
npm-filter: Automating the mining of dynamic information
from npm packages

Ellen Arteca and Alexi Turcotte∗

{arteca.e,turcotte.al}@northeastern.edu

ABSTRACT

The static properties of code repositories, e.g., lines of code, depen-

dents, dependencies, etc. can be readily scraped from code hosting

platforms such as GitHub, and from package management systems

such as npm for JavaScript; Although no less important, informa-

tion related to the dynamic properties of programs, e.g., number of

tests in a test suite that pass or fail, is less readily available. The abil-

ity to easily collect this dynamic information could be immensely

useful to researchers conducting corpus analyses, as they could

differentiate projects based on properties that can only be observed

by running them.

In this paper, we present npm-filter , an automated tool that can

download, install, build, test, and run custom user scripts over

the source code of JavaScript projects available on npm, the most

popular JavaScript package manager. We outline this tool, describe

its implementation, and show that npm-filter has already been

useful in developing evaluation suites for multiple JavaScript tools.

KEYWORDS

JavaScript, npm, corpus analysis, tool evaluation

ACM Reference Format:

Ellen Arteca and Alexi Turcotte. 2022. npm-filter : Automating the mining of

dynamic information from npm packages. In 19th International Conference on

Mining Software Repositories (MSR ’22), May 23–24, 2022, Pittsburgh, PA, USA.

ACM, New York, NY, USA, 5 pages. https://doi.org/10.1145/3524842.3528501

1 INTRODUCTION

Many code hosting platforms contain a wealth of useful metadata:

e.g., GitHub lists code authors, commits, and general project history,

and library repositories (such as npm for JavaScript) often contain

information on dependencies and dependents. Although it can be

readily scraped from the web, this metadata is static, and does not

tell you much about running the actual code. We thus define dy-

namicmetadata to be information gleaned from program executions:

e.g., number of running tests, code coverage of tests, performance,

memory usage, etc. Making said dynamic metadata available can

enable new corpus analyses, focused on data pertaining to program

executions—this is the purpose of our tool, npm-filter .

∗Both authors contributed equally to this research.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

© 2022 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 978-1-4503-9303-4/22/05. . . $15.00
https://doi.org/10.1145/3524842.3528501

npm-filter is a tool for automatically installing, building, and test-

ing sets of npm packages. npm is a major repository for JavaScript

library code, and already contains a wealth of static metadata about

JavaScript projects (and, if available, a link to the code). npm-filter

complements this by generating information such as how a project

is built, if and how it is tested, the number of passing/failing tests,

and the list of transitive dependencies. npm-filter runs package

code in a sandbox for added security and to ensure reproducibility

of results. Users can also specify custom scripts to run over the

source code of the package. As far as we know, there is no similar

framework to automatically build, run, and test npm packages.

npm-filter has already been used to great effect in three projects;

it was used to filter through huge lists of JavaScript projects in craft-

ing evaluations for the DrAsync anti-pattern detection tool [27],

the Nessie test generator for asynchronous JavaScript callbacks [2],

and the Desynchronizer tool for automatically migrating from syn-

chronous JavaScript APIs to their asynchronous equivalents [11].

2 BACKGROUND & MOTIVATION

Node.js [9] is an eminently popular JavaScript runtime, particularly

for server-side JavaScript, and while JavaScript is best known as a

front-end, client-side language, it is rapidly gaining in popularity for

server-side development [1]. npm [20] is the most popular package

ecosystem for Node.js applications: with the npm command-line

interface (CLI) installed, a developer needs only navigate to the root

of their project and npm install <package-name> to download

and install any package they desire. JavaScript packages have a

package.json file in which users can specify commands that can

be run by npm, e.g., many developers will specify a test command

that describes how a package’s test suite is run, then a user can

execute the package’s tests with npm run test.

npm provides a wealth of metadata for all of the projects it

hosts, including the number of weekly downloads, dependencies,

dependents, and a link to the associated code repository. This said,

running application code can reveal yet more useful information,

such as if the package is equipped with a test suite, passing, failing,

flaky tests, etc. But even though it is relatively straightforward to

install, build, and test an npm package, in our anecdotal experience

conducting JavaScript tool evaluations, we found that only (roughly)

<5% of npm packages have running test suites with no failing tests.

npm-filter can be used in any scenario where metadata about

the execution of JavaScript code is required. A list of npm projects

or JavaScript repositories (e.g., from GHTorrent [12], CodeDJ [18],

or scraping npm), can be fed into npm-filter to gather dynamic

metadata by trying to install, build, and run package tests.

