
Increasing the Responsiveness of Web Applications
by Introducing Lazy Loading

Alexi Turcotte, Satyajit Gokhale, Frank Tip
Northeastern University, Boston, MA, USA.

{turcotte.al, gokhale.sa, f.tip}@northeastern.edu

Abstract—Front-end developers want their applications to con-
tain no more code than is needed in order to minimize the amount
of time that elapses between visiting a web page and the page
becoming responsive. However, front-end code is typically written
in JavaScript, the ubiquitous “language of the web”, and tends to
rely heavily on third-party packages. While the reuse of packages
improves developer productivity, it is notorious for resulting in
very large “bloated” applications, resulting in a degraded end-
user experience. One way to combat such bloat is to lazily load
external packages on an as-needed basis, for which support was
added to JavaScript in 2020 when asynchronous, dynamic imports
were added to the language standard. Unfortunately, migrating
existing projects to take advantage of this feature is nontrivial, as
the code changes required to introduce asynchrony may involve
complex, non-local transformations.

In this work, we propose an approach for automatically
introducing lazy loading of third-party packages in JavaScript
applications. Our approach relies on static analysis to identify
external packages that can be loaded lazily and generates the code
transformations required to lazily load those packages. Since the
static analysis is unsound, these transformations are presented as
suggestions that programmers should review and test carefully.
We implement this approach in a tool called Lazifier, and evaluate
Lazifier on 10 open-source front-end JavaScript applications,
showing that each application was successfully refactored, reduc-
ing initial application size and load times in all cases. On average,
for these applications, Lazifier reduces initial application size by
36.2%, initial load time by 29.7%, and unsoundness did not arise
in any of these applications.

Index Terms—JavaScript, client-side, refactoring, static anal-
ysis, lazy loading, dynamic loading

I. INTRODUCTION

In web application development, it is highly desirable to
minimize the time it takes for an application to load and
become responsive [1]–[4]. Therefore, developers generally
aim to keep the size of their distribution as small as possi-
ble and rely on tools such as bundlers, minifiers, and tree-
shakers [5]–[8] to minimize code size. Unfortunately, such
tools are of limited use in scenarios where an application
contains functionality that is (potentially) required, but not im-
mediately on application startup. In such cases, responsiveness
can be improved by loading the code associated with such
functionality asynchronously, if or when its first use occurs.

In this work, we propose an approach for automatically
refactoring applications to introduce lazy loading. We are
targeting a specific scenario where the functionality to be
loaded lazily is isolated in a third-party library that is imported
by the application under consideration. Our approach relies on
static analysis to identify packages that are only used in the

context of event-handling code, as they are likely only needed
conditionally (or at least not needed on startup). Then, for
each of these packages, another static analysis establishes the
extent of the code that needs to be modified to accommodate
asynchronous, lazy loading of the package. Finally, a set of
declarative rewrite rules specifies the code changes required
to transform the application.

We implemented this approach in a tool called Lazifier that
targets the JavaScript programming language (ECMAScript
2021). Similar to recent other refactoring tools [9]–[11],
Lazifier employs unsound static analysis, so the proposed code
transformations are presented as suggestions that programmers
should review and test carefully before applying. In an exper-
imental evaluation on 10 open-source client-side JavaScript
applications, the code transformations proposed by Lazifier
resulted in an average initial application size reduction of
36.2%, which caused applications to speed up initial load time
by 29.7% on average. Furthermore, we found that the actual
lazy loading of packages affected by the transformations incurs
little overhead. Finally, despite the potential for unsoundness in
the static analysis, we found that none of the transformations
proposed by Lazifier for the 10 subject applications caused
unwanted behavioral differences.

In sum, the contributions of this paper are as follows:

• A fully automated approach for identifying packages that
can be loaded lazily, and a set of rewrite rules specifying
how to refactor an application to load those packages
lazily;

• An implementation of this approach in a tool called
Lazifier, targeting the JavaScript programming language;

• An evaluation of Lazifier on 10 applications that suggests
that Lazifier reduces initial application size (36.2%, on
average) and load time significantly (29.7%, on average)
with little overhead associated with dynamic loading.

A code artifact including Lazifier is available [12].
The remainder of this paper is organized as follows. First,

the relevant background is covered in Section II, the problem is
further motivated in Section III, the approach is described in-
depth in Section IV (in which the implementation of our tool,
Lazifier, is overviewed in subsections IV-D), followed by the
evaluation in Section V, threats to validity in Section VI, and
finally related literature is overviewed in Section VII before
concluding in Section VIII.

1

II. BACKGROUND

This section reviews JavaScript’s mechanisms for asyn-
chrony and importing modules. While not critical for under-
standing the approach, they help to understand the context in
which the approach is applied.

A. Asynchronous JavaScript

JavaScript applications rely heavily on I/O operations, e.g.,
interaction with servers and user input handling. JavaScript
does not support concurrency at the language level, and
instead relies on a run-time model based on an event loop
that enables it to perform operations asynchronously despite
being single-threaded. Essentially, the event loop is a queue
of function calls (i.e., callbacks) to be executed, which follow
run-to-completion semantics; calling functions asynchronously
has the effect of loading them onto the event loop. Once
on the event loop, a callback is executed similarly to any
other synchronous code. There are three major ways to build
asynchronous JavaScript applications, reviewed in turn.

1) Event-Based Programming: This style of asynchronous
programming relies on functions being registered as listener
callbacks for specific events, which are called when the asso-
ciated event is emitted. As an example, consider the following
code snippet, which declares a function onClick that is then
registered as a listener callback handling the "click" event:

function onClick(event) { /* handler logic */ }
document.addEventListener("click", onClick);

The call document.addEventListener("click", onClick) registers
onClick as the callback to handle the "click" event on the
document component of the web page. Later, when a user clicks
on the page, the "click" event fires and a call to onClick is
placed on the event loop.

2) Promises: ECMAScript 2016 introduced promises to the
JavaScript language standard, which is a convenient abstrac-
tion for asynchronous programming.

a) Creating promises: Promises are created by invoking
the Promise constructor, which takes as argument an executor
function, itself taking 2 arguments:

const p = new Promise((resolve, reject) => {
if (someCondition)

resolve(’success’);
else

reject(404);
});

Initially, the promise is in pending state while the asyn-
chronous operation is in progress. This promise can transition
to the settled state one of two ways: it is fulfilled by invok-
ing the resolve function, or rejected by invoking the reject

function as shown above.
b) Promise-Based Control Flow: Callbacks can be

registered as reactions on promises. For example, using the
same promise p as above:

p.then(v => {
console.log(’Promise fulfilled with value: ’, v);

}).catch(e => {
console.log(’Error code: ’, e);

});

This code snippet first registers a reaction using the then

method on p, which will be invoked if p is fulfilled; e.g.,
if resolve(’success’) was called in the body of p, the value
’success’ would be passed as an argument to the callback
registered with then. The catch method registers a reaction that
is invoked in the event that the promise was rejected; e.g., if
reject(404) was called in the body of p, the value 404 would
flow into the callback registered with catch.

c) Synchronizing Promises: As promises reflect asyn-
chronous computations, in general, there is no guarantee on
the order in which they will be settled. The promise library
provides the Promise.all method to synchronize a list of
promises: it accepts an array of promises and returns a single
promise that is resolved with the array of values corresponding
to the fulfilment of each promise, and the ith value corresponds
to the ith promise. If any promise in the input array is rejected,
Promise.all is rejected as well. For example, the following
code snippet shows Promise.all synchronizing the fulfilment
of three promises, and in the then reaction, v[0] corresponds
to the value p0 resolved with, v[1] with p1, and v[2] with p2.

