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Abstract12

Foreign function interfaces (FFIs) allow programs written in one language (called the host lan-13

guage) to call functions written in another language (called the guest language), and are wide-14

spread throughout modern programming languages, with C FFIs being the most prevalent. Un-15

fortunately, reasoning about C FFIs can be very challenging, particularly when using traditional16

methods which necessitate a full model of the guest language in order to guarantee anything17

about the whole language. To address this, we propose a framework for defining whole language18

semantics of FFIs without needing to model the guest language, which makes reasoning about C19

FFIs feasible. We show that with such a semantics, one can guarantee some form of soundness20

of the overall language, as well as attribute errors in well-typed host language programs to the21

guest language. We also present an implementation of this scheme, Poseidon Lua, which shows22

a speedup over a traditional Lua C FFI.23
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1 Introduction30

Often, programming languages are designed with a specific purpose or task in mind. For31

example, domain specific languages (DSLs) exist for a variety of domains (e.g., querying32

databases), and a programmer will often choose a DSL when solving a problem that falls in33

its domain. But when a programmer wants to write code which touches on several domains,34

they turn to more general purpose languages (e.g., Java) to give them the tools they need35

to do everything they need to do, even though the language might be worse at any one36

given task as compared to a DSL written specifically for it. With so many programming37

languages to choose from, not only is picking the right language non-trivial, picking the38

“wrong” language may come back to haunt you.39

To make choosing a language easier, many programming languages are equipped to40

interoperate with other languages, and one of the most common forms of interoperation is41
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the foreign function interface (FFI). FFIs allow code written in one language (called the42

host language) to call functions written in another language (called the guest language), and43

also interface with data from the guest language, typically accomplished with wrapper code44

surrounding guest language values and regulating access to them. By and large the most45

common form of language interoperation is the C FFI since C is so fast; C FFI’s are available46

for Python, Lua and many other dynamic languages.47

Semantically, interfacing with C exposes one to all of C’s foibles and irregularities: Memory48

accesses can fail, return values of an incorrect type, or cause system-specific undefined49

behavior. As such, FFI’s are usually avoided in language semantics, and assumed to be50

either benign or absent. Unfortunately, proving properties of the behavior of a C FFI using51

conventional techniques is challenging: Of the existing body of work on formal specification52

of language interoperation, some are designed with a very specific use case in mind [6][1],53

and others propose general frameworks [16] which are difficult to use when reasoning about54

interoperation with C; these general approaches rely on fully defined semantics for all55

interoperating languages, which is infeasible when one of those languages is C.56

In this paper, we aim to describe what behavioral guarantees remain true in the presence57

of an FFI, how a language hosting an FFI can guarantee its own type correctness at the58

interface, and how that can motivate the implementation of an FFI. We propose a framework59

which allows typed languages with a C FFI to be formalized and easily reasoned about without60

a full model of C. Our approach relies on a merger of the guest and host language’s type61

systems, which allows us reason statically about the whole language and the host language’s62

use of the FFI. Additionally, without a model of C, our semantics are nondeterministic—as63

there’s no telling what an arbitrary C function might do—and we develop a novel method to64

reason about these nondeterministic semantics. In principle, this approach works well with65

other languages too, though our model of C’s memory and C’s types in the host language66

make languages with similar memory behavior to C’s most suitable.67

As an example of our framework in action, we also present both the semantics and68

implementation of Poseidon Lua, a Typed Lua C FFI. In Poseidon Lua, Typed Lua interfaces69

with C by holding direct pointers to C data, and is equipped to dereference these pointers,70

cast them, allocate C data directly, as well as call arbitrary C functions. We prove conditional71

soundness of Poseidon Lua, and prove that if anything “goes wrong” in well-typed Poseidon72

Lua programs, C code is at fault for the error. Interestingly, merging the type systems of the73

constituent languages eliminates the need for wrapper code around guest language values,74

which contributes to improved overall performance.75

The main contributions of this paper are:76

a framework for merging type systems of guest and host language to allow interoperation77

that can be easily reasoned about;78

a semantics for Poseidon Lua, a Typed Lua C FFI, implemented with our framework;79

an actual implementation of Poseidon Lua;80

improved performance results over the previously existing Lua C FFI.81

2 Background82

In this section, we will provide requisite background for understanding our proposed frame-83

work, as well as our prototype implementation, Poseidon Lua. We will begin with an overview84

of foreign function interfaces, as we are describing a framework for reasoning about them.85

We will also discuss taint analysis, since the concept of taint features prominently in our86

semantics. We will then discuss Lua, Typed Lua, and Featherweight Lua, as all are crucial87
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to understanding our language Poseidon Lua. We end the section with a quick highlight of88

some related work.89

2.1 Foreign Function Interfaces90

A foreign function interface (FFI) is a framework in which code written in one language (called91

the host language) may call code written in another language (called the guest language) as92

well as interface with data from that guest language. In an FFI, the guest language typically93

exports an API of available functions to the host language, and the host language calls94

said functions through the function interface. In addition to this function interface, a data95

interface is required to manage the use of one language’s data in the other language.96

FFIs are prevalent in modern programming. They date back to Common Lisp [11], which97

first introduced the concept of calling functions written in another language. Many dynamic98

languages, such as Python [22] and Perl [19], have easy-to-use C FFIs, allowing programmers99

to quickly and easily call functions written in C, a language known for its speed. In fact,100

C FFIs are very common, particularly in systems where performance is critical: Scientific101

computing environments, such as MATLAB [15] and Julia [9], carry out intensive numeric102

computations and simulations, and often programmers turn to external C functions available103

through an FFI to speed up the running time of their computationally intensive programs.104

This provides the user with an easy-to-use scripting language front end which may not be105

very performant, but with the ability to call fast functions when speed becomes an issue.106

Most C FFIs interface with C in environments where C has access to all memory, including107

that of the host language, but there are exceptions where C is an embedded language with108

restricted access. A popular such system is Emscripten [27]. Emscripten is a source-to-source109

compiler from LLVM to JavaScript; its goal is to provide a way to run code on the web which110

can be compiled with LLVM but not natively run in browsers. Since JavaScript can run in111

essentially any web setting, compiling a language such as C to JavaScript would enable it to112

run reliably on a browser. With Emscripten, this can be done by first compiling the original113

source code down to LLVM, and then translating this to JavaScript. In terms of semantics,114