3 NPM-FILTER DESIGN

We will describe the overall design of npm-filter by way of describ-

ing the steps involved in analyzing a given npm package. Analysis

304

The 2022 Mining Software Repositories Conference

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ellen Arteca and Alexi Turcotte

comprises various phases of execution, which correspond to the

tasks required to set up and test an npm package, and running any

user-specified scripts over the package’s source code.

3.1 Package Setup and Installation

Supplied with an npm package name, npm-filter scrapes the repos-

itory link from the npm package page. The source code is then

downloaded (with a git clone). If the user specified a particular

commit to be analyzed, then the source code is checked out at this

commit. If there is no repository link found on the page or if there

is an issue with the cloning, then npm-filter bails out at this stage

and reports the error to the user.

Once the code has been downloaded, the package dependencies

are installed 1. The list of transitive dependencies can be a useful

piece of data: for example, [30] show that transitive dependen-

cies can contain vulnerabilities that compromise the package itself.

npm-filter computes this list by reporting the list of all packages in

the node_modules directory after the install phase has completed.

There is also an option to exclude devDependencies, which are de-

pendencies excluded from production distributions of the package.

3.2 Building a Package

Once installed, some npm packages have additional commands that

need to be run before the package is operational: we call this the

build phase. For instance, packages written in TypeScript need to

be compiled to JavaScript, and another common build step is the

application of a bundler such as rollup [23] or webpack [28].

To determine the build commands, npm-filter looks at the pack-

age’s package.json file and finds the available commands match-

ing our tracked build commands. By default, these are “build”,

“compile”, and “init” (the most common build commands in our

experience). However, users can also customize the build commands

tracked with a custom configuration file (discussed in Section 5.3).

If there is an error running a particular build command, the

problematic command is added to the end of the command list;

this way, the command can be run after potentially prerequisite

commands. If all the build commands in a list have errors, then

npm-filter bails out (to avoid infinite cycling) but continues to the

testing phase anyway, reporting the build error in the results.

3.3 Testing a Package

Next, npm-filter determines if the package has a test suite, and

if so computes some dynamic metadata—this is the test phase.

package.json is further parsed, this time to find the test com-

mands. By default, these are the common oneswe observed: “test”,

“unit’ ’, “cov”, “ci”, “integration”, “lint”, “travis”,

“e2e”, “bench”, “mocha”, “jest”, “ava”, “tap”, “jasmine”2.

For each test command, npm-filter runs it and determines, by

parsing the command itself and its output:

• if it is a linter or a coverage tool, and if so what tool is used;

• if not for linter/coverage, what testing infrastructure is used;

• whether or not it runs new user tests (this is false in test

commands that only call other test commands, or that don’t

run any tests explicitly, e.g., linters, coverage tools);

1npm-filter supports both npm and yarn package managers for installing dependencies.
2Many of these correspond to JavaScript testing infrastructures, such as mocha.

• if it runs other test commands, then a list of these commands;

• if it does run new user tests, then the number of passing and

number of failing tests.

npm-filter parses the output of running tests with the following

tools, that were themost commonwe observed in practice: eslint [7],

tslint [21], xx [29], standard [25], prettier [22], gulp lint [14] (linters);

istanbul/nyc [16], coveralls [6], c8 [5] (coverage tools); mocha [19],

jest [8], jasmine [17], tap [26], lab [15], ava [4], gulp [13] (test

tools). Any test commands that run other infrastructures (such as

custom Node.js scripts) will still be parsed on a best-effort basis,

and whether or not the correct number of passing/failing tests is

determined depends on the shape of the output.

3.4 Running Custom Scripts and CodeQL

In addition to the metadata collected about the package build and

test suite, users can also specify shell scripts and CodeQL [10] static

analysis queries to be run over the source code of the package. The

scripts are run in the sequence specified, and any terminal output

of each of them is included in the results, including errors.