Promise.all([p0, p1, p2])
.then(v => { let total = v[0] + v[1] + v[2]; })
.catch(e => { ... });

3) Async/Await: ECMAScript 2017 expanded JavaScript by
introducing the async and await keywords to the language,
which provide syntactic sugar on top of promises. First and
foremost, await expressions are only allowed inside of async

functions. The expression await p halts execution within the
scope of an async function until the promise p is settled, at
which point await p will return the value that p was resolved
with. If p is rejected, await p will throw the value p was rejected
with, which can be handled in a try/catch. This greatly
simplifies asynchronous control flow, e.g., in the following
snippet, a promise p is await-ed; if p resolves, the value it
resolved with flows into the local variable v, and the function
returns v.toUpperCase(); if p was rejected, the value it was
rejected with would flow into e in catch(e), at which point the
error could be handled.

async function louder(p) {
try {
let v = await p; // => ’success’
return v.toUpperCase();

} catch (e) {
// ...

}
}

Importantly, a function that is declared as async always
returns a promise that resolves with the value the function
returns: if an async function f contains an expression return e,
where e is a value of type T , then f returns an object of type
Promise⟨T ⟩ that is resolved with the value e. To use the
return value, one can await calls to the function; for example,
consider this snippet using louder and p defined previously:

async function bar() {
const a = await louder(p); // => ’SUCCESS’

}

Note: as of ECMAScript 2022, await expressions are also
allowed at the top level (i.e., outside a function body), although

2

it is a new language feature and is subject to unexpected
behavior: e.g., if the await-ed promise is rejected outside of
the context of a try/catch, the application crashes, and top-
level awaits in the context of circular dependencies can cause
a deadlock [13].

B. Importing Packages in JavaScript

As this work is concerned with lazily loading packages, we
overview JavaScript’s mechanisms for importing packages.

a) require: The traditional method of including external
code in JavaScript is to use require, a function that dy-
namically and synchronously loads and executes the package
matching the supplied name. Consider:

const xlsx = require("xlsx");
function importXLSXData(data) {
const contents = xlsx.read(data, {...});
// do stuff with the contents.

}

First, the "xlsx" package is imported at runtime and saved
in the xlsx global variable. "xlsx" exports a read function to
convert raw spreadsheet data, and so inside importXLSXData the
exported function is referenced as a property on the xlsx object
(xlsx.read). Notably, xlsx contains the entire package code.

b) static import: ECMAScript 6 introduced the static
import declaration as an alternative to the dynamic require.
These import statements must be at the top level, all bindings
must be identifiers, and the package name must be a string
literal (this makes them easier to analyze statically); e.g.,
the statement import * as xlsx from "xlsx" imports the entire
"xlsx" package. A major advantage of static import statements
is that a developer can specify which parts of a package they
want to import; e.g., in the following snippet, the read function
exported by "xlsx" is imported directly:

import { read } from "xlsx";
function importXLSXData(data) {
const contents = read(data, {...});
// do stuff with the contents.

}

The strict nature of these static import statements allows
static analyzers to more effectively determine the extent to
which an application exercises the code it imports, which can
sometimes lead to smaller distributions—this is called tree-
shaking [7], [8]. Unfortunately, JavaScript’s high degree of
dynamism limits the power of these static analyses [14]–[16],
preventing tree-shaking from removing much code.

c) dynamic import: Static imports are syntactically
rigid by design, and so ECMAScript 2020 introduced a
dynamic, asynchronous import function. In a sense, the code
transformation proposed in this paper assists programmers in
migrating applications that use static imports to use dynamic
imports instead.

The import function accepts a string containing the name or
path of a package as an argument and returns a promise. That
promise can either resolve with an object containing all the
exported functions and objects, or be rejected if the package
cannot be found. This syntax is especially useful for importing
large or rarely used external packages, since they will not be

bundled with the rest of the application. This can often result
in smaller initial application sizes and potentially faster load
times. The following code snippet illustrates how to dynami-
cally import "xlsx" only in the context of importXLSXData:

async function importXLSXData() {
const xlsx = await import("xlsx");
const data = xlsx.read(...);

}

Note that if a dynamic import for a particular package is
encountered more than once, the package is loaded only once,
and all subsequent invocations resolve to the same cached
instance. Thus, even if import("xlsx") or importXLSXData is
invoked multiple times, the "xlsx" package will be loaded only
once and served to all subsequent invocations.

III. LAZY LOADING

To illustrate our approach, consider an open-source Java-
Script application that displays a list of recent movies to
users, complete with information about them (Movies-web-
ui [17]). Users can filter the list of movies and, optionally,
export their filtered selection to a spreadsheet containing
additional information about the movies they are interested in.
The code snippet in Fig 1(a) is taken directly from Movies-
web-ui, showing how they implement an “export” button
and associated functionality. Note that this application uses
a few external packages: React, an extremely popular UI
framework for JavaScript, file-saver [18] for saving files,
and xlsx [19] for dealing with spreadsheet-like data. The
file exports a function exportCSV that creates a JSX 1 button
component (lines 59-63). The "click" event handler associated
with this button (lines 60-61) eventually calls the exportToCSV

function (lines 49-57), which leverages the xlsx package to
convert a JSON file representing the user’s selection to a sheet
(line 52), and file-saver to save the selection to a file
(line 56).

Crucially, in this example, the xlsx and file-saver
packages are only needed to implement the export functional-
ity and are not useful to users that simply want to browse the
list of movies. It should also be noted that the references to
these packages on lines 52, 54, and 56 are the only references
to these packages in the entire application.

In such cases, it is desirable to load packages lazily, so that
users who do not use the associated functionality do not incur
the overhead of loading code that they will not use. The code
snippet in Fig 1(b) depicts how this can be achieved, and code
changes are highlighted. First, note the lack of static imports
to xlsx and file-saver, and the inclusion of dynamic
imports to the packages instead (lines 74-75).

The call import(’file-saver’) on line 74 creates a promise
that is resolved with an object representing the file-saver
package. Once the loading of the package has been com-
pleted, the await on the same line ensures that this ob-
ject can be assigned to the local variable fileSaver. Recall
that await expressions are only allowed in the context of

1JSX is a type provided by React that closely matches HTML, allowing
programmers to easily construct HTML-like objects in their JavaScript code.