C is isolated to its own heap, and cannot interfere with JavaScript’s; this is the same setup115

we have in our semantics, where C is isolated from the host.116

Idiomatic usage of FFIs is to minimize the data interface between the languages to the117

point where only primitive, scalar values are passed between the languages, as sharing actual118

structured data has unfortunate behavior: Often, if the FFI even has the capability to allow119

the host language to store pointers to guest structures, they are mediated through a wrapper.120

This wrapper problem is insidious: Consider, for example a list. With each access to the121

next element of a list, a new wrapper must be allocated, and the old wrapper discarded, so a122

series of simple accesses instead becomes a series of allocations. If the FFI has no capability123

to access structured guest data, as in Lua’s inbuilt C FFI, the programmer has to write a124

C accessor for every member they want to access. While the definition of these accessors125

can be automated, they still incur the FFI to actually access the data, as the accessors are126

written in C.127

Formally specifying FFIs (and language interoperation in general) is not unknown to128

the research community. One example is early work by M. Abadi and coauthors [1], which129

explores dynamic typing in a statically typed language, a mixing of two very different language130

paradigms. Other work by K. Gray [6] tackles the problem of multi-language object extension,131

and presents a sound calculus modelling the language interoperability and the semantics of132

objects written in one language being extended in another. Additional work by J. Matthews133

and R. B. Findler [16] realizes whole language semantics by defining full semantics for host134
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and guest languages, and uses boundaries to explicitly regulate value conversions. For our135

purposes, these approaches are either too specific [1][6], or do not generalize to reasoning136

about languages with a C FFI [16]. One particular work has a similar motivation to ours137

and has a fairly generalizable approach: linking types presented by Patterson and Ahmed138

[21]. This is discussed below in Section 2.4.139

2.2 Dynamic Taint Analysis140

Introduced by Newsome and Song in their paper [18], dynamic taint analysis is a technique141

initially developed for tracing potential error propagation through a system, in order to142

detect exploits on commodity software. The idea is that some data sources are considered143

untrusted, and data which originates from these sources is labelled with taint. This allows for144

the tracking of potential errors, and also can be used to restrict what the tainted data can145

be used for. In addition, if there is an error in the program that involves some of the tainted146

data, information on what potentially caused the error is all available as taint information.147

The idea of dynamic taint analysis can be generalized to the tracking or propagation148

of any tagged (tainted) data in a program. In this work, we adapt the concept of taint to149

reasoning about a C FFI without modelling C: when a C call occurs, we cannot say what150

will happen, but we can reason about what could happen. We can model arbitrary C calls151

by tagging any data which could have been modified by the call with taint information152

identifying it, and should an error occur involving any of this data, the taint can point to153

the call which tampered with the data. Note that this is a property of the semantics for the154

purpose of proofs; we do not demand that an implementation track dynamic taint. This is155

explained in detail in Sections 3.2 and 4.156

2.3 The Base for Poseidon Lua157

Later in this work, we will be presenting Poseidon Lua, a Typed Lua C FFI. In this section,158

we present variants of Lua, the host language in Poseidon Lua. First we discuss the Lua159

language itself, before turning our attention to its variants and extensions.160

2.3.1 Lua161

Lua is a lightweight dynamic imperative scripting language with lexical scoping and first class162

functions. Lua is extensible, and offers many metaprogramming mechanisms to facilitate163

adaptation of the language. Its main data structure is an associative array known as the164

table, which can stand in for most common data structures, such as arrays, records, and165

objects. The functionality of tables can be further augmented through metamethods, which166

are essentially hooks for the Lua compiler. Classic object-oriented programming patterns,167

such as methods and constructors, can be easily encoded in Lua with these table extensions.168

A C FFI was developed for Lua by Facebook [3]: called luaffifb, it is a standard C FFI169

which wraps C data for use by Lua. Note that we did not implement Poseidon Lua on top of170

LuaJIT [20], as the implementation merely serves as a demonstration of the semantics, and171

JIT compilers are less amenable to such modifications. Also, LuaJIT offers the same sort of172

data interface that we do, but without types and with boxed references to C structures—our173

techniques would thus apply to it for better performance.174

Our approach to reasoning about FFIs involves embedding the type system of the guest175

into the host language, but Lua has no type system to embed into! For this reason, Lua is176

not the host language in Poseidon Lua—as we need a type system, we chose Typed Lua as a177

base.178
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2.3.2 Typed Lua179

Lua is a dynamic language, and as is often the case with these languages (see TypeScript [17]180

and Typed Racket [25]), there have been a few attempts at adding types in some form. One181

such example with Lua specifically is Tidal Lock [12], a static analyzer relying on simple182

type annotations. Another is Typed Lua, an optional type system for Lua [14].183

In their design of Typed Lua, Maidl et al. performed an automated analysis of existing184

Lua programs to obtain a clear picture of how programmers use the language; they paid185

close attention to idiomatic Lua code to ensure that their design aligned with conventional186

language use. Typed Lua is optionally typed, which means that the type annotations are187

removed when code is compiled. Typed Lua accounts for a large subset of Lua, but a few188

parts are omitted, namely polymorphic functions and table types, and certain uses of the189

setmetatable function. The type system of Poseidon Lua largely matches Typed Lua’s, and190

a full discussion will appear in Section 4.1.191

Like other optionally and gradually typed languages, a program written in Typed Lua has192

an initial stage of type compilation. First, the Typed Lua code gets translated (i.e., compiled)193

to its corresponding Lua program, and it’s during this first phase of compilation that the194

type information is used. At “type compile” time, typed code can be checked statically for195

type errors before being translated. The type information has no effect on the generated Lua196

code; Typed Lua programs are type checked by the compiler, and if they are well-typed, the197

compiler simply erases the types, generating plain Lua. Then, this Lua code is compiled to198

bytecode and run on the Lua virtual machine.199

This multistage process means that there are two distinct versions of Lua involved in200

running a Typed Lua program. For clarity, in our discussion of Poseidon Lua we will use201

the following terminology: Typed Lua will be referred to as the typed language or the user202

language, since this is the language in which the programmer will be writing programs. Then,203

the untyped language or the runtime language refers to the subset of Lua resulting from the204

compilation of user language programs and additional expressions needed to deal with C.205

Both of these languages’ grammar and operational semantics are given in Section 4.206

In giving a prototype using our framework we needed to develop a formal representation207

of Poseidon Lua. Poseidon Lua is formalized using a core calculus based on Featherweight208

Lua (FWLua) [10], itself a core calculus of Lua. Details on FWLua are given in the next209

section.210

2.3.3 Featherweight Lua211

There have been a few formal specifications of Lua. First, a semantics was developed by212