CodeQL is a semantic code analysis language: with it, users can

write static analyses for a variety of languages, including (most

relevantly for npm-filter) JavaScript/TypeScript. In Section 6.2, we

describe how this features was already used in an existing tool.

3.5 Results

The results of all phases of npm-filter are output to a JSON file.

This JSON results object is organized in a hierarchical structure

corresponding to the aforedescribed phases of execution. Any errors

in an execution phase are reported in the corresponding field of the

results. The output file is named [package name]__results.json.

If the user specifies CodeQL queries to be run over the package

source code, the output of each of these queries is output to a CSV

file, named [package name]__[query name]__results.csv. Any

errors in the CodeQL query execution would be reported in the

CodeQL field of the JSON results.

4 IMPLEMENTATION

npm-filter is written in Python. All the npm commands we run

are done by dispatching with the Python subprocess library; this

allows us to parse the output, and specify a timeout. It also doesn’t

crash npm-filter if there is any error in the subprocess.

The back end of npm-filter’s npm package analyzer is a web

scraper: given the name of an npm package, it finds the associated

repository link on the npm page so that it can analyze the package’s

source code. The scraper is built using Python’s scrapy library [24],

which allows us to include custom middleware to run if the scraper

gets an error code as a response from the site. We implemented

some middleware to deal with errors caused by the rate limiting

on the npm site: if the site returns an error indicating that too

many requests were received, the scraper pauses and then retries.

This middleware ensures that the scraper will not miss package

information because of the rate limiter, but if a user is analyzing a

large number of packages they will see a significant performance

hit compared to running on the GitHub repos directly. Thus, we also

provide an option for users to pass a list of GitHub repos instead of

npm packages to be analyzed, skipping the scraping entirely.

305

npm-filter : Automating the mining of dynamic information

from npm packages
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

npm-filter is open source and includes a detailed Readme, with

more examples than are included in this paper. npm-filter is avail-

able at https://github.com/emarteca/npm-filter/ [3].

5 NPM-FILTER USAGE

In this section, we explain how to use npm-filter and give some

examples of usage. To follow along, clone the source code linked

above; all example commands are run from the root of the repo. We

have also included a minimal example usage tutorial here3.

5.1 Safety first: Running in Docker

npm-filter can be run in a docker container that is provided onDock-

erHub4, and we recommend this usage. The repository’s Readme in-

cludes a list of all system requirements if you choose to run it locally

or if you want to rebuild the docker container. To run npm-filter

sandboxed, simply preface any commands with ./runDocker.sh.

5.1.1 Input/Output from docker to host machine. Running npm-filter

in docker allows all the code being analyzed to be run in a sand-

box, protecting the host machine. To allow input to npm-filter and

access to the results files from running in docker, we have some

special directories that the docker container has access to. All in-

put files to running npm-filter in docker must be in a directory

docker_configs in the npm-filter home directory (any user scripts,

CodeQL queries, or custom configuration files). Results files end

up in the npm_filter_docker_results directory, which is also in

the npm-filter home directory.

5.2 Basic usage

This tool can either take JavaScript packages specified as GitHub

repository links, or as npm packages.

To run npm-filter over GitHub repo links, use the following:

1 ./ runDocker.sh python3 src/diagnose_github_repo.py

2 [--repo_list_file [rlistfile]]

3 [--repo_link [rlink]]

4 [--repo_link_and_SHA [rlink_and_SHA]]

5 [--config [config_file]]

6 [--output_dir [output_dir]]

All arguments are optional, although npm-filter will not do any-

thing if no repo links are specified.

• repo_list_file: a file containing a list of GitHub repo links

to be analyzed. Each line of the input file must specify one

repo link, with an optional whitespace delimited commit

SHA to check the repo out at.