3

42 import React from ’react’;
43 import * as fileSaver from ’file-saver’;
44 import * as xlsx from ’xlsx’;
45
46 export const exportCSV = ({csvData, fileName}) => {
47 const fileType = ’...’;
48 const fileExtension = ’.xlsx’;
49 const exportToCSV = (csvData, fileName) => {
50
51
52 const ws = xlsx.utils.json_to_sheet(csvData);
53 const wb = {Sheets: {...}, SheetNames: [...]};
54 const buffer = xlsx.write(wb, {...});
55 const data = new Blob([buffer], {type: fileType});
56 fileSaver.saveAs(data, fileName + fileExtension);
57 }
58 return (
59 <button className="export"
60 onClick={(e) =>
61 exportToCSV(csvData,fileName)}>
62 Export
63 </button>
64)
65 }

66 import React from ’react’;
67 // this import was removed
68 // this import was removed
69
70 export const exportCSV = ({csvData, fileName}) => {
71 const fileType = ’...’;
72 const fileExtension = ’.xlsx’;
73 const exportToCSV = async (csvData, fileName) => {
74 const fileSaver = await import(’file-saver’);
75 const xlsx = await import(’xlsx’);
76 const ws = xlsx.utils.json_to_sheet(csvData);
77 const wb = {Sheets: {...}, SheetNames: [...]};
78 const buffer = xlsx.write(wb, {...});
79 const data = new Blob([buffer], {type: fileType});
80 fileSaver.saveAs(data, fileName + fileExtension);
81 }
82 return (
83 <button className="export"
84 onClick={async (e) =>
85 await exportToCSV(csvData,fileName)}>
86 Export
87 </button>
88)
89 }

(a) (b)
Fig. 1. Excerpt of a client-side application which uses xlsx: (a) version with static import (b) version with dynamic import

async functions, so the exportToCSV function must gain the
async keyword (line 73). This changes the return type of
exportToCSV to Promise⟨JSX⟩, so all call sites to this func-
tion should be await-ed to ensure that application behavior
remains unchanged. In particular, an await is added at the
call to exportToCSV on line 85. This new await requires the
surrounding function to be made async as well (line 84), at
which point we have reached a context that implicitly handles
asynchrony: callbacks that serve as event handlers are not
expected to return anything, so no further transformations are
required once they are made async.

This simple refactoring reduces the amount of code that is
loaded by over 30% (from 1.4mb to 0.96mb), and improves the
initial load time of the application by just under 50% (from
517ms to 286ms, averaged over 10 runs). If the user does
want to export their selection, the packages are loaded rather
quickly (0.11s), and the total amount of code loaded by the
application is 1.4mb, i.e., the same as the original size.

There are certain additional complexities that the above
example only hinted at. For instance, when making a function
async, all call sites to the function must be await-ed no matter
where they are, as making a function async causes it to return a
Promise. This can cause a cascade of transformations that may
not be localized to a single file. Further, certain code patterns
need to be modified to accommodate async functions (e.g., the
expression someArray.forEach(f) is blocking if the callback f

is synchronous, but non-blocking if f is async).

In this work, we present a technique to automatically detect
third-party dependencies that are only used in the context of
event-handlers, and automatically transform the application to
load those dependencies lazily. In the next section, we describe
this technique in detail, and describe how the aforementioned
complexities are handled by our approach.

IV. APPROACH

Our approach for automatically refactoring applications to
introduce lazy loading consists of the following three steps:

1) Determine packages that are only used in the context of
event handlers;

2) Confirm which of these can be loaded lazily, and identify
the code transformations required;

3) Enact the transformation.

For (1), we propose a fully automated static analysis to
detect which packages are only used in the context of event
handling code and that therefore are not initially needed by
the application. For (2), another static analysis determines
all of the functions containing references to a given lazy
loading candidate. Each of those functions will require a
dynamic, asynchronous import of the package, which will
require several other code transformations to support the now
asynchronous import. If any of these transformations are not
possible, the lazy loading candidate is discarded. Finally, for
(3) we propose a set of declarative rewrite rules describing
the code changes required to refactor the application to lazily
load the package. Each of these phases is described in turn.

Soundness. We assume that the static analyses used in steps
1) and 2) are potentially unsound, because static analysis for
JavaScript that is simultaneously sound, precise, and scalable
is well beyond the state-of-the-art due to the dynamism inher-
ent to the language [14]–[16]. This means that the transforma-
tions proposed by the approach may not preserve behavior, and
should be carefully reviewed by a programmer, similar to the
approach taken by other refactoring tools for JavaScript [9]–
[11]. In Section V, we investigate the degree to which this
unsoundness causes behavioral differences.

4

A. Identify Candidate Packages for Lazy Loading
To identify packages that should be loaded lazily, we pro-

vide a fully-automated analysis that detects packages that are
only used in the context of event-handling code. Given a call
graph for an application, this analysis identifies functions that
are supplied to event-handling mechanisms (e.g., registered
as “on-click” attributes of HTML elements, or registered as
event listeners), and determines all of the functions that are
(transitively) called from those handlers. If all references to a
package are in this list of functions, then it is flagged as being
a candidate for lazy loading. This list of event handlers is:

• functions passed to onClick or other on or click
events on JSX and HTML components, including func-
tions identified using string representations of their name;

• any code snippets included in an event handler attribute
(e.g., code in the onClick event of an HTML element);

• functions passed as callback arguments to event handlers
(e.g., reader.on(’load’, callback));

• functions assigned to properties of the window object that
represents the Document Object Model (DOM).

B. Validate and Determine Transformations Required
To successfully load a package p lazily, all static imports

to p must be removed, and functions containing references to
p must be refactored to load the package dynamically. This
involves removing static import ... from ’p’ statements and
inserting dynamic import(’p’) expressions where appropriate.
The expression import(’p’) yields a promise that eventually re-
solves with the content of the package ’p’. While that promise
is pending, the current context that depends on the package
should not proceed, and await-ing that call will suspend
execution until the promise is resolved. Then, if assigning the
await-ed import to a variable (e.g., let x = await import(’p’)),
the package itself will be stored in x and execution can resume.

Now, await expressions are only allowed inside of functions
marked as async, but making a function async changes its return
type to Promise⟨T ⟩, where T is the function’s original return
type. To preserve existing application behavior, all call sites
to this function will need to be await-ed, which itself requires
more functions to be made async and more call sites to be
await-ed, and so on. It is imperative that all call sites to newly
async functions be await-ed, else program behavior will be
affected; this means that the transformation is all or nothing
proposition, and if any call sites cannot be await-ed, we must
abandon the entire transformation, and discard p as a lazy
loading candidate.