M. Soldevila and coauthors [24] to gain a deeper understanding of Lua programs; it was213

mechanized in PLT Redex [4] using reduction semantics with evaluation contexts. Another214

semantics, not unlike Featherweight Java [8] and LambdaJS [7], proposes a core calculus for215

Lua. Called Featherweight Lua (FWLua) [10], this semantics focuses on formalizing what216

authors deem to be the essential features of Lua: first-class functions, tables, and metatables.217

Remaining Lua features, including expression sequencing and control structures, are shown to218

reduce into FWLua through an extensive desugaring process. The FWLua specification [10]219

also provides a reference interpreter written in Haskell.220

The principle goal of FWLua is to capture core Lua idioms, and a crucial aspect of the221

Lua language is its table construct. Under the hood, Lua handles table access and table222

write with rawsget and rawset functions, respectively; these are not typically written by the223

programmer, but are part of how Lua drives table functionality. In their design of FWLua,224
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the authors modelled table access and table write wholly with these rawget and rawset225

operations, and together with other basic semantic constructs (e.g., functions and binary226

operations) propose functions which mimic the semantics of full-fledged Lua. For example,227

to capture Lua’s scoping rules, FWLua reserves certain tables to be so-called “scope tables”:228

the _local table is one such example and is always accessible, and changes whenever a new229

scope is entered while keeping a reference to its outer scope in its _outer member. This way,230

variable access (say, of x) is desugared into a function which first searches through _local,231

and if x is not present in _local, then it searches recursively through _local._outer, and232

so on until x is located, producing nil if x is not found. This proved challenging to reason233

about, so we chose to promote variables to first-class language members.234

To contrast Lua and FWLua, consider the following, which illustrates table construction235

in Lua:236

237

local t = {}238

t.x -- nil , uninitialized table members are nil239

t.x = 42 -- t.x is now 42240

t[0] = "hello" -- tables may be indexed like arrays241

t["hi"] = 3.14 -- equivalent to t.hi242
243

As you can see, tables can be accessed in a variety of ways in Lua, and have syntax244

which specifically supports different access styles, be it array-style or record-style. Tables245

are incrementally constructed, and can be extended at any time, much like dynamic object246

extension in JavaScript or other dynamic languages. In FWLua, the above translates to:247

248

rawset (_local , "t", {})249

rawget ( rawget (_local , "t"), "x")250

rawset ( rawget (_local , "t"), "x", 42)251

rawset ( rawget (_local , "t"), 0, "hello")252

rawset ( rawget (_local , "t"), "hi", "hello")253
254

As you can see, the rawset and rawget functions are used to write and read from a table,255

respectively. As we mentioned earlier, FWLua desugars variables into special table members:256

The table _local deals with local variables, and the table _ENV deals with global variables.257

2.4 Related Work: Linking Types258

Linking types, presented by Patterson and Ahmed [21], consider a different approach to259

reasoning about language interoperation. This work considers the languages working together260

as components within a larger language, which itself encompasses behavior of one language as261

well as the added behavior of making calls to the other language. Linking types themselves262

are designed to allow programmers to express and reason about one language’s features in263

another (possibly) less expressive language which has no concept of those features. With264

linking types, the programmer can annotate a program to indicate where it interfaces with265

more expressive code in the linked language. Then, with these types, reasoning about the266

behavior of the whole program becomes possible.267

Although both their and our work are motivated by the same essential problem, they268

both require modelling of both languages and focus more on the language of types than269

on semantics or proofs. In our work, we take a notably different approach in deciding not270

to model the behavior of the guest language, and instead work with the semantics of the271

point of intersection (i.e. the boundary between host and guest), using nondeterminism to272

consider the potential outcomes of the guest language calls. We believe that our types could273
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be expressed in terms of linking types with no meaningful change to our semantics or proofs,274

but have not investigated this.275

3 The Problem276

FFIs are ubiquitous in programming languages, and out of these C FFIs are by far the most277

popular. Unfortunately, if one wants to make any guarantees about programs using a C278

FFI, using traditional methods of reasoning is challenging. These necessitate a full semantic279

model of the guest language to show anything about the overall system, and defining a formal280

semantics for C is very involved. Further, any such semantics will be compiler-dependent.281

For example, while the CompCert [2] project was groundbreaking in their implementation of282

a formally verified C compiler, their guarantees are limited to C programs compiled with283

this compiler, and do not hold for C programs compiled on other compilers (such as gcc).284

Hypothetically, if we had a whole language semantics for a system with a C FFI, what285

might we be interested to show? One result of interest would be some form of type soundness286

for the host language, to ensure that the inclusion of the FFI in the semantics didn’t cause any287

strange issues. Additionally, we might like to show that if any failures occur in a well-typed288

program calling a C FFI, then C is in some way at fault for the failure. In this work, we289

show that we can get these results even without a full model of C!290

To achieve this, we will need to be able to reason statically about use of the FFI (i.e., the291

host’s interface with the guest). The function interface of an FFI exports function handles, so292

we can at least check that functions are being called and used correctly, even if we don’t know293

exactly what they do. However, the data interface of FFIs is typically built up dynamically,294

and cannot be reasoned about statically. Indeed, in a conventional FFI, wrappers are built295

up at runtime as values flow from one language to another, and dynamically regulate access296

to underlying data.297

In order to fully guarantee the host language’s use of the C FFI correct, we need the data298

interface to be static, and we can achieve this by embedding C’s type system into the type299

system of the host language. This way, the host language can express C types and statically300

check its own use of C data instead of relying on runtime wrapper code like in traditional301

approaches. As it happens, with this scheme wrappers are no longer necessary, and their302

removal results in improved performance; this is discussed further in Section 5.303

It’s not enough to have a system in place to statically reason about the host language’s304

use of the C FFI, as we still need to consider how we can model calls to C when we have no305

model of the C code, and how we can reason about the resulting semantics. The mechanisms306

which enable this are taint and nondeterminism, discussed next.307

3.1 Taint and Nondeterminism308

Put simply, without a model of C code, C calls are nondeterministic: In this scheme, a309

well-typed call to a C function could arbitrarily fail or succeed, as there’s no telling exactly310

what the function does (e.g., a C function could dereference a null pointer or otherwise crash311

the program) or what the function returns. To account for this, at least two semantic rules312

for guest language calls are required: one modelling a successful call where the function313

didn’t crash and returned correctly, and another modelling failure, where the function failed314

to do so (or, more generally, failed to successfully pass execution back to the host language315

program). Note that the rule for failure must have strictly more permissive preconditions316

that any rule modelling a successful call, as failure must always be an option.317
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Unfortunately, this simple model of nondeterministic success and failure does not fully318

account for all effects that C can have. For instance, execution a C function could free some319

memory that the host program has access to while still terminating and returning successfully,320

and the next dereference of a pointer to that memory would fail or return unexpected values.321