• repo_link: a link to a single GitHub repo to be analyzed

• repo_link_and_SHA: link to a GitHub repo followed by a

space-delimited commit SHA to analyze the repo at

• config: path to a configuration file for the tool (config op-

tions explained in Section 5.3)

• output_dir: path to a directory in which to output the re-

sults files (note: this only works when not running in docker)

To run npm-filter over npm packages, use the following:

7 ./ runDocker.sh python3 src/diagnose_npm_package.py

8 --packages [list_of_packages]

9 [--config [config_file]]

3https://github.com/emarteca/npm-filter/blob/master/Tutorial.md
4https://hub.docker.com/r/emarteca/npm-filter

10 [--html [html_file]]

11 [--output_dir [output_dir]]

• packages: list of npm packages to analyze. Required argu-

ment, and at least one package must be passed.

• config: path to a configuration file for the tool

• html: path to an html file that represents the npm page for

the package that is specified to be analyzed. This option only

works for one package, so if you want to use this option on

multiple packages you’ll need to call the tool in sequence.

• output_dir: path to a directory in which to output the re-

sults files (note: this only works when not running in docker)

5.2.1 Example Usage. What follows is an example of basic usage.

This example runs on a single package, specified by GitHub repo

and at a specific commit (to ensure consistency of expected output).

12 ./ runDocker.sh python3 src/diagnose_github_repo.py

13 --repo_link_and_SHA https :// github.com/streamich/memfs

14 863 f373185837141504c05ed19f7a253232e0905

The results file is npm_filter_docker_results/

memfs__results.json, with contents (slightly redacted for length):

15 "installation": {

16 "installer_command": "yarn"

17 },

18 "build": {

19 "build_script_list": [

20 "build"

21]

22 },

23 "testing": {

24 "test": {

25 "num_passing": 265,

26 "num_failing": 0,

27 "test_infras": [

28 "jest"

29],

30 ------------------------------ REDACTED FOR LENGTH

31 "metadata": {

32 "repo_link": "https :// github.com/streamich/memfs",

33 "repo_commit_SHA": REDACTED FOR LENGTH

34 }

From this we can see that at this commit memfs has a test suite with

265 passing tests and no failing tests, among other metadata.

More examples are included in the npm-filter GitHub repo Readme.

5.2.2 Batch dispatch. A common application of npm-filter is to

analyze a large number of packages/repos. We provide a bash script

that dispatches npm-filter in parallel across batches of inputs.

35 ./ runParallelGitReposDocker.sh repo_link_file

Results are in npm_filter_parallel_docker_results. Note that

this parallel execution in performed in one docker container, and

not multiple parallel docker containers.

5.3 Custom npm-filter configuration

Users can customize the behaviour of the tool by providing a custom

configuration JSON file, organized by phases of npm-filter analysis.

All fields are optional – if not provided, defaults will be used5.

5Default configuration: https://github.com/emarteca/npm-filter/tree/master/configs.

306

MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA Ellen Arteca and Alexi Turcotte

Install. package installation.

• timeout: number of millisections after which, if the install

is not complete, the process bails with a timed out error

Dependencies. package dependency tracking (this is the libraries

the current package depends on, both directly and transitively).

• track_deps: specifies to compute the package dependencies

• include_dev_deps: if true, this specifies to include the de-

vDependencies in the dependency computation

• timeout: timeout in milliseconds

Build. package compile/build stage.

• tracked_build_commands: any npm script with one of these

listed commands as a substring will be tested.

• timeout: timeout in milliseconds, per build command

Test. package test stage.

• track_tests: specifies to run this testing diagnostic stage

• tracked_test_commands: any npm script with one of these

listed commands as a substring will be tested.

• timeout: timeout in milliseconds, per test command

Meta-info. any analysis-level configurations.

• VERBOSE_MODE: if true, include full output of all commands

• ignored_commands: commands to ignore: if these are present

in the npm script name, then they are not run even if they

otherwise fall into a category of commands to run.

• ignored_substrings: commands to ignore: if these strings

are present in the command string itself, then these npm

scripts are not run (same as ignored_commands, but for the

command strings instead of the npm script names)

• rm_after_cloning: delete the package source code after the

tool is done analyzing it. Strongly recommended if running

over a large batch of packages.

• scripts_over_code: list of paths to script files to run over

the package source code.

• QL_queries: list of paths to QL query files to run over the

package source code.

6 NPM-FILTER IN PRACTICE

Now we describe three research papers that have used npm-filter .