Algorithm 1 describes the process of creating the set Sasync
of functions needing to be made async while validating the
transformation. As inputs to the algorithm, the package p
is supplied along with the call graph CG of the program.
First, Sasync is initialized as the empty set (line 1), and the
list F of functions yet to be processed is initialized with all
functions containing references to the package p (line 2). The
main loop (lines 3-15) iterates through functions f ∈ F that
have not yet been visited. First, lines 6-8 describes a special
case where a function to be made asynchronous is already

Algorithm 1: Validating p and building Sasync

Data: p: a package being imported dynamically
Data: CG: the call graph of the program

1 let Sasync := {};
2 let F := [functions referencing p];
3 while F not empty do
4 let f := select and remove a function from F ;
5 if f not visited then
6 if f is a reaction or f is argument to promise

constructor or f registered as event handler
then

7 Sasync := Sasync ∪ {f};
8 continue;

9 let Cf := callers of f in CG;
10 if f is constructor or c ∈ Cf is top level or f

returns promise then
11 Sasync := {};
12 break;

13 Sasync := Sasync ∪ {f};
14 F := F ∪ Cf ;
15 mark f as visited;

16 return Sasync;

in a context that handles asynchrony, in which case no further
transformations are required. Then, all callers of the function f
are obtained from the call graph (line 9). Lines 10-12 validates
the transformation by identifying situations that cannot support
asynchrony. First, constructors cannot be async. Second, if f
is called at the top level of the application, there is no sense in
lazily loading p as the dynamic import would be executed on
application startup anyway. (Also, top-level await expressions
are only supported as of ECMAScript 2022.) Third, if f
already returns a promise, the programmer is likely using it
accordingly and may not want calls to it to be await-ed, and so
it should not be transformed. In such cases, the transformation
is rejected and p is not loaded lazily. If f passes this check,
then f is added to Sasync, all of f ’s callers are added to the
list F of functions left to process, and f is marked as visited;
analysis continues until F is exhausted.

C. Code Transformations

The application can be refactored to lazily load package p
once the set Sasync of functions that need to be made async is
known. Several transformations are required to handle the tran-
sition to asynchronous imports, specified as declarative rewrite
rules in Figure 2. The figure depicts simplified, idealized
JavaScript to illustrate the salient details of the transformation.
We will describe them one by one next.

ASYNC-FUNCTION: This transformation is simple: if a
function f is in the set Sasync of functions that need to be
made async, the function definition gains the async keyword.

5

f ∈ Sasync

fun f(A) {B} −→ async fun f(A) {B}
(ASYNC-FUNCTION)

f ∈ Sasync g can resolve to f

g(args) −→ await g(args)
(ASYNC-CALL)

f ∈ Sasync B body of f
no returns in B a = the single argument of f

arr.forEach(f) −→ for([i, a] of arr.entries()) {B}
(FOREACH-FOROF)

f ∈ Sasync B body of f
returns in B

arr.forEach(f) −→ await Promise.all(arr.map(f))
(FOREACH-MAP)

f ∈ Sasync

arr.map(f) −→ await Promise.all(arr.map(f))
(AWAIT-MAP)

p ∈ PD v0, ..., vn ref p ∈ B

dynImp := const pname = await import(p)
declk := const vk = p.vname

k ∀k ∈ 0, ..., n

fun f(A) {B} −→ fun f(A) {dynImp; decl0; ... decln; B}
(INSERT-DYNAMIC-IMPORT)

x ∈ Sasync fB := async () ⇒ {B}
get x() {B} −→ get x() {return fB();}

(GETTER)

Fig. 2. Transformation rules for introducing lazy loading and necessary code changes to support newly introduced asynchrony.

ASYNC-CALL: All potential calls to a function f ∈ Sasync
need to have await expressions inserted before the call.

FOREACH-FOROF: The expression arr.forEach(f) calls
the callback f on each element of arr, and importantly
returns nothing, i.e., forEach is type void. If f were made
asynchronous, the call to forEach would not wait for all of
the asynchronous calls to resolve, and execution would simply
continue past the call. In the event that f contains no return

statements, the body B of f is made into the body of a for ...
of loop that iterates over the elements of the array (the loop
iterator a is chosen to match the argument name of f).

FOREACH-MAP: In the event that f does contain a return

statement, conversion to a for ... of loop is not possible.
Instead, the forEach is transformed into a map, and the call
to map is surrounded in an await-ed Promise.all to ensure
that all of the asynchronous callbacks fully execute before
continuing.

AWAIT-MAP: Similar to the previous rule, if a callback
passed to map is to be made asynchronous, the map is
surrounded in an await-ed Promise.all.

INSERT-DYNAMIC-IMPORT: If a function f contains refer-
ences (v0, ..., vn) to a package p that is to be made dynamic
(p ∈ PD), a dynamic import to the package p is created
(const pname = await import(p)), where pname will serve
as a reference to the package in this scope. Then, declarations

are created for each vk ∈ v0, ..., vn extracting the relevant
component vname

k from the import pname. The dynamic import
and associated declarations are then inserted at the beginning
of the function body.

GETTER: Getters present a special case as they cannot
be made asynchronous. A new asynchronous function fB is
created with the body B of the getter x. The body of x is then
replaced with a return to the call to fB—callers of x will await
calls to it, and so the promise returned by fB can be await-ed
then.

The code transformation in the motivating example was
determined automatically using this approach, and involved
applications of rules ASYNC-FUNCTION, ASYNC-CALL, and
INSERT-DYNAMIC-IMPORT. Fig. 3 shows small code ex-
amples depicting the transformations associated with the
other rules: Fig. 3(a) and (b) shows rule FOREACH-FOROF,
Fig. 3(c) and (d) shows rule FOREACH-MAP, Fig. 3(e) and (f)
shows rule AWAIT-MAP, and finally Fig. 3(g) and (h) shows
rule GETTER.

D. Implementation

This approach is implemented in a tool called Lazifier. All
static analyses are built in CodeQL [20], including data flow
analyses required to detect uses of imported packages and
call graph construction. All call graphs were obtained through
CodeQL’s own static call graph construction algorithm for

6

90 arr.forEach((e) => {
91 if (e)
92 foo();
93 else
94 bar();
95 });

96 for([i, e] of arr.entries()) {
97 if (e)
98 await foo();
99 else

100 bar();
101 }

(a) (b)
102 arr.forEach((e) => {
103 if (e)
104 return foo();
105 else
106 return bar();
107 });

108 await Promise.all(arr.map(async (e) => {
109 if (e)
110 return await foo();
111 else
112 return await bar();
113 }));

(c) (d)
114 arr.map((e) => {
115 if (e)
116 foo();
117 else
118 bar();
119 });

120 await Promise.all(arr.map(async (e) => {
121 if (e)
122 await foo();
123 else
124 await bar();
125 }));

(e) (f)

126 const o = {
127 x : 1,
128 get y() {
129 return foo(x);
130 }
131 }
132
133 o.y;

134 const o = {
135 x : 1,
136 get y() {
137 return (async () => {
138 return await foo(x);
139 })();
140 }
141 }
142
143 await o.y;

(g) (h)
Fig. 3. Code showing the before and after of applying select rewrite rules: (a)-(b) shows FOREACH-FOROF, (c)-(d) shows FOREACH-MAP, (e)-(f) shows
AWAIT-MAP, and (g)-(h) shows GETTER.

JavaScript [21], which is unsound. The code transformation is
built in JavaScript using Babel [22] to parse code, manipulate
ASTs, and emit transformed code.

V. EVALUATION

We pose the following research questions in order to eval-
uate the approach proposed in this paper:

RQ1) How does lazy loading affect the size and initial load
time of applications?

