SafeTypeScript’s typing judgment adds tags in the following scenarios at compile-time: Variable/-
parameter definition (including this), variable assignment, field assignment, class constructors
and class method calls. Its implementation avoids doing so explicitly in circumstances where no un-
sound cast could have occurred, and fully-static code thus incurs little run-time overhead. Intrinsic
object contracts have a different set of concerns: Run-time checks are expected to be inexpensive
or even free, but if some objects have contracts and some objects do not, inline caches will become
unnecessarily polymorphic. We thus add contracts at run-time for any non-strictly-local value in
all of these situations, plus all accesses to global variables not defined in the JavaScript language
specification, regardless of whether an unsound cast has occurred.
Run-time checks are performed during reads and writes to object fields and method calls, and

these are naturally covered by HiggsCheck’s contract checks. The following rules, A-ReadLit and
A-WriteLit, are included from the run-time typing specifications of SafeTypeScript for reading from
a location in the runtime heap, respectively:

f = toString(cv)
τ ′′ = comb(tagC .T (l), t)

f : τ ′ ∈ fieldsS (τ
′′) ∨ (f < fieldsS (τ

′′) ∧ τ ′′ = any)
τ ′ <:C .S any⇝ δ

C ; read(l, t, cv) → C ; shallowTag(l [cv] δ)

f = toString(cv)
τ ′′ = comb(tagC .T (l), t)

f : τ ′ ∈ fieldsS (τ
′′) ∨ (f < fieldsS (τ

′′) ∧ τ ′′ = any)

C ; write(l, t, cv, v3, t3) → C ; l [v2] := checkAndTag(v3, t3, τ
′)

These (in addition to A-CallMLit, for method calls but not shown here) are the central run-time
rules in SafeTypeScript which tag locations in the heap. Notice the second precondition in each case,
τ ′′ = comb(tagC .T (l), t), serves to combine the previous tag for the location, and the current
tag to tag with. The checks in HiggsCheck are implemented by getProp and setProp, respectively,
and comb arises from objects having a list of contracts rather than a single tag: The combined tag is
simply the intersection of the list of contracts.
Complex types are easily handled: Contracts are always generated for fully resolved types, so

union types, intersection types and generics are all supported implicitly. For instance, a contract
will be generated for List<number>, and used whenever that resolved generic type is specified.
When only List<T> is specified, it is resolved with the lowest constraint on T, typically any, as
List<any>.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:20 Gregor Richards, Ellen Arteca, and Alexi Turcotte

Blame is not considered in the original SafeTypeScript implementation, however here it is tracked
simply by the input line which generated the contract application.

Consider our Node example. A contract is generated for Node, resulting in the following JavaScript
code when compiled:

const c1 = contract_for("number");

function c2f() {

var co = contract_for("object");

var c = co;

c = contract_oblige_member(c, "next", co)

c = contract_oblige_member(c, "item", c1)

contract_reoblige_member(c, "next", c);

return c;

}

const c2 = c2f();

function sum(l) {

test_contract(l, c2, "sum.ts:6");

// (otherwise unmodified)

}

The contract is generated then applied to a constant variable to assure that it is always known in
test_contract, and the remainder of the sum function requires no change, as the obligations of l
will naturally be checked whenever it’s used.

Note that TypeScript, even in fully-typed programs, is not sound due to covariant method
subtyping rules [Bierman et al. 2014]. SafeTypeScript and our reimplementation thus introduce
some checks where the language, in essence, introduces implicit downcasts. If one adopts the sound
core of TypeScript’s type system and writes programs that are sound in that context, neither the
original nor our reimplementation will ever raise type errors at run-time.

6 PERFORMANCE

Wemeasure the performance of HiggsCheck’s intrinsic object contracts by comparing the execution
time of a suite of benchmarks compiled with and without contracts, as well as by examining how
and how many checks are eliminated from the compiled code. Each benchmark has no untyped
code. Note that our compiler does not optimize out łimpossiblež contracts (i.e., contracts which
cannot fail due to surrounding typed code), so compiling fully-typed benchmarks with contracts
maximizes the number of contract checks performed.

6.1 Benchmark Programs

We adapted a number of benchmarks from Rastogi et al. [2015] and Takikawa et al. [2016], as well
as using the TypeScript compiler itself as a benchmark. For each benchmark, we briefly describe
their behavior, as well as their size in terms of lines of code, number of type annotations, and
number of modules.