To fully account for this case where a successful C call has detrimental side effects, we need322

some additional mechanism to indicate to subsequent reductions that the function may have323

tampered with some data.324

To model the fact that C code may unexpectedly modify data, we use the concept of taint;325

here, even successful calls to C functions will taint the memory locations which may have326

been modified, indicating the possible presence of a modification which could cause issues327

for the next access to this data (e.g., if C deallocated the memory at this location). The328

presence of taint at a memory location indicates that use of the location is nondeterministic:329

the next use of the location could either succeed, indicating that no fatal modification was330

made, or fail, indicating that the C call which prompted the taint to be added modified the331

location in such a way as to cause an error on access—either way, the effect will only be332

observed on the next access. Success in accessing a tainted location does not mean that the333

value at that location is the value that was there before it became tainted, it just means334

that the access did not crash; C could still have changed the value in a way that was not335

fatal to the program. Crucially, successfully using a tainted location will clean or remove336

the taint, as from that moment until the next C call we are sure that the location is not337

somehow broken, and that its value will not change (unless overwritten by Lua).338

In summary, nondeterminism and taint together enable us to express the effects that339

C may have on the host language program without modelling C. Note that since we use a340

nondeterministic semantics for C and thus avoid modelling its behavior, in principle this341

approach works well with other languages. However, our model of C’s memory and C’s types342

in the host language make languages with similar memory behavior to C’s most suitable.343

To demonstrate this framework, we will present the semantics of Poseidon Lua, a Typed344

Lua C FFI. A high-level description of Poseidon Lua will be given in the next section.345

3.2 Overview of Poseidon Lua346

Essentially, Poseidon Lua is Typed Lua with a C FFI. It is fine-grained relative to standard347

FFIs: Unlike traditional FFIs, in Poseidon Lua the type systems of Lua and C are merged348

through a Lua pointer type, and the language has syntax with which the Lua programmer349

can allocate and manipulate these pointers. Specifically, Poseidon Lua allows you to: allocate350

and use C data, cast said pointers, and call C functions. The formal semantics are discussed351

fully in Section 4.352

In our semantics of Poseidon Lua, Lua directly holds C values through a pointer to some353

location in a C store, which is separate from Lua’s store. Structs are laid out in the C354

store as they would be in C, taking up space proportional to the number of struct members;355

these members can then be accessed with an offset equal to its position in the list of struct356

members (like accessing elements in an array). As explained, with no model of C, C function357

calls are nondeterministic, and successful calls taint everything in the C store, since the358

function could have modified any memory C has access to in a way which breaks a later359

access—for this reason, our formalization includes optional taint information in the C store.360

Access to clean (i.e., taint-free) locations in the C store are deterministic, while accesses to361

tainted locations are not, and in the event of successful access to a tainted location the taint362

can be removed and future accesses to that same location become deterministic (at least,363

until the next call to a C function).364



Alexi Turcotte, Ellen Arteca, Gregor Richards XX:9

In addition to modelling possibly errant C calls, taint allows us to model C’s undefined365

behavior. One classic example of this is casting pointers in C. In Poseidon Lua, as in C,366

pointers to C values may be downcast. To model this in our formal semantics, we include367

types in the C store, alongside taint and the values themselves—the C store is thus a list of368

triples of (value, type, optional taint). This way, we can model the cast of a Lua pointer369

(to a C value) to some type T by changing the type held at the pointer’s location in the C370

store to T . But that’s not quite enough, as casting pointers is undefined behavior in C, and371

we can use taint to cleanly capture this: Once cast, the location becomes tainted, and the372

next access to that location is nondeterministic. In this scenario, taint indicates the cast373

location’s potential for undefined behavior when it is accessed.374

Another use of taint in Poseidon Lua is in our modelling of allocation of C pointers. In375

C, the calloc function initializes the allocated memory with 0s, so in allocating a pointer to376

a pointer, one is actually allocating a pointer to a 0 (which is to be treated as a pointer)!377

Indeed, if one were to dereference the second pointer, one would be dereferencing 0 which378

leads to a segmentation fault in most circumstances (0, of course, is NULL in C). To achieve379

this in our semantics, we taint the allocated memory location when a (Lua pointer to a) C380

pointer is being allocated, to indicate the potential failure of the next access to this location.381

Even though we don’t model C, we do make some assumptions about C’s behavior: For382

one, we assume that C does not touch Lua’s memory, and that its effects are contained to an383

explicitly defined C store: in other words, the shared memory has clearly defined bounds.384

This mirrors reality in most other FFIs, where guest code and data is not aware of host code385

and data. However, it is technically possible for C code to violate this assumption. We also386

make a simplifying assumption that all allocation and access is by word, which reduces the387

complexity of C data accesses without loss of generality. We require that C doesn’t write new388

or mutate existing Lua code, otherwise we would have to scrutinize existing expressions that389

have yet to be reduced and would be unable to prove anything. We additionally make no390

explicit mention of the stack pointer, which would needlessly complicate function calls and391

returns for no real benefit. Further, C functions cannot call Lua functions in our formalization,392

so as to package all of C’s effects into one black box; this is possible through callbacks, but393

would again be very complex without meaningfully improving the semantics. Finally, we394

disregard threads, which avoids needing to reason about the effects of concurrency on top of395

the effect of C, a layer of complexity which is outside of the scope of this project.396

4 Semantics397

Poseidon Lua is our proof-of-concept for the ideas discussed in Section 3. Having highlighted398

some of the stranger corners of our formal specification of Poseidon Lua in Section 3.2, we399

will now discuss the C FFI in its entirety.400

In Poseidon Lua, Lua primarily interacts with C by calling C functions, and our merger of401

the two languages necessitates that C values be a part of the broader language. To represent402

these C values, Typed Lua has a concept of a Lua pointer to a C value, which is Lua’s403

window to accessing C data. This means that Lua never deals directly with C values per404

se, and instead deals with pointers to these values. With pointers to C values as first-class405

citizens in Poseidon Lua, we implement the additional functionality of allocating C data as406

well as downcasting C pointers, both directly from Lua code without needing to call C.407

We start by describing the type system in detail, and follow with a presentation of a core408

calculus which models the language. Then, we discuss the typing and reduction relations409

before concluding with a discussion of soundness and other interesting proven results.410
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T ::= nil nil type
| value top type
| ref T reference type
| T1 ∪ T2 union type
| L literal type
| B base type
| T1 →L T2 function type
| {f1, ..., fn} table type
| ptrL TC Lua pointer type

TC ::= int C integer type
| T 1

C →C T 2
C C function type

| ptrC TC C pointer type
| {s1 : T 1

C , ..., sn : Tn
C} C struct type

f ::= s : T fields
| const s : T const fields

L ::= < booleans > literals
| < numbers >

| < strings >

B ::= boolean base types
| number
| string

Figure 1 The Poseidon Lua type system.