RQ2) How often does the transformation introduce unwanted
behavioral changes?

RQ3) How much code is loaded lazily, and how quickly is it
loaded?

RQ4) How many code changes are required to support lazy
loading?

RQ5) What is the running time of Lazifier?

Experimental Methodology

To answer these research questions, we first compiled
a list of 10,000 open-source client-side JavaScript applica-
tions by scraping GitHub for repositories that had JavaScript
UI frameworks stated as dependencies. Then, we ran the
npm-filter [32] tool to identify projects for which Lazifier
identified at least one package as a candidate for lazy load-
ing (yielding 998 projects). We manually inspected projects
in this list until we found 10 that could be successfully

installed, started, and interacted with. The vast majority of
JavaScript projects on GitHub suffer from installation errors
(e.g., developer-specified dependencies no longer work), build
errors (e.g., build configurations that are only valid for certain
operating systems/environments), or environment errors (e.g.,
many client-side applications rely on external servers that
are inaccessible). Since we wanted to have a high degree of
confidence in our understanding of our subject applications, we
expended considerable effort finding applications that suffered
from none of these aforementioned issues.

To answer RQ1, we first determine the original application’s
initial size using the “bytes transferred” metric from Chrome
DevTools’ [33] “Network” tab on a hard refresh of the appli-
cation page, and then apply the transformation and similarly
determine the initial size of the transformed application. To
time the initial application load, we again leverage the Chrome
DevTools’ “Network” tab, and note the “Load” time field upon
performing a hard refresh—we note this time pre- and post-
transformation, and collect and average 10 load times.

To answer RQ2, we interacted manually with each ap-
plication in order to execute the code that was slated for
transformation, taking screenshots of the application after
exercising the code. Then, we applied the transformations and
repeated the interaction, comparing the pages visually before
and after transforming the code. The application behavior

7

TABLE I
INFORMATION ABOUT SUBJECT APPLICATIONS. THE FIRST ROW READS: the first application is called upoint-query-builder from Harinathlee, and commit
hash f9aa0f1 was used for the evaluation; upoint-query-builder has 10,341 lines of code. The initial size of the application is 0.84mb, reduced to 0.61mb
after loading modules lazily, corresponding to a 27.4% size reduction. The size of the application once modules are loaded dynamically is 0.84mb. It took

201s to run Lazifier on this project, which required an additional 28s to build the CodeQL database.

Commit Initial Size (mb) Size Expanded Tool Run QLDB
Project Name Hash LOC Before After Reduction Size (mb) Time (s) Time (s)
Harinathlee/upoint-query-builder [23] f9aa0f1 10,341 0.84 0.61 27.4% 0.84 201 28
sadupawan1990/excelreader [24] 4a5f9cb 9,733 4.8 3.4 29.2% 4.8 187 44
fahimahammed/task [25] b641bc0 9,747 0.94 0.48 48.9% 0.94 180 36
hongtaodai/react-excel [26] 2d59e85 9,685 1.9 1.5 21.1% 1.9 178 33
Abhishek312s/Movies-web-ui [17] 58904a3 9,789 1.4 0.96 31.4% 1.4 180 35
vishumane/ExcelSheet Validation Reactjs [27] f38cb9e 9,942 0.90 0.40 55.6% 0.90 181 35
thewca/scrambles-matcher [28] 1de93f7 11,304 1.1 0.83 24.5% 1.1 188 37
hoverGecko/timetable [29] 0fa8527 9,932 0.60 0.38 36.7% 0.60 314 80
Akalay27/workday-schedule-exporter [30] 97ca596 9,718 0.90 0.44 51.1% 0.90 186 35
ultimateakash/react-excel-csv [31] 18c6d97 9,779 0.85 0.62 27.1% 0.85 206 34

Average Size Reduction: 36.2% Average Run Time: 240

before transformation is taken as the baseline.
To answer RQ3, we identify how to trigger each of the

dynamic imports (in the same manner as in RQ2), and note
the size of the code chunk transferred when doing so through
the Chrome DevTools’ “Network” tab (again consulting the
“bytes transferred” metric), and note the time taken to transfer
that chunk through the “Load” time field.

To answer RQ4, we configured Lazifier to: display which
packages were flagged to be loaded lazily, display the dynamic
import statements that were added to the program, and log the
code transformations it was applying.

And finally, to answer RQ5, we used the Unix time utility
to time the execution of Lazifier on each application. To run
Lazifier’s analyses, a CodeQL database must be built for the
project, and so we used the time utility to time the CodeQL
database build for each project.

All measurements were taken on a 2016 MacBook Pro
running Catalina 10.15.7, with a 2.6GHz Quad-Code Intel
Code i7 processor and 16GB RAM. We used Google Chrome
version 112.0.5615.137 (Official Build) (x86 64) in incognito
mode. Next, we respond to each of the RQs in turn.

RQ1: How does lazy loading affect the size and initial load
time of applications?

Lazifier’s transformation leverages ECMAScript 2020’s
ability to load packages on demand: If all static imports to
a package are replaced with dynamic imports, the JavaScript
runtime dynamically fetches the package when a dynamic
import is executed, and the package is not included in the
application at start time. The initial application size is reported
in columns Initial Size (mb) Before and After in Table I,
corresponding to the size of the applications pre- and post-
refactoring. We note significant size reduction across all ap-
plications (36.2% on average), as high as 51.6%.

While smaller applications are desirable in and of them-
selves, we investigate the degree to which this size reduction
hastens the initial load time of refactored applications. Av-
erages of 10 load times are reported in Fig. 4, with three
columns for each subject application, the first two of which

are relevant here: the first column corresponds to the load time
pre-refactoring, and the middle column to the load time post-
refactoring. We find statistically significant (T-test, two-tailed,
95% confidence) reductions in initial load time in all cases,
with an average speedup of 29.7%, as high as 47.5%.

The size of refactored applications is smaller in all cases,
which translates to a statistically significant reduction in
application start times.

RQ2: How often does the transformation introduce unwanted
behavioral changes?

Since the approach presented in this paper relies on unsound
static analysis, the transformations suggested by Lazifier are
not guaranteed to preserve application behavior. In our subject
applications, Lazifier’s refactorings caused 15 packages to
be loaded lazily, introducing 21 dynamic imports to those
packages, requiring 47 other transformations (i.e., applications
of a rewrite rule). We manually interacted with the applications
and ensured that all transformed code was exercised, and found
no behavioral differences introduced by the transformation.

For the 10 subject applications under consideration in this
evaluation, there was no evidence of behavioral differences
due to unsoundness in the static analysis.

RQ3: How much code is loaded lazily, and how quickly is it
loaded?

When a package is loaded dynamically, the application
asynchronously fetches package code and executes it, making
the package available. Dynamically loading packages may
result in a larger total application size, since dynamic imports
load the entire package code (so no tree-shaking can be done
as in the case of static imports). The total expanded size
of each application is reported in column Expanded Size
(mb) in Table I. Interestingly, we note that the total size of
applications after dynamic loading is always the same as the
initial size without refactoring, suggesting that tree-shaking is

8

Fig. 4. Load times for each subject application are depicted in this plot, with a set of three columns for each application. In each set, three times are presented:
first, the time taken pre-refactoring (before), then after refactoring (after), and finally the time taken to dynamically load all packages (dynamic). These are
averages over 10 runs, and error bars indicate +/- one standard deviation.

not an effective technique at reducing the size of imported
packages.