From [Rastogi et al. 2015], we used 5 benchmark programs (which were in turn adapted from the
Octane benchmark suite). These benchmarks are unmodified from their original SafeTypeScript
implementation. They are outlined below.

(1) crypto is a benchmark which uses an RSA encryption/decryption algorithm to encrypt
a string, decrypt it, then verify that the original and decrypted string match. It measures
the performance of integer arithmetic operation and array access. It uses mostly array and
primitive contracts. Lines of code: 1657. Annotations: 635. Modules: 1.

(2) navier-stokes is a 2D Navier-Stokes fluid flow equation solver. It measures the effectiveness
of numeric array access and floating point arithmetic. It uses mostly array and primitive
contracts. Lines of code: 438. Annotations: 192. Modules: 1.

(3) raytrace is a JavaScript based ray tracer. The benchmark measures floating-point compu-
tations typical of a ray tracing algorithm. It has a number of types representing scenes,

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:21

cameras, objects, etc, which form the basis of our contracts, as well as arrays. Lines of code:
755. Annotations: 232. Modules: 1.

(4) richards is a standard operating system kernel simulation benchmark, used to measure the
speed of accessing object properties, calling functions, and dealing with polymorphism. Its
types encapsulate operating system structures such as processes, which are our contracts.
Lines of code: 564. Annotations: 122. Modules: 1.

(5) splay is based on a V8 profiler’s log processing module. It measures how fast the JavaScript
engine is at allocating and reclaiming nodes, and also how the engine deals with frequent
changes to a large tree object graph. Its types are simple, but recursive, tree nodes. Lines of
code: 400. Annotations: 46. Modules: 1.

From Takikawa et al. [2016] we chose 6 benchmark programs and translated them from their
Typed Racket implementation into TypeScript. We focused on reasonably portable benchmarks
which showed significant performance problems in some configurations in Typed Racket. The
benchmarks previously relied on a number of libraries, which we either ported to TypeScript or
worked around. We ensured that everything that was timed in their implementation remained
timed in our translation.

(1) sieve is a straightforward program that calculates primes using the sieve of Eratosthenes.
The Typed Racket implementation used an infinite list, which we implemented as an pseudo-
infinite list class which repeatedly calls a computeNextPrime function to populate its list of
primes. That class and numbers are the principle types in the program. Lines of code: 66.
Annotations: 22. Modules: 1.

(2) morse is a benchmark which generates morse code strings and computes the Levenshtein
distance between generated words. Here, not much needed to be changed, and the adapted
implementation is quite similar to the original. Primarily strings are used here, as well as
arrays of strings. Lines of code: 134. Annotations: 35. Modules: 4.

(3) suffixtree calculates longest common substrings between two words using Ukkonen’s suffix
tree algorithm. The Typed Racket implementation was highly functional, and we tried to
remain true to the original. Certain recursive loop structures were changed tomore imperative
loop structures due to JavaScript’s lack of tail call optimization. While the purpose of this
program is to operate over strings, it encapsulates these into a number of datatypes which
label sections of the string, and forms a tree (hence the name) of labels for its computation.
These classes form the bulk of the contracts, as well as arrays thereof. Lines of code: 1311.
Annotations: 296. Modules: 5.

(4) snake implements the snake game. The program executes a pre-recorded set of moves.
Contrary to its Typed Racket implementation, no external modules were required, and the
benchmark is entirely self contained. Types included the game world and the snake itself, as
well as game positions. Lines of code: 372. Annotations: 73. Modules: 7.

(5) tetris, much like snake, is an implementation of the famous Tetris game, executing a pre-
recorded set of moves. As in snake, the benchmark does not rely on external libraries. Types
include the game world, game pieces, as well as information for the (removed) graphical
output such as pixel positions and colors. Lines of code: 585. Annotations: 185. Modules: 9.

(6) gregor is an unusual case. In Takikawa et al. [2016], the benchmark was described as a
stress-test for a date and time library. Unfortunately, due to differences between Typed
Racket and JavaScript’s native numeric precision, we were required to write and include an
additional BigNumber library, to perform the date calculations correctly to arbitrary precision.
This changed the bulk of the benchmark’s run-time from the date and time library itself to
arbitrary-precision numeric arithmetic. The BigNumber and Date types form most of the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:22 Gregor Richards, Ellen Arteca, and Alexi Turcotte

Table 1. Benchmark performance with intrinsic object contracts.