4.1 Type Systems411

Poseidon Lua’s type system is a combination of Typed Lua’s [14] and C’s type systems. For412

illustrative purposes, we chose a subset of C’s type system which highlights some of C’s413

interesting features without getting bogged down in the low-level details; we only formalized414

integers, pointers, structs, and functions. These are not limitations of the concept, merely415

simplifications made to the formalization. The story is similar with Typed Lua’s type system;416

our function type only has a single argument type, and multivariate functions are curried to417

repeated application of single variable functions, by which a single argument function type418

suffices. In fleshing out this type system for our core calculus, we found no need for Typed419

Lua’s type variables, recursive types, and projection types, and were able to greatly simplify420

their table type. Further, to simplify reasoning about Lua, we only allow string indexing in421

tables. Again, these are not limitations of the language, and are only simplifications for the422

purposes of formalization.423

Our types are given in Figure 1, and explained in detail throughout this section. Type424

ordering is as follows:425

value is a supertype of all types;426

nil is the type of Lua’s nil value, and is a subtype of all base types;427

union types are supertypes of their members;428

literal types are the types of literals (e.g. the literal type of 5 is 5), and base types are429

the more general typical types of these literals (e.g. the base type of 5 is numeric)—that430

said, literal types are subtypes of their corresponding base types;431

function types are contravariant in their argument types, and covariant in their return432

types;433

table types have width subtyping: A table type T is a supertype of a table type T ′434

which has a superset of all of the fields of T (in other words, adding extra fields preserves435

the subtyping relationship);436

table types have depth subtyping only on const fields: If a table type T has a const437

field x with type Tx, and a table type T ′ has all the same fields as T except that field438

x has type T ′x, where T ′x <: Tx, then T ′ <: T (in other words, const field types may be439

specialized while preserving the subtyping relationship)440

C’s types are included in the Typed Lua type system (and made accessible to the user)441
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via the “Lua pointer” C type ptrL TC ; here, ptrL denotes a Lua pointer type, and TC is the442

C type being pointed to (e.g., ptrL int is a Lua pointer to a C integer). As explained above,443

Lua only ever deals with pointers to C values, and not C values themselves: the only access444

to C values is through this pointer. C’s type system is consequently entirely self contained,445

and is a strict subset of Lua’s with no ability to reference Lua types. In some sense, C is446

“plugged” in to Lua through the ptrL TC type.447

While we don’t formally model C, we do need some information on C functions in order448

to ensure that everything shakes out properly at runtime. For example, in our semantics449

we model C functions as black boxes with no function body, and we ask for parameter450

and return types for these functions to ensure that they are called with correctly-typed451

arguments, even though the function bodies themselves are not modeled. What this means452

is that we can make sure that the functions are called correctly, but are not responsible for453

their internal behavior. Indeed, FFIs typically export function types as part of their API454

and may not always export their code—this is the situation modeled by our semantics. This455

is also analogous to a user calling a library for which the source code is not provided, even456

when the library is written in the same language as the “library host” language.457

4.2 The Language458

In this section, we present a core calculus modelling Poseidon Lua, akin to FWLua [10]. We459

will discuss the language of expressions, both typed and untyped, before moving on to the460

typing judgment and reduction relation.461

We present two languages (in the same manner as Typed Lua, recall from Section 2.3.2):462

The language of untyped expressions E, also known as the language of runtime expressions,463

is the language that will actually reduce at runtime, and the language of typed expressions464

TE is the language that programmers will interface with and program in, with a few minor465

caveats which will be discussed in time. Roughly, the typed language corresponds to Typed466

Lua with our added C FFI, and the untyped language corresponds to a subset of Lua with467

additional expressions for C interoperation. We begin with the typed language TE .468

4.2.1 Typed Language469

Figure 2 presents the language of typed expressions, representing the language that the470

programmer will be interfacing with, with some notable exceptions. The Lua dereference471

and location update expressions, and the Lua location value are not explicitly written by the472

programmer; they are artifacts of our typing judgment which will be presented in Section 4.3.473

We sometimes refer to the aforementioned expressions as intermediate expressions; the typed474

language without these is the user language.475

These expressions largely describe a core calculus of Typed Lua, with the exception of476

the following C expressions:477

C downcast denotes the cast of expression te to C type TC ;478

C allocation allocates a C pointer to a value of C type TC ;479

C deref is used to dereference the C pointer expression te;480

C function describes a C function with type signature TC . The type TC is required by481

the type transformation to type these functions, as it cannot leverage the function body482

(as is the case with traditional functions);483

C pointer is a pointer to location n in the C store, with expected C type TC ;484
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te ::= vt value
| {s1 = v1, ..., sn = vn} table
| letx : T := te1 in te2 let binding
| x := te variable update
| locn := te location update
| deref te Lua dereference
| te1 op te2 binary operation
| te1(te2) function call
| x variable
| te1.te2 dot access
| te1.te2 := te3 dot update
| cast te TC C downcast
| callocTC C allocation
| derefC te C deref
| te1; te2 sequence

vt ::= nil nil value
| r register
| c constant
| locn Lua location
| λx : T.te Lua function
| cfun TC C function
| ptrnTC C pointer

r ::= regn table store loc

c ::= n number
| b boolean
| s string

op ::= +,−, ∗, / arithmetic
| ≤, <,≥, > order
| ∧,∨ boolean
| .. concatenation
| == equality

Figure 2 The language of typed expressions.