We also noted the time taken to perform this transfer,
reported in Fig. 4, specifically the third column (“dynamic”)
in each set of three. The transfer is small relative to initial load
times in all cases (85.8ms on average), though note that we
do not simulate latency in this test, and assuredly transferring
data over a network would incur overhead related to latency.

The total size of the code loaded by the refactored applications
(including lazily loaded packages) is comparable to the total
size of the original applications, and dynamically loading
packages is generally not noticeable.

RQ4: How many code changes are required to support lazy
loading?

Since Lazifier suggests code changes that should be vetted
carefully by programmers, it would be helpful if the extent
of the transformations required was small and manageable.
Table II lists information about the code transformations
suggested by Lazifier in each subject application, namely how
many packages could be loaded lazily (column # Imps. Re-
moved), how many dynamic import statements were required
to lazily load the packages (column # Dyn. Imps.), and finally
how many applications of other rewrite rules were necessary
to support lazily loading the packages (column # Trans.
Changes). All cases required few code transformations, at
most 15 for upoint-query-builder (the number of changes
including added dynamic imports), with a median of 6 changes

TABLE II
INFORMATION ABOUT CODE TRANSFORMATIONS. THE FIRST ROW READS:

in upoint-query-builder, 2 packages were loaded dynamically instead of
statically; 3 dynamic import statements were added, and 12 applications of

other rewrite rules were required to support the transition.

Imps. # Dyn. # Trans.
Project Name Removed Imps. Changes
upoint-query-builder 2 3 12
excelreader 1 1 2
task 1 1 2
react-excel 1 1 2
Movies-web-ui 2 2 5
ExcelSheet Validation Reactjs 2 3 7
scrambles-matcher 1 2 4
timetable 1 2 4
workday-schedule-exporter 3 4 6
react-excel-csv 1 2 3
In total: 15 21 47

(again including added dynamic imports) per application,
which should be manageable for a developer to review. Even
with relatively small transformations, significant initial appli-
cation size reduction was achieved; this is encouraging, as
small changes are having a large impact on the loading time
of applications.

The number of code changes suggested by Lazifier is small,
so the effort needed by programmers to review these changes
is manageable.

9

RQ5: What is the running time of Lazifier?

The time taken to run Lazifier is reported in column Tool
Run Time (s) of Table I. This includes the time to run the
static analyses and also transform the application, though the
transformation itself runs extremely quickly. The time to build
the CodeQL database is reported in column QLDB Time (s)
in Table I: this is a fixed cost once per project, and can be
reused by other CodeQL queries.

The run time of Lazifier is 240s on average, demonstrating its
suitability for practical use.

VI. THREATS TO VALIDITY

The technique presented in this paper was inspired by the
work of Gokhale et al. [11], and suffers similar threats to
validity. Namely, the code transformations proposed by our
approach are unsound and are not guaranteed to preserve
program behavior. There are many reasons for losses of sound-
ness, e.g., the static analyses that build call graphs are unsound,
and our technique introduces asynchrony to applications which
may cause data races. In a sense, this unsoundness is inevitable
as JavaScript is a highly dynamic language not amenable to
sound static analysis. Nevertheless, in our evaluation we found
that Lazifier proposed no behavior-altering transformations in
spite of this unsoundness.

Beyond this, it is possible that our set of subject applications
may not be representative. To mitigate this, we selected our
subject applications from a list of client-side JavaScript ap-
plications sampled essentially randomly from GitHub. We did
prune this list such that we could build and run the applications
to evaluate the effectiveness of our technique, but believe that
our random initial selection of projects mitigates risk of bias.

VII. RELATED WORK

Broadly, this work is concerned with refactoring web ap-
plication source code to lazy load libraries that are only
conditionally required. Software debloating is a related area
of research focused on trimming unused functionality from
applications and has many applications in security, particularly
when unused code is removed from applications. Also, the
refactoring proposed in this work introduces asynchrony to an
application, which is another well-studied area of research.

Debloating and Lazy Loading: Software debloating is
well-studied. Many applications contain far more code than
is required, commonly referred to as “dead code”, and the
study of debloating is the study of how to determine and
safely remove this dead code. Besides increasing application
size, dead code is undesirable as it increases the “attack
surface” of an application, i.e., more code provides more
opportunities for an attacker to take advantage of a system.
For example, Bhattacharya et al. [34] studies situations where
functions accumulate more features than are strictly neces-
sary, yielding poor performance when spurious functional-
ity is not needed. Koo et al. [35] propose configuration-
driven software debloating, where application configurations

are linked with feature-specific libraries, and libraries are only
loaded when the appropriate configuration criteria are met.
This is a semi-automated process, and the code itself is not
changed. Doloto [36] proposes an approach that leverages
developer-supplied application traces to automatically refactor
applications to load entire “routes” lazily, only when they
are needed; their approach performs dynamic loading syn-
chronously, which is disallowed in the modern web standard.
Soto et al. [37] propose an approach to automatically spe-
cialize Java dependencies according to how they are used by
the application’s test suite, and Sharif et al. [38] propose a
technique that leverages constant value configuration data to
specialize applications.

Some recent work has been concerned with debloating
JavaScript applications. Stubbifier [39], for example, leverages
an application’s test suite to determine “probably unused” code
and replace this code with small stubs that can dynamically
fetch and execute the code if it was actually needed. Stubbifier
cannot debloat client-side applications (which, incidentally,
rarely have test suites). Malavolta et al. [40] propose a
technique to debloat client-side JavaScript applications with
various levels of optimization; first, dead code is determined
by consulting a call graph of the application, and one of
the optimization levels proposed in the work replaces dead
code with snippets to load the code lazily. Vasquez et al. [41]
propose a technique that flags external library functions as
being potentially dead, and removes them once a programmer
confirms that they are truly unused. These pieces of work
are concerned with removing unused functionality, and often
lazily loading the dead code if they were wrong about the code
being dead, whereas our approach removes conditionally used
functionality, and none of these tools would not remove the
packages identified by our approach as they are used in the
application. In a sense, these approaches are complementary.

Refactoring to Introduce Asynchrony: Loading packages
lazily must be done asynchronously on the web, as blocking
I/O operations are prohibited in the modern web standard.
Thus, the refactoring proposed in this paper also refactor
the applications to be asynchronous w.r.t. the lazily loaded
packages. There are numerous pieces of related work in this
area. Most closely related is Desynchronizer [11], which refac-
tors JavaScript applications to use asynchronous APIs where
synchronous APIs were once used. Other research loosely in
this space includes work by Khatchadourian et al [42] on
automatically parallelizing Java 8 streams, by Dig et al. [43]
to parallelize Java loops, by Wloka et al. [44] on refactoring
applications to be reentrant, by Dig et al. [45] for leveraging
concurrency APIs to transform sequential code. Essentially,
making synchronous code asynchronous is a difficult problem;
in our work, we introduce just enough asynchronous constructs
to allow for packages to be lazily loaded.