6.1 DrAsync

Turcotte et al. used npm-filter to collect projects to evaluate their

tool to detect anti-patterns in asynchronous JavaScript programs [27].

Their tool, called DrAsync, can statically detect asynchronous anti-

patterns, and they found that many of these anti-patterns could

be manually refactored; in order to confirm that these refactorings

preserved behaviour, the authors ran application tests before and

after refactoring (to confirm that refactoring did not introduce any

failing tests). The tool also has a dynamic component that records

promise lifetimes and displays them in a visualization.

Thus, the evaluation undertaken in the paper requires running

test suites, and npm-filter was used to filter a list of 40K JavaScript

Github repositories with asynchronous JavaScript code to a much

more manageable 450 projects that had running/passing tests. This

work is being presented concurrently at ICSE Technical Track.

6.2 Nessie

Arteca et. al built a test generator for JavaScript APIs with callback

arguments [2]. In this project, they wrote a static analysis in Cod-

eQL, to identify pairs of nested calls to functions that were part

of the APIs the test generator was targeting. Then they used the

CodeQL plugin feature of npm-filter to run this analysis on 13.6K

JavaScript projects on GitHub. The results of this CodeQL query,

amalgamated across all 13.6K projects, was used to inform the test

generator of common pairs of nested API calls, to generate tests

more representative of developers’ use of the APIs. They also used

npm-filter to select projects to evaluate the test generator. This

work is being presented concurrently at ICSE Technical Track.

6.3 Desynchronizer

Gokhale et al. used npm-filter to collect projects to evaluate their

tool for automatically migrating projects that use synchronous

JavaScript APIs to use their asynchronous equivalents [11]. The

tool, called Desynchronizer, statically detects calls to synchronous

JavaScript APIs that have asynchronous equivalents (e.g., calls to

readFileSync, rather than readFile)—then infers a call graph,

and refactors the code. In the evaluation, authors applied every

refactoring, and ran test suites post refactoring to establish any

behavioural differences. Thus, runnable test suites with no failing

tests were required in the evaluation, and npm-filter was used to

filter a list of 50K JavaScript projects using APIs targeted by the

tool down to a few hundred projects with passing test suites.

7 NPM-FILTER LIMITATIONS

We currently only support packages hosted on GitHub: if there is

no GitHub repo link available on the package page, then npm-filter

will not work. In our use cases we have found this to be rare.

If the package uses a testing tool that we have not implemented

output parsing for, then it might not be properly tracked. That

said, we have covered the most popular JavaScript test ecosystems.

Also, if the package uses build/test commands that don’t include

the substrings we expect, then they won’t be run. Note, however,

that users can customize their npm-filter configuration to add or

remove as many tracked commands as they want.

8 CONCLUSION

npm and GitHub contain a wealth of metadata related to static

JavaScript project properties, but augmenting this static informa-

tion with dynamic properties such as the number of tests in a test

suite that pass or fail is immensely useful to researchers conducting

corpus analyses or testing program transformation tools. In this pa-

per, we presented npm-filter , an automated tool that can download,

install, build, test, and run custom user scripts over the source code

of JavaScript projects available on npm, the most popular JavaScript

package manager. In addition to describing the implementation and

usage of npm-filter , we also show that it has already been useful in

developing evaluation suites for three separate JavaScript tools.

ACKNOWLEDGMENTS

Both authors were supported in part by National Science Foun-

dation grants CCF-1715153 and CCF-1907727, and by the Natural

Sciences and Engineering Research Council of Canada.

307

npm-filter : Automating the mining of dynamic information

from npm packages
MSR ’22, May 23–24, 2022, Pittsburgh, PA, USA

REFERENCES
[1] Esben Andreasen, Liang Gong, Anders Møller, Michael Pradel, Marija Selakovic,

Koushik Sen, and Cristian-Alexandru Staicu. 2017. A survey of dynamic analysis
and test generation for JavaScript. ACM Computing Surveys (CSUR) 50, 5 (2017),
1–36.

[2] Ellen Arteca, Sebastian Harner, Michael Pradel, and Frank Tip. 2022. Nessie:
Automatically Testing JavaScript APIs with Asynchronous Callbacks. In ICSE
’22.