Unchecked Intrinsic contracts Pessimal configuration

Benchmark Mean Std. Dev. Mean Std. Dev. Slowdown Mean Std. Dev. Slowdown

crypto 307 0.688 334 5.57 8.87% 444 0.632 44.8%
navier-stokes 595 0.505 590 0.674 -0.84% 627 0.751 5.28%

raytrace 152 1.47 179 1.86 17.32% (Fully typed)
richards 232 1.25 241 1.74 4.08% 241 2.46 4.12%

splay 1469 5.31 1552 2.58 5.63% 1553 10.5 5.72%

gregor 10611 28.7 10616 25.9 0.04% 10681 13.6 0.67%
morse 370 1.66 372 5.12 0.44% (Fully typed)
sieve 2391 0.831 2475 2.34 3.49% (Fully typed)
snake 8133 24.8 8118 21.7 -0.18% (Fully typed)

suffixtree 1850 3.61 1866 6.96 0.89% (Fully typed)
tetris 2151 8.90 2329 9.87 8.28% (Fully typed)

tsc 51758 110 67925 280 31.2% (Fully typed)

Average 6.61% 10.18%

types in this benchmark, aside of course from numbers. Lines of code: 1283. Annotations:
433. Modules: 9.

Finally, the TypeScript compiler itself, tsc, is used as a benchmark. A simple benchmark harness
was written which replaces TypeScript’s system access library with a shim which provides an
imaginary filesystem containing the SafeTypeScript benchmark programs. With this shim system
library, the benchmarks are compiled internally. Types used by tsc include abstract syntax tree nodes,
types encapsulating the types used in compiled programs, and many strings. tsc is particularly
notable because many objects are constructed in various different ways and pass through various
different codepaths, creating significant polymorphism. This is, naturally, the largest benchmark.
Lines of code: 80,737. Annotations: 19,581. Modules: 35.

6.2 Results

The benchmarks were run on an AMD Opteron(tm) 6380 at 2.5GHz with 500GB RAM, running
Ubuntu 16.04.2 LTS. Each benchmark was run 10 times, and each run included a number of
executions of the underlying benchmark function depending on the particular benchmark. Each
benchmark has awarm-up phase; the results aremeasured after JIT optimization has been performed.
Performance is measured in milliseconds execution time, and thus higher is worse. The results
are shown in Table 1: The column łuncheckedž shows the performance of code with no contracts,
while the column łintrinsic contractsž shows the performance of fully-typed code with contracts.
While contract checking does, naturally, incur some slowdown, in all but two of the samples the
slowdown was under 10%. In raytrace, it was 17.32%, and in tsc, the worst performer, 31.2%. In
some benchmarks, the change in performance is within statistical noise; in two of these cases, our
results happen to show a small speedup, but not of significance. The average slowdown across all
benchmarks was 6.61%.
In Table 2 we show statistics on the number of checks performed at compile-time, as well

as the number of basic block instances compiled and the peak memory usage. Because Higgs
handles polymorphism by compiling different versions of basic blocks, the number of blocks
and peak memory usage together represent this increase in polymorphism; note however that
since contract_can_fail forms a block boundary, adding contracts will increase the number of

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:23

Table 2. Benchmark behavioral statistics.

Benchmark Configuration # checks # captures # blocks mem (KB)

crypto unchecked 16037 579880
crypto full 671 95 18418 595308
crypto pessimal 689 96 18538 597624

navier-stokes unchecked 9667 490192
navier-stokes full 484 0 10454 520520
navier-stokes pessimal 467 0 10334 520024

raytrace unchecked 12826 543136
raytrace full 1364 282 15763 578548
richards unchecked 10143 478296
richards full 515 95 11945 495128
richards pessimal 505 92 11963 495136

splay unchecked 8681 759208
splay full 1208 222 9280 768336
splay pessimal 1208 222 9280 768784

gregor unchecked 19287 897476
gregor full 919 188 25292 964840
gregor pessimal 908 189 25305 967456
morse unchecked 14795 591412
morse full 10 0 14946 590928
sieve unchecked 11082 521064
sieve full 34 9 11299 518508
snake unchecked 14356 1028684
snake full 192 34 17746 1071028