There is also a related wide body of work on understanding
asynchronous applications, e.g., work by Alimadadi et al. [46]
on understanding event-based asynchrony in JavaScript appli-
cations, on understanding asynchrony on the entire application
stack [47], and on understanding the effects of DOM-sensitive

10

changes [48]. This is complementary to our work, as Lazifier
presents refactorings (that introduce asynchrony!) as sugges-
tions to be vetted by programmers.

VIII. CONCLUSION

Client-side developers want to minimize the amount of time
users need to wait for a web application to load and become
responsive. Existing tools such as bundlers, minifiers, and
tree-shakers focus on eliminating unused functionality and
reducing code size, but do not address scenarios where an
application contains functionality that is (potentially) required,
but not immediately when the application starts up. In such
cases, responsiveness can be improved by loading such func-
tionality lazily. We have presented an approach for detecting
situations where an entire library can be loaded lazily. The
approach uses static analysis to identify packages that are
only used in the context of event handling and to compute
the changes that must be made to the code to accommodate
lazy loading. A set of declarative rewrite rules specifies the
code changes required to transform the application.

This approach was implemented in a tool called Lazifier,
and evaluated on 10 open-source client-side JavaScript ap-
plications. In all cases, Lazifier successfully refactored the
applications, resulting in an average initial application size
reduction of 36.2%, which caused applications to start up
29.7% more quickly on average.

ACKNOWLEDGEMENTS

The authors were supported in part by the National Science
Foundation grant CCF-1907727. Many thanks to Sofi Tukker
for keeping some of the authors moving.

REFERENCES

[1] D. F. Galletta, R. M. Henry, S. McCoy, and P. Polak, “Web site delays:
How tolerant are users?,” J. Assoc. Inf. Syst., vol. 5, no. 1, p. 1, 2004.

[2] G. Lindgaard, G. Fernandes, C. Dudek, and J. M. Brown, “Attention web
designers: You have 50 milliseconds to make a good first impression!,”
Behav. Inf. Technol., vol. 25, no. 2, pp. 115–126, 2006.

[3] Z. Liu and J. Heer, “The effects of interactive latency on exploratory
visual analysis,” IEEE Trans. Vis. Comput. Graph., vol. 20, no. 12,
pp. 2122–2131, 2014.

[4] M. Butkiewicz, D. Wang, Z. Wu, H. V. Madhyastha, and V. Sekar,
“Klotski: Reprioritizing web content to improve user experience on
mobile devices,” in 12th USENIX Symposium on Networked Systems
Design and Implementation, NSDI 15, Oakland, CA, USA, May 4-6,
2015, pp. 439–453, USENIX Association, 2015.

[5] D. Crockford, “jsmin,” 2023. See https://www.crockford.com/jsmin.
html.

[6] mishoo, “uglify-js,” 2023. See https://www.npmjs.com/package/
uglify-js.

[7] Rollup, “Tree shaking,” 2023. See https://rollupjs.org. also see https:
//rollupjs.org/faqs/#what-is-tree-shaking for tree-shaking.

[8] webpack, “Tree shaking,” 2023. See https://webpack.js.org. Also, see
https://webpack.js.org/guides/tree-shaking/#root for tree shaking.

[9] E. Arteca, F. Tip, and M. Schaefer, “Enabling additional parallelism
in asynchronous javascript applications,” 35th European Conference on
Object-Oriented Programming (ECOOP 2021), 2021.

[10] A. Turcotte, M. W. Aldrich, and F. Tip, “Reformulator: Automated
refactoring of the n+1 problem in database-backed applications,” in Pro-
ceedings of the 37th IEEE/ACM International Conference on Automated
Software Engineering, ASE ’22, (New York, NY, USA), Association for
Computing Machinery, 2023.

[11] S. Gokhale, A. Turcotte, and F. Tip, “Automatic migration from syn-
chronous to asynchronous JavaScript APIs,” Proc. ACM Program. Lang.,
vol. 5, no. OOPSLA, pp. 1–27, 2021.

[12] A. Turcotte, S. Gokhale, and F. Tip, “Lazifier artifact,” 2023. See https:
//zenodo.org/badge/latestdoi/680260614.

[13] ECMAScript, “Proposal for top level awaits,” 2023. See https://github.
com/tc39/proposal-top-level-await.

[14] J. Park, I. Lim, and S. Ryu, “Battles with false positives in static
analysis of javascript web applications in the wild,” in Proceedings of
the 38th International Conference on Software Engineering, ICSE 2016,
Austin, TX, USA, May 14-22, 2016 - Companion Volume (L. K. Dillon,
W. Visser, and L. A. Williams, eds.), pp. 61–70, ACM, 2016.

[15] H. Y. Kim, J. H. Kim, H. K. Oh, B. J. Lee, S. W. Mun, J. H. Shin, and
K. Kim, “DAPP: automatic detection and analysis of prototype pollution
vulnerability in node.js modules,” Int. J. Inf. Sec., vol. 21, no. 1, pp. 1–
23, 2022.

[16] S. Li, M. Kang, J. Hou, and Y. Cao, “Detecting node.js prototype
pollution vulnerabilities via object lookup analysis,” in ESEC/FSE
’21: 29th ACM Joint European Software Engineering Conference and
Symposium on the Foundations of Software Engineering, Athens, Greece,
August 23-28, 2021 (D. Spinellis, G. Gousios, M. Chechik, and M. D.
Penta, eds.), pp. 268–279, ACM, 2021.

[17] Abhishek312s, “Movies-web-ui,” 2023. See https://github.com/
Abhishek312s/Movies-web-ui/58904a3.

[18] eligrey, “file-saver,” 2023. See https://www.npmjs.com/package/
file-saver.

[19] SheetJS, “xlsx,” 2023. See https://www.npmjs.com/package/xlsx.
[20] Microsoft, “CodeQL,” 2023. See https://codeql.github.com/.
[21] Microsoft, “CodeQL JavaScript data flow library,” 2023. See

https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/
javascript/dataflow.

[22] Babel, “Babel,” 2023. See https://babeljs.io/.
[23] Harinathlee, “upoint-query-builder,” 2023. See https://github.com/

Harinathlee/upoint-query-builder/f9aa0f1.
[24] sadupawan1990, “excelreader,” 2023. See https://github.com/

sadupawan1990/excelreader/4a5f9cb.
[25] fahimahammed, “task,” 2023. See https://github.com/fahimahammed/

task/b641bc0.
[26] hongtaodai, “react-excel,” 2023. See https://github.com/hongtaodai/

react-excel/2d59e85.
[27] vishumane, “Excelsheet validation reactjs,” 2023. See https://github.

com/vishumane/ExcelSheet Validation Reactjs/f38cb9e.
[28] thewca, “scrambles-matcher,” 2023. See https://github.com/thewca/

scrambles-matcher/1de93f7.
[29] hoverGecko, “timetable,” 2023. See https://github.com/hoverGecko/

timetable/0fa8527.
[30] Akalay27, “workday-schedule-exporter,” 2023. See https://github.com/

Akalay27/workday-schedule-exporter/97ca596.
[31] ultimateakash, “react-excel-csv,” 2023. See https://github.com/

ultimateakash/react-excel-csv/18c6d97.
[32] E. Arteca and A. Turcotte, “Npm-filter: Automating the mining of

dynamic information from npm packages,” in Proceedings of the 19th
International Conference on Mining Software Repositories, MSR ’22,
(New York, NY, USA), p. 304–308, Association for Computing Ma-
chinery, 2022.