Access to C structs is done through the dot access and dot update expressions (so long as485

te1 is a C struct), and calling C functions is done through the function call expression486

(so long as te1 is a C function).487

Besides the C expressions, the typed language is standard or otherwise directly analogous to488

some untyped expression, which we will discuss in more detail shortly.489

Typed expressions will all compile into equivalent runtime expressions where the types490

have been erased. We explore this runtime language next.491

4.2.2 Untyped Language492

The untyped language describes the expressions which will reduce/evaluate at runtime.493

Generally speaking, they are analogous to some equivalent typed expression where the types494

have been erased. This language essentially describes a core calculus of Lua, based on495

FWLua (described in Section 2.3.3), though we added sequencing, let bindings, variables,496

table literals, and of course C interoperability. The full language can be found in Figure 3.497

FWLua is a core calculus of Lua, and a number of minor modifications were required498

when adapting FWLua to describe Typed Lua, particularly with tables. Recall that tables499

are the principle data structure in Lua; as discussed previously, FWLua desugars all of500

Lua’s table manipulation into the dual rawget and rawset constructs. For the purposes of501

formalization, we needed to relax FWLua’s extreme desugaring; one example of this being502

the table literal (table) expression. FWLua handles table construction incrementally: an503

empty table is first created and stored, and then it is populated with the values at the504

programmer’s discretion. Unfortunately, this scheme fails in typed languages, as the empty505

table is not a subtype of any non-empty tables, so we include a table literal to allow the506

expression of a full table when needed for assignments.507

Our function expression is unchanged from FWLua, though we must include a new C508

function expression to allow FFI calls. Unlike the Lua function, which is a traditional lambda509

expression, the C function has far less information in it—indeed, it has no function body!510
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e ::= v value
| {s1 = v1, ..., sn = vn} table
| rawget e1 e2 table select
| rawset e1 e2 e3 table update
| e1 op e2 binary operation
| e1(e2) Lua fun. appl.
| x variable
| x := e var. assignment
| locn := e location update
| deref e Lua dereference
| letx := e1 in e2 let binding
| cget e nTC C store access
| cset e1 n e2 TC C store update
| ccall e1 e2 TC β C function call
| calloc TC β C allocation
| cast e TC β C downcast
| e1; e2 sequence
| errβ error expression

v ::= nilL nil value
| r register
| c constant
| locn Lua store loc.
| ptrL nTC C store pointer
| λx.e Lua function
| cfun C function

vC ::= ptrC n C store pointer
| n C number literal

Figure 3 The language of untyped, runtime expressions.

Most of the information needed for a C call is stored in the C function call expression itself.511

For accesses into C structs, we have the cget and cset expressions, analogous to rawget512

and rawset. cget and cset are also used for accessing and writing to C pointers, which will513

be discussed in more detail in Section 4.4. In cget e nTC , e is a pointer into the C store, n514

is the offset of the access, and TC is the type that the cget is expecting to read. Similarly515

in cset e1 n e2 TC , e1 is a pointer into the C store, n is an offset, e2 is the value to write,516

and TC is the type that the cset is expecting the store to contain at the referenced pointer517

(recall that we store type information for each pointer in the C store).518

To call functions, programmers may write a standard function application as te1(te2) in519

the typed language of Figure 2. The type transformation can, depending on the type of te1,520

transform the application into either a Lua function application or a C call. The Lua function521

call expression e1(e2) is straightforward, so let us focus on the C call: In ccall e1 e2 TC β, e1522

is the C function being called, e2 is the argument to that function, TC is the function’s type,523

and β is an identifier associated with the call (its line of code). The type is necessary since524

C calls exhibit nondeterministic behavior, and we can leverage TC to reason about the value525

that is returned from the function. The line of code information β is related to taint, which526

we will describe fully when giving the semantics of the calls.527

There are also a few expressions for functionality unique to C. As one might expect,528

calloc TC β allocates something of C type TC , and β is the identifier uniquely associated with529

the allocation, which allows a trace-back if a runtime error occurs. cast e TC β downcasts530

the pointer e to type TC , and again β is a unique identifier associated with the cast.531

4.3 Typing Judgment532

Making a distinction between typed and untyped languages (or user and runtime languages)533

makes sense in many optionally or gradually typed languages, where a typed language is534

compiled into an untyped language which will be the one executing at runtime (recall the535
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two stage compilation process described in the context of Typed Lua in Section 2.3.2). In536

these settings the typing judgment often needs to be modified to connect the languages537

together. We define a type transformation relation, a modification of the standard typing538

judgment relation, which transforms/compiles a typed expression into its corresponding539

untyped expression:540

Γ,K ` te : T  e (1)541

Here, Γ is the typing environment, which assigns types to variables, and K is the typing542

context, containing information about the various store typings. Our runtime environment543

contains three stores: a table store for Lua tables, a C store for C values, and a variable544

store for variables. K can thus be broken up into three store typings: ΣT describing the545

table store, ΣC for the C store, and ΣV for the variable store. Roughly speaking, the type546

transformation takes a typed expression te and “compiles” it into an untyped expression e,547

assigning to it type T in the context of Γ and K.548

In the following typing rules, some auxiliary functions will appear in the preconditions to549

simplify the notation. They are as follows:550

goodLayout (n, TC ,ΣC) checks to see if location n in the C store typing ΣC represents551

type TC . If TC is a primitive type or a pointer type, this succeeds if ΣC(n) = TC . As for552

structs, recall that they are laid out contiguously in the store: If TC is a struct type (for553

example, {s1 : T 1
C , ..., sn : Tn

C}), then each of the fields must be present in ΣC with the554

correct type, i.e. for all fields si we must have ΣC(n+ i) = T i
C .555

offsetForType (s, TC) computes the offset of member s in structure type TC . Our formal-556

ization of the C store lays out structs according to their type, and this function relates557

their type (TC) to their layout in the store.558

As we mentioned, in Poseidon Lua, Lua can interact with C in the following ways:559

allocation and access of C data, C function calls, and casting of C pointers. In this section560

we will focus on the typing rules for the expressions describing this FFI. The full typing rules561

are given in Appendix A.1.562

We will first consider the rule for allocation of C data.563

validType(TC) β unused
Γ,K ` calloc TC : ptrL TC  calloc TC β

(TT_CAlloc)