suffixtree unchecked 16257 673464
suffixtree full 458 94 18680 705092

tetris unchecked 14263 878932
tetris full 239 58 19054 930472

tsc unchecked 181183 4844672
tsc full 77471 13585 281077 8381876

compiled blocks even with no increase in polymorphism. All run-time checks in all benchmarks are
subsumed by compile-time checks; that is, contract_check was never called at run-time in any
benchmark. As such, the number of run-time checks (0) is excluded. The ł# checksž column shows
the number of contract checks which were compiled; this doesn’t directly correspond to the number
of annotations, as versioning can cause a check to be compiled multiple times, but it is related. This
shows how many static checks were performed to avoid run-time checks. The ł# capturesž column
shows the number times the outer check of contract_can_fail had sufficient static information
to evaluate to false, and thus required caching and checking shapes. While contract_check is
avoided in these cases, the behavior of the code is nonetheless changed. This cannot easily be
distilled into a number of new operations which occurred at run-time, as many of these checks
would turn out to be redundant anyway. In the common case, the slowdown comes principally
from the run-time cost of adding contracts, and to a lesser degree from increased polymorphism.

In benchmarks with many subtypes, polymorphism increases substantially. tsc is an extreme case:
the added block versions increase the memory usage almost twofold. It is likely that a compromise
will need to be found for these polymorphic cases by which the improvements in performance
can be balanced with a less severe increase in memory use. In the case of raytrace, several of the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:24 Gregor Richards, Ellen Arteca, and Alexi Turcotte

contracts in that benchmark correspond to subtypes of each other, and neither our compiler nor
HiggsCheck recognize this relationship, so nearly-identical shapes are created with related but
non-identical contracts.

As was observed in Takikawa et al. [2016], the worst-case slowdown of gradually-typed languages
comes from the interaction of typed and untyped code. Thus, to understand the likely cost of our
contract system, we must mix typed code with untyped code. In the case of Typed Racket, which
was used as an example in that work, and SafeTypeScript, checks and contracts are avoided entirely
in fully-typed code. In our system, contracts are generated regardless. However, if some objects are
generated with contracts and some aren’t, this will make inline caches polymorphic, which affects
performance. In some cases, the further checks induced by this polymorphism could be slower
than the checks induced by contracts, so a minor slowdown is expected.
In Takikawa et al. [2016], it was shown that by adding or removing types from modules, a

program can be viewed as a lattice of possible partially-typed programs. Each position in their
lattice represents a configuration in which some modules were typed, and others untyped. At the
top of the lattice is the fully-typed version, equivalent to the column łintrinsic contractsž in Table 1,
and at the bottom is the fully-untyped version, equivalent to łuncheckedž. In Typed Racket, types
may be added or removed at the granularity of modules, so this lattice was of a fairly small size. In
TypeScript (and thus, SafeTypeScript), types may be added or removed at the granularity of single
annotations. The richards benchmark, for instance, has 122 type annotations (including implicit
type annotations, treated the same as explicit ones), and thus 2122 possible configurations, too many
to be tested exhaustively.
To explore this state space, we used the simulated annealing algorithm to find pessimal con-

figurations. For each benchmark, ten random configurations were chosen, and then for each of
those configurations, the time was measured in a single run, as well as the time of ten random
changes to the configuration, i.e. ten random steps of fixed length through the lattice. This process
was then repeated 100 times with a decreasing number of annotations changed. The size of this
change, i.e., number of annotations changed, started at half the total number of annotations in
the benchmark, and decreased by 10% in each step. The worst case seen across all 10,000 such
executions is reported in Table 1 as łpessimal configurationž. This is probably not the true worst
case, but represents a likely bad case of performance. In many benchmarks, no case was found
that had worse performance than fully typed, and in several, the difference was within statistical
noise. This process took roughly two weeks for these benchmarks, and necessitated the otherwise
excessive 500GB of RAM on the test machine.

The crypto benchmark showed the worst slowdown in the pessimal configuration, 44.8%. Upon
investigation, this slowdown occurs due to a critical array being initialized and filled before a
contract is applied, then the contract applied afterwards. As all values in the array then had to have
contracts checked and applied, several critical code paths that were monomorphic and involved no
shape changes became polymorphic. The average slowdown across all pessimal cases was 10.18%,
which we contend is quite reasonable for most uses of gradual types.