[33] Google, “Chrome DevTools,” 2023. See https://developer.chrome.com/
docs/devtools/.

[34] S. Bhattacharya, K. Gopinath, and M. G. Nanda, “Combining concern
input with program analysis for bloat detection,” ACM SIGPLAN No-
tices, vol. 48, no. 10, pp. 745–764, 2013.

[35] H. Koo, S. Ghavamnia, and M. Polychronakis, “Configuration-driven
software debloating,” in Proceedings of the 12th European Workshop
on Systems Security, pp. 1–6, 2019.

[36] B. Livshits and E. Kiciman, “Doloto: Code splitting for network-bound
web 2.0 applications,” in Proceedings of the 16th ACM SIGSOFT
International Symposium on Foundations of Software Engineering, SIG-
SOFT ’08/FSE-16, (New York, NY, USA), p. 350–360, Association for
Computing Machinery, 2008.

[37] C. Soto-Valero, D. Tiwari, T. Toady, and B. Baudry, “Auto-
matic specialization of third-party java dependencies,” arXiv preprint
arXiv:2302.08370, 2023.

[38] H. Sharif, M. Abubakar, A. Gehani, and F. Zaffar, “Trimmer: Appli-
cation specialization for code debloating,” in Proceedings of the 33rd

11

https://www.crockford.com/jsmin.html
https://www.crockford.com/jsmin.html
https://www.npmjs.com/package/uglify-js
https://www.npmjs.com/package/uglify-js
https://rollupjs.org
https://rollupjs.org/faqs/#what-is-tree-shaking
https://rollupjs.org/faqs/#what-is-tree-shaking
https://webpack.js.org
https://webpack.js.org/guides/tree-shaking/#root
https://zenodo.org/badge/latestdoi/680260614
https://zenodo.org/badge/latestdoi/680260614
https://github.com/tc39/proposal-top-level-await
https://github.com/tc39/proposal-top-level-await
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://github.com/Abhishek312s/Movies-web-ui/58904a3
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/file-saver
https://www.npmjs.com/package/xlsx
https://codeql.github.com/
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://github.com/github/codeql/tree/7323d4e/javascript/ql/lib/semmle/javascript/dataflow
https://babeljs.io/
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/Harinathlee/upoint-query-builder/f9aa0f1
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/sadupawan1990/excelreader/4a5f9cb
https://github.com/fahimahammed/task/b641bc0
https://github.com/fahimahammed/task/b641bc0
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/hongtaodai/react-excel/2d59e85
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/vishumane/ExcelSheet_Validation_Reactjs/f38cb9e
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/thewca/scrambles-matcher/1de93f7
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/hoverGecko/timetable/0fa8527
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/Akalay27/workday-schedule-exporter/97ca596
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://github.com/ultimateakash/react-excel-csv/18c6d97
https://developer.chrome.com/docs/devtools/
https://developer.chrome.com/docs/devtools/

ACM/IEEE International Conference on Automated Software Engineer-
ing, ASE ’18, (New York, NY, USA), p. 329–339, Association for
Computing Machinery, 2018.

[39] A. Turcotte, E. Arteca, A. Mishra, S. Alimadadi, and F. Tip, “Stubbi-
fier: debloating dynamic server-side javascript applications,” Empirical
Software Engineering, vol. 27, no. 7, p. 161, 2022.

[40] I. Malavolta, K. Nirghin, G. L. Scoccia, S. Romano, S. Lombardi,
G. Scanniello, and P. Lago, “Javascript dead code identification, elim-
ination, and empirical assessment,” IEEE Transactions on Software
Engineering, pp. 1–23, 2023.

[41] H. Vázquez, A. Bergel, S. Vidal, J. Dı́az Pace, and C. Marcos, “Slim-
ming javascript applications: An approach for removing unused func-
tions from javascript libraries,” Information and Software Technology,
vol. 107, pp. 18–29, 2019.

[42] R. Khatchadourian, Y. Tang, M. Bagherzadeh, and S. Ahmed, “Safe
automated refactoring for intelligent parallelization of Java 8 streams,”
in Proceedings of the 41st International Conference on Software Engi-
neering, ICSE 2019, Montreal, QC, Canada, May 25-31, 2019 (J. M.
Atlee, T. Bultan, and J. Whittle, eds.), pp. 619–630, IEEE / ACM, 2019.

[43] D. Dig, M. Tarce, C. Radoi, M. Minea, and R. E. Johnson, “Relooper:
refactoring for loop parallelism in Java,” in Companion to the 24th
Annual ACM SIGPLAN Conference on Object-Oriented Programming,
Systems, Languages, and Applications, OOPSLA 2009, October 25-29,
2009, Orlando, Florida, USA, pp. 793–794, 2009.

[44] J. Wloka, M. Sridharan, and F. Tip, “Refactoring for reentrancy,”
in Proceedings of the 7th joint meeting of the European Software
Engineering Conference and the ACM SIGSOFT International Sympo-
sium on Foundations of Software Engineering, 2009, Amsterdam, The
Netherlands, August 24-28, 2009, pp. 173–182, 2009.

[45] D. Dig, J. Marrero, and M. D. Ernst, “Refactoring sequential Java
code for concurrency via concurrent libraries,” in 31st International
Conference on Software Engineering, ICSE 2009, May 16-24, 2009,
Vancouver, Canada, Proceedings, pp. 397–407, 2009.

[46] S. Alimadadi, S. Sequeira, A. Mesbah, and K. Pattabiraman, “Under-
standing javascript event-based interactions,” in Proceedings of the 36th
International Conference on Software Engineering, pp. 367–377, 2014.

[47] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Understanding asyn-
chronous interactions in full-stack javascript,” in Proceedings of the
38th International Conference on Software Engineering, pp. 1169–1180,
2016.

[48] S. Alimadadi, A. Mesbah, and K. Pattabiraman, “Hybrid dom-sensitive
change impact analysis for javascript,” in 29th European Conference
on Object-Oriented Programming (ECOOP 2015), Schloss Dagstuhl-
Leibniz-Zentrum fuer Informatik, 2015.

12

	Introduction
	Background
	Asynchronous JavaScript
	Event-Based Programming
	Promises
	Async/Await

	Importing Packages in JavaScript

	Lazy Loading
	Approach
	Identify Candidate Packages for Lazy Loading
	Validate and Determine Transformations Required
	Code Transformations
	Implementation

	Evaluation
	Threats to Validity
	Related Work
	Conclusion
	References