In Poseidon Lua, programmers can allocate Lua pointers to C data types (here, TC),564

provided that the type is valid for allocation. For this to be the case, TC must either be565

a primitive type, pointer type, or struct (itself recursively made up of valid types). This566

prevents programmers from making nonsensical statements, such as allocating C functions567

in Lua. The β here is needed when allocating C pointers: In C, allocating a pointer to a568

pointer can cause issues if the innermost pointer is not properly initialized, due to the default569

values that C inserts (pointer values are often initialized to 0, which is an invalid memory570

address for C to access). This semantics will be dealt with in due course, and the inclusion571

of β in the calloc expression is crucial to achieving the desired behavior—this will be further572

discussed in Section 4.4.573

Having seen C allocation, we turn our attention to typing (Lua pointers to) C values:574

n < length(ΣC)
goodLayout(n, T,ΣC)

Γ, (ΣT ,ΣC ,ΣV ) ` ptrL nTC : ptrL TC  ptrL nTC

(TT_Lua_Ptr)
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C values are always “hidden behind” a Lua pointer in Poseidon Lua, and so from Lua’s575

point of view all C values have some ptrL type. In the expression ptrL nTC , n is the location576

referenced by the pointer, and TC specifies the type that the location is intended to have.577

The type information is required since structures do not directly inhabit the C store, and578

so accessing a structure would be impossible with a simpler rule, since ΣC(n) will never579

have a struct type; the type information allows us to check to see if location n does in fact580

correspond to TC using the goodLayout auxiliary function, and only allow the pointer to581

type if it does. The typing rule for dereferencing these pointers follows.582

Γ,K ` te : ptrL TC  e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL  cget e 0 TC

(TT_Var_C_Deref)

Here, beyond ensuring that te is in fact a Lua pointer, we need to ensure that it is a583

pointer to a type that we can dereference. The C store is made up entirely of primitives584

and pointers, so we disallow dereferencing of things of another type (for example, we cannot585

dereference a C function pointer). Because our type transformation deals with Lua types586

only, we need to coerce TC into a Lua type to type this expression: Indeed, at runtime the587

dereference will coerce the value it obtains from the C store, and the coercion at this level588

allows such an expression to type. Note also the untyped expression corresponding to the589

dereference: cget can play the part of either simple dereferencing and also struct field access,590

depending on the value of its offset parameter (here, 0). An offset of 0 indicates that we are591

either getting the first member in a struct, or simply dereferencing a pointer to non-struct592

data.593

We consider C functions next.594

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Here, note that the C function expression contains the whole type of the function, and595

without a body the function trivially types. Type information is necessary because we don’t596

model C’s semantics: In typical typing rules for functions, the return type can be determined597

thanks to the function body, and we have no such body to rely on here. In some sense, this598

is in line with what one would expect when dealing with FFIs, since part of their API is the599

full type of the exported functions.600

Let us consider how one calls these functions:601

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T  e2 β unused

Γ,K ` te1(te2) : T ′  ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

In rule TT_C_Fun_Appl, we type the function application according to its return type.602

Note the T ′ in the compiled (on the right of the  ) C call: The untyped call requires the603

return type for reduction to be possible, and we will discuss this in more detail in Section 4.4.604

Since C calls are sources of taint, we include β as an identifier uniquely associated with the605

call, which corresponds to the line of code occupied by the call. In the event of a failure, we606

can determine which call (and, thus, which function handle) is to blame.607

We will now consider reading from and writing to C structs. First, reading:608
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Γ,K ` te1 : ptrL T1  e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)

Here, if te1 types to ptrL T1, T1 is a struct type, and te2 types to a string literal s which609

is a field name in struct T1, then the C struct member access types. Note that te1 must610

be a Lua pointer to a C struct, as C structs themselves are not allowed in Poseidon Lua611

unless they are behind a Lua pointer. Also, the resulting cget is given the offset of field s in612

T1 (determined with the offsetForType auxiliary function), since the C store lays out struct613

members linearly in an array form.614

Second, C struct member update:615

Γ,K ` te1 : ptrL T1  e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

As before, if te1 is a Lua pointer to a C struct type T1, and te2 is a string s which is a616

member of that struct, and te3 is appropriately typed, we can type the C struct update. We617

again emit an offset (in place of te2), which the cset will use when writing to the C store.618

Finally, Poseidon Lua allows C values to be downcast, and they type as follows:619

Γ,K ` te : ptrL T
′
C  e β unused

Γ,K ` ccast te TC : TC  ccast e TC β
(TT_C_Cast)

Here, we notice that casting must be done through the Lua pointer, and so long as TC is a620

C type we allow the cast to go through. There is no mention of TC and T ′C being compatible621

types, as C freely allows casting of pointers, and the cast merely changes the way that the622

bits referred to by the pointer are read. As with previous mentions of β, it features here to623

allow errors caused by the cast to be easily traced back to the cast.624

At this point, we have explored each of the typing rules associated with Poseidon Lua’s625

C FFI. In many cases, such as in TT_C_Fun_Appl, these rules transferred some type626

information to their analogous runtime expressions in order to drive the runtime functionality627

of the system. We discuss reduction of runtime expressions next.628

4.4 Operational Semantics629

The reduction relation on untyped expressions, describing the execution of programs, is:630

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V (2)631

Here, e and e′ are expressions in the untyped language, σT and σ′T are table stores, σC632

and σ′C are C stores, σV and σ′V are variable stores. At a high level, the table store σT is633

a list of Lua tables, the variable store σV is a list of values, and finally the C store σC is634

a list of (v, TC , β?) triples, where v is a C value, TC is its type, and β? is optional taint635

information (∅ represents no taint, or a clean location). As we mentioned in Section 3.2, the636

unusual inclusion of type information in the runtime C store is required to properly model C637

downcast semantics.638

To simplify notation, we sometimes write the reduction relation as:639

e /S → e′ /S ′ (3)640
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We refer to S and S ′ above as the runtime environment; the set of all the stores making641

up the state/context of the reduction.642

It will be necessary to differentiate between C stores based on whether or not they are643

tainted; for this purpose, we say that a C store is clean if none of the elements of the store644

are themselves tainted. To simplify discussion of tainted environments, we say that a runtime645

environment is clean if its C store is also clean.646

At the very highest level, we are formalizing a system wherein Lua code can interface647

with C in the following manner: allocating C data, reading from and writing to some shared648

memory with C, downcasting C values, and calling C functions.649

Our formalization of Lua is based on FWLua [10], and we adapted their big-step semantics650

to a more standard small-step equivalent. For our discussion of FWLua, see Section 2.3.3.651

In order to mechanize our formalization, some simplifying modifications to FWLua were652

required, namely the promotion of variables from syntactic sugar to full-fledged language653

members. Of course, Lua allows you to declare and use variables, but FWLua desugars654

variables into access to a special store carried around at runtime. Poseidon Lua requires that655