6.3 Threats to Validity

With the exception of tsc, the benchmarks used to measure HiggsCheck’s performance are small
and fairly simple. Our performance is also contingent on check redundancy: If a program moves
many values between objects without actually using them, the slowdown could be worse, as types
would be checked that a contract-free program would ignore. It is certainly possible to engineer
programs with vastly worse performance.
We examine performance in terms of time in much more detail than space. While the memory

consumption is in most cases not severe, extreme cases are demonstrated in tsc.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

The VM Already Knew That 55:25

Our optimizations are principally an extension of inline caching. Situations in which inline
caching becomes megamorphic, at which point VMs including Higgs abandon caching, will display
substantial slowdowns. It is possible for a nearly megamorphic cache to become megamorphic by
adding contracts, so it is possible to construct programs which show far more severe slowdown
than our examples.

Our technique for finding a pessimal configuration is purely mechanical, and likely doesn’t find
the true worse case. However, our system also doesn’t display the same performance characteristics
as existing implementations of gradual typing: In other systems, pessimal configurations come
from values frequently going between static and dynamic code, as this incurs the most checks and
wrapping. Our system applies contracts universally, so going back and forth like this cannot incur
more checks, only more polymorphism. Worst cases arise from same or related types being added
in many different contexts, thus creating many distinct blame labels.

7 LIMITATIONS AND FUTURE WORK

The intrinsic object contracts presented herein cover many cases of object-oriented code, but are a
compromise between generality and optimality. The most significant limitations are on functions,
where these contracts test only the return value and not the argument-return relationship. For
many cases this is sufficient; but for functional code it is not.
The relationship between contracts and objectsÐor, more generally, protected valuesÐalso

depends on the implementation of objects in JavaScript and other dynamic languages: In shapes,
there is a shared reference to which contracts can be attached. Without that, as would be the
case particularly in functional languages with a simpler memory model or without mutation, it is
unclear whether the value-contains-contract model is implementable.
Since these contracts are limited to type-related properties representable in the VM by design,

they are less general than true pre- and post-condition contracts. However, they are sufficient for
gradual typing, which is their design intent. We believe that they can be extended to more powerful,
general contracts using intelligent inlining.

We apply intrinsic object contracts universally, and thus pay the cost of checks in almost all code
paths. Many other implementations avoid this, and we could as well, for performance improvements.
There is a caveat, however: Allowing some objects to have contracts and some not creates more
shapes at run-time, and thus more polymorphism. Finding the right balance will require further
study.
More robust support for generic types and polymorphic functions will require polymorphic

contracts. We believe similar non-wrapping contracts are applicable here, but cooperation will
likely be needed between typed callers and contractually-restricted functions. The design and
implementation of such monotonic polymorphic contracts is future work.

While sufficient for simple situations, the blame tracking implemented herein is quite simple. It
is likely that more rich blame information can be supported, but rectifying it with the necessity of
reducing allocations and keeping shape trees reasonable is a challenge for future work.
Finally, we’ve explored the performance characteristics of this technique in terms of time, but

demonstrated that the memory overhead should be examined as well. Much of this arises from
basic block versioning, and so other speculative systems would have less overhead, but finding the
right balance is future work.

8 CONCLUSIONS

łIs sound gradual typing dead?ž
The performance cost of run-time contracts has been a hindrance to gradual typing. However,

applying the techniques used by JIT compilation to the problem of contracts allows most of the

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

55:26 Gregor Richards, Ellen Arteca, and Alexi Turcotte

cost to be averted, as it is redundant or compatible with existing speculative optimizations. We’ve
demonstrated that making the VM aware of contractual obligations allows for a rich type system to
be checkable at run-time with reasonable cost, 7% in the typical case and no worse than 45% in the
worst case, which is a vast reduction from the current state of the art, which can slow down execution
10s or 100s of times. Through HiggsCheck and a reimplementation of SafeTypeScript, we’ve shown
that these contracts are practical for real, sound gradual typing. While further optimizations are
likely still possible, we posit that the performance in HiggsCheck is acceptable for most cases of
gradual typing. Soundness in gradual typing is, with some help from the VM, still very much alive.

ACKNOWLEDGEMENTS

The authors would like to acknowledge Rudi Chen, who brought HiggsCheck from a barely-working
prototype to its current state. This work is partially funded by an NSERC grant.

REFERENCES

Gavin Bierman, Martín Abadi, and Mads Torgersen. 2014. Understanding typescript. In European Conference on Object-

Oriented Programming. Springer, 257ś281.
Bard Bloom, John Field, Nathaniel Nystrom, Johan Östlund, Gregor Richards, Rok Strniša, Jan Vitek, and Tobias Wrigstad.