[3] Ellen Arteca and Alexi Turcotte. 2022. emarteca/npm-filter: 1.0.0. https://doi.org/
10.5281/zenodo.6374358

[4] ava. 2022. ava. https://www.npmjs.com/package/ava. Accessed: 2022-01-20.
[5] c8. 2022. c8. https://www.npmjs.com/package/c8. Accessed: 2022-01-20.
[6] coveralls. 2022. coveralls. https://www.npmjs.com/package/coveralls. Accessed:

2022-01-20.
[7] eslint. 2022. eslint. https://www.npmjs.com/package/eslint. Accessed: 2022-01-20.
[8] Facebook. 2022. jest. https://jestjs.io/. Accessed: 2022-01-20.
[9] OpenJS Foundation. [n.d.]. Node.js. https://nodejs.org/en/. Accessed 2020-08-27.
[10] GitHub. 2022. CodeQL. https://github.com/github/codeql. Accessed: 2022-01-20.
[11] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021-10-20. Automatic migration

from synchronous to asynchronous JavaScript APIs. Proceedings of the ACM on
programming languages. 5, OOPSLA (2021-10-20).

[12] Georgios Gousios. 2013. The GHTorrent dataset and tool suite. In Proceedings of
the 10th Working Conference on Mining Software Repositories (San Francisco, CA,
USA) (MSR ’13). IEEE Press, Piscataway, NJ, USA, 233–236. http://dl.acm.org/
citation.cfm?id=2487085.2487132

[13] gulp. 2022. gulp. https://www.npmjs.com/package/gulp. Accessed: 2022-01-20.
[14] gulp eslint. 2022. gulp-eslint. https://www.npmjs.com/package/gulp-eslint.

Accessed: 2022-01-20.
[15] hapi. 2022. lab. https://www.npmjs.com/package/@hapi/lab. Accessed: 2022-01-

20.

[16] Istanbul. 2022. nyc. https://www.npmjs.com/package/nyc. Accessed: 2022-01-20.
[17] jasmine. 2022. jasmine. https://www.npmjs.com/package/jasmine. Accessed:

2022-01-20.
[18] Petr Maj, Konrad Siek, Alexander Kovalenko, and Jan Vitek. 2021. CodeDJ:

Reproducible Queries over Large-Scale Software Repositories. In 35th European
Conference on Object-Oriented Programming (ECOOP 2021) (Leibniz International
Proceedings in Informatics (LIPIcs), Vol. 194), Anders Møller and Manu Sridharan
(Eds.). Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl, Germany,
6:1–6:24. https://doi.org/10.4230/LIPIcs.ECOOP.2021.6

[19] mocha. 2022. mocha. https://www.npmjs.com/package/mocha. Accessed:
2022-01-20.

[20] npm. [n.d.]. npm. https://www.npmjs.com/. Accessed 2020-08-27.
[21] palantir. 2022. tslint. https://www.npmjs.com/package/tslint. Accessed: 2022-01-

20.
[22] prettier. 2022. prettier. https://www.npmjs.com/package/prettier. Accessed:

2022-01-20.
[23] Rollup. 2022. Rollup. https://www.npmjs.com/package/rollup. Accessed: 2022-

01-20.
[24] scrapy. 2022. scrapy. https://scrapy.org/. Accessed: 2022-03-21.
[25] standard. 2022. standard. https://www.npmjs.com/package/standard. Accessed:

2022-01-20.
[26] tap. 2022. tap. https://www.npmjs.com/package/tap. Accessed: 2022-01-20.
[27] Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip. 2022. DrAsync:

Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript. In ICSE
’22.

[28] webpack. 2022. webpack. https://www.npmjs.com/package/webpack. Accessed:
2022-01-20.

[29] xx. 2022. xx. https://www.npmjs.com/package/xx. Accessed: 2022-01-20.
[30] Markus Zimmermann, Cristian-Alexandru Staicu, CamTenny, andMichael Pradel.

2019. Small world with high risks: A study of security threats in the npm
ecosystem. In 28th USENIX Security Symposium (USENIX Security 19). 995–1010.

308