2009. Thorn: Robust Concurrent Scripting on the JVM. In Proceedings of the 24th ACM SIGPLAN Conference Companion

on Object Oriented Programming Systems Languages and Applications (OOPSLA ’09). ACM, New York, NY, USA, 789ś790.
https://doi.org/10.1145/1639950.1640016

Carl Friedrich Bolz, Antonio Cuni, Maciej Fijalkowski, and Armin Rigo. 2009. Tracing the meta-level: PyPy’s tracing
JIT compiler. In Proceedings of the 4th workshop on the Implementation, Compilation, Optimization of Object-Oriented

Languages and Programming Systems. ACM, 18ś25.
C. Chambers, D. Ungar, and E. Lee. 1989. An Efficient Implementation of SELF a Dynamically-typed Object-oriented

Language Based on Prototypes. In Conference Proceedings on Object-oriented Programming Systems, Languages and

Applications (OOPSLA ’89). ACM, New York, NY, USA, 49ś70. https://doi.org/10.1145/74877.74884
Maxime Chevalier-Boisvert and Marc Feeley. 2015. Simple and Effective Type Check Removal through Lazy Basic Block

Versioning. In 29th European Conference on Object-Oriented Programming (ECOOP 2015) (Leibniz International Proceedings

in Informatics (LIPIcs)), John Tang Boyland (Ed.), Vol. 37. Schloss DagstuhlśLeibniz-Zentrum fuer Informatik, Dagstuhl,
Germany, 101ś123. https://doi.org/10.4230/LIPIcs.ECOOP.2015.101

Maxime Chevalier-Boisvert and Marc Feeley. 2016. Interprocedural Type Specialization of JavaScript ProgramsWithout Type
Analysis. In 30th European Conference on Object-Oriented Programming (ECOOP 2016) (Leibniz International Proceedings in

Informatics (LIPIcs)), Shriram Krishnamurthi and Benjamin S. Lerner (Eds.), Vol. 56. Schloss DagstuhlśLeibniz-Zentrum
fuer Informatik, Dagstuhl, Germany, 7:1ś7:24. https://doi.org/10.4230/LIPIcs.ECOOP.2016.7

Robert Bruce Findler and Matthias Felleisen. 2001. Contract Soundness for Object-oriented Languages. In Proceedings of the

16th ACM SIGPLAN Conference on Object-oriented Programming, Systems, Languages, and Applications (OOPSLA ’01).
ACM, New York, NY, USA, 1ś15. https://doi.org/10.1145/504282.504283

Robert Bruce Findler and Matthias Felleisen. 2002. Contracts for Higher-order Functions. In Proceedings of the Seventh

ACM SIGPLAN International Conference on Functional Programming (ICFP ’02). ACM, New York, NY, USA, 48ś59.
https://doi.org/10.1145/581478.581484

Andreas Gal, Brendan Eich, Mike Shaver, David Anderson, David Mandelin, Mohammad R. Haghighat, Blake Kaplan,
Graydon Hoare, Boris Zbarsky, Jason Orendorff, Jesse Ruderman, Edwin W. Smith, Rick Reitmaier, Michael Bebenita,
Mason Chang, and Michael Franz. 2009. Trace-based Just-in-time Type Specialization for Dynamic Languages. In
Proceedings of the 30th ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’09). ACM,
New York, NY, USA, 465ś478. https://doi.org/10.1145/1542476.1542528

Arjun Guha, Jacob Matthews, Robert Bruce Findler, and Shriram Krishnamurthi. 2007. Relationally-parametric polymorphic
contracts. In Proceedings of the 2007 symposium on Dynamic languages. ACM, 29ś40.

Aseem Rastogi, Nikhil Swamy, Cédric Fournet, Gavin Bierman, and Panagiotis Vekris. 2015. Safe & Efficient Gradual
Typing for TypeScript. In Proceedings of the 42Nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’15). ACM, New York, NY, USA, 167ś180. https://doi.org/10.1145/2676726.2676971
Gregor Richards, Francesco Zappa Nardelli, and Jan Vitek. 2015. Concrete types for TypeScript. In LIPIcs-Leibniz International

Proceedings in Informatics, Vol. 37. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.
Jeremy G Siek, Michael M Vitousek, Matteo Cimini, and John Tang Boyland. 2015a. Refined criteria for gradual typing. In

LIPIcs-Leibniz International Proceedings in Informatics, Vol. 32. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

https://doi.org/10.1145/1639950.1640016
https://doi.org/10.1145/74877.74884
https://doi.org/10.4230/LIPIcs.ECOOP.2015.101
https://doi.org/10.4230/LIPIcs.ECOOP.2016.7
https://doi.org/10.1145/504282.504283
https://doi.org/10.1145/581478.581484
https://doi.org/10.1145/1542476.1542528
https://doi.org/10.1145/2676726.2676971

The VM Already Knew That 55:27

Jeremy G Siek, Michael M Vitousek, Matteo Cimini, Sam Tobin-Hochstadt, and Ronald Garcia. 2015b. Monotonic references
for efficient gradual typing. In European Symposium on Programming Languages and Systems. Springer, 432ś456.

Jeremy G. Siek and Philip Wadler. 2010. Threesomes, with and Without Blame. In Proceedings of the 37th Annual ACM

SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’10). ACM, New York, NY, USA, 365ś376.
https://doi.org/10.1145/1706299.1706342

Asumu Takikawa, Daniel Feltey, Ben Greenman, Max S. New, Jan Vitek, and Matthias Felleisen. 2016. Is Sound Gradual
Typing Dead?. In Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming

Languages (POPL ’16). ACM, New York, NY, USA, 456ś468. https://doi.org/10.1145/2837614.2837630
Sam Tobin-Hochstadt and Matthias Felleisen. 2008. The Design and Implementation of Typed Scheme. In Proceedings of the

35th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’08). ACM, New York,
NY, USA, 395ś406. https://doi.org/10.1145/1328438.1328486

Michael M. Vitousek, Andrew M. Kent, Jeremy G. Siek, and Jim Baker. 2014. Design and Evaluation of Gradual Typing for
Python. In Proceedings of the 10th ACM Symposium on Dynamic Languages (DLS ’14). ACM, New York, NY, USA, 45ś56.
https://doi.org/10.1145/2661088.2661101

Philip Wadler and Robert Bruce Findler. 2009. Well-typed programs canâĂŹt be blamed. In European Symposium on

Programming. Springer, 1ś16.
AndreasWöß, ChristianWirth, Daniele Bonetta, Chris Seaton, Christian Humer, and Hanspeter Mössenböck. 2014. An object

storage model for the truffle language implementation framework. In Proceedings of the 2014 International Conference on

Principles and Practices of Programming on the Java platform: Virtual machines, Languages, and Tools. ACM, 133ś144.
Tobias Wrigstad, Francesco Zappa Nardelli, Sylvain Lebresne, Johan Östlund, and Jan Vitek. 2010. Integrating Typed and

Untyped Code in a Scripting Language. In Proceedings of the 37th Annual ACM SIGPLAN-SIGACT Symposium on Principles

of Programming Languages (POPL ’10). ACM, New York, NY, USA, 377ś388. https://doi.org/10.1145/1706299.1706343
Thomas Würthinger, Christian Wimmer, Andreas Wöß, Lukas Stadler, Gilles Duboscq, Christian Humer, Gregor Richards,

Doug Simon, and Mario Wolczko. 2013. One VM to rule them all. In Proceedings of the 2013 ACM international symposium

on New ideas, new paradigms, and reflections on programming & software. ACM, 187ś204.

Proceedings of the ACM on Programming Languages, Vol. 1, No. OOPSLA, Article 55. Publication date: October 2017.

https://doi.org/10.1145/1706299.1706342
https://doi.org/10.1145/2837614.2837630
https://doi.org/10.1145/1328438.1328486
https://doi.org/10.1145/2661088.2661101
https://doi.org/10.1145/1706299.1706343

	Abstract
	1 Introduction
	2 Background and Goals
	2.1 Optional and Gradual Typing
	2.2 Just-in-Time Compilation
	2.3 Efficient Contracts

	3 Contracts
	3.1 Design
	3.2 Blame
	3.3 Discussion

	4 Implementation
	4.1 Contract System
	4.2 Optimization of Checks
	4.3 Summary and Discussion

	5 SafeTypeScript
	6 Performance
	6.1 Benchmark Programs
	6.2 Results
	6.3 Threats to Validity

	7 Limitations and future work
	8 Conclusions
	References