FFI calls be made only from well-typed code, and so we adapted the type system of Typed656

Lua [14], with some modifications made possible by our simplified semantics for Lua.657

Notable in Poseidon Lua is the merger of Typed Lua’s and C’s type systems through the658

Lua pointer type, and consequently the intermixing of values from both Lua and C. Lua659

makes reference to C values through the Lua pointer expression, and can both access and660

change the data contained in these pointers, as well as cast them to some C type. Lua may661

also allocate Lua pointers to C values through the calloc expression, without needing to662

make a ccall.663

We will now turn our attention to the operational semantics of Poseidon Lua, with a664

focus on the C FFI, mirroring discussion of the typing judgment in Section 4.3. The full665

reduction rules are given in Appendix A.2. We start with the semantics of allocating C data.666

Consider:667

n = length (σC)
σ′C = σC + layoutTypeAndTaint (TC , β)

callocTC β / σT / σC / σV → ptrnTC / σT / σ
′
C / σV

(R_CAlloc)

The callocTC β expression allocates enough memory in the C store σC to accommodate668

a value of type TC . The function layoutTypeAndTaint lays out type TC and taints pointer669

members (as per our earlier discussion in Section 3.2). If TC either is or contains a C pointer670

type, then we taint that location (with taint information β) to indicate to our system that671

its behavior is undefined until it is successfully accessed or written to. If TC is a primitive672

or pointer type, then we simply produce a triplet containing a default value (this is 0 for673

pointers), the type TC , and taint if TC is a pointer type, and if TC is a struct, we lay out674

each of its members in a similar fashion. Following allocation, a C pointer with the location675

of the beginning of the newly allocated memory is produced.676

Compared with C allocation, C calls have intricate semantics as we do not attempt to677

model the bodies of arbitrary C functions. Instead, we treat the C functions like black boxes,678

and consequently C function calls exhibit nondeterministic semantics, as any well-typed C679

call can either succeed or fail if the function body is made up of arbitrary C code (recall that680

we consider a call successful if it returns to executing the host language with some value681

of the expected type). In the event of successful execution, we concern ourselves with the682

return value and the call’s potential effects on the rest of the C data. Recall our discussion683

that even if a call is successful, the function code might have altered the C store in a variety684
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of ways (such as freeing some existing memory), and we must account for this possibility.685

We will first consider the reduction rule for a successful C call.686

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

Here, ccall cfun v2 ct2 β calls a C function cfun with argument v2. In this case, the call687

succeeds, and makeValueOfType (ct2) gives us v, something of type ct2. Of course, since it’s688

possible that the call tampered with the C store, we taint the store with taint information689

β, corresponding to the line of code of this function call. This notifies subsequent accesses690

to these memory locations of potential tampering, which modifies the semantics of those691

accesses. C function calls can also fail:692

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

To capture that both success and failure are possible outcomes, we ensure that the693

premises of both rules are simultaneously satisfied: When all of R_CCall_Worked’s694

preconditions are met, so are R_CCall_Failed’s (and vice-versa). The err β expression695

is the result of the failing call, and indicates through taint information β which call is to696

blame for the failure.697

Having seen the intricacies of C calls, we will turn our attention to the semantics of698

casting C pointers, another source of taint. For brevity, we only present the rule for casting699

a clean location (the other rule is not notably different). Consider:700

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

Here, the location n in σC is updated with the new type T ′C and taint information701

associated with the cast (thanks to the update auxiliary function—update(s,l,v) reads as702

“update s at location l with value v”). In C, casting a pointer merely changes how the bits703

being pointed to are read, and the cast may even cause an error; we achieve similar semantics704

with taint. When attempting to read location n in σC after it was cast, taint indicates that705

the access should be nondeterministic. To keep our system as general as possible, we don’t706

attempt to model the cast per se, and the next read will replace v with a new value of type707

T ′C if successful, or fail with an error. We discuss the semantics of accesses next.708

Thus far, we focused on the introduction of taint and fairly direct sources of nondetermin-709

ism, and we will turn our attention to taint’s effect on the semantics of our system, as well as710

how it can be removed from the runtime environment. As an example, recall our semantics711

for C casts: When casting a location to some type TC , the location becomes tainted. Now,712

imagine that the next use of the location is to store something of type TC in it; if this write713

succeeds, from then on we are sure about the value present at the location. Such an operation714

is said to clean the taint from the location; in our formalization, taint represents uncertainty715

about a C value, and once we become certain of it (e.g., we have accessed the value and no716

errors have occurred) we can safely remove the taint.717

In more formal terms, the presence of taint at a location in σC indicates that accessing718

that location yields nondeterministic results. To capture this, we ensure that a read or719
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write to a tainted location can reduce to more than one expression under the same premises;720

namely, said read or write can succeed or fail.721

Consider the following semantics for accessing a clean location in σC :722

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)

Here, the expression cget (ptrL nT
′
C) o TC accesses σC at location n with offset o, and723

is expecting something of type TC . In this reduction rule, location n + o in σC is clean,724

and so the (well-typed) store access cannot fail. The access steps to vout, which is the Lua725

equivalent of the C value contained in σC , determined through the coerceToLua auxiliary726

function. Note that the pointer’s type (T ′C) does not necessarily need to match the expected727

type of the access (TC); this is because cgets can be used for struct member access, where728

T ′C would be a struct type and TC would be the type of the member.729

coerceToLua (vC) is a function which takes a C value v and coerces it to a Lua value. If730

vC is a C integer, then it is coerced to a Lua constant with the same numeric value. If vC731

is a C pointer ptrC m ct, then it is coerced into a Lua pointer ptrLua m ct (to the same732

location). Otherwise, the coercion fails.733

Note the presence of a type TC in the cget expression. A condition of reading (and734

writing) from σC is that the type specified for the read must match the type held in σC .735

This allows us to enforce the correct use of downcast locations, as the cast changes the type736

in σC , and future reads (and writes) must specify the new type.737

We will now consider accesses to tainted locations, which can either fail or succeed. First,738

consider a successful access:739

σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅) vout = coerceToLua(v′))

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

Here, we access σC at location n with offset o, and are expecting something of type TC740

as before. However, σC(n+ o) is tainted, resulting in nondeterminism (i.e. we do not know741

whether an access to this value will fail or succeed). In this reduction rule, we deal with742

the case of a successful access to tainted locations. Here, a successful access returns some743

value of the appropriate type (thanks to the makeValueOfType auxiliary function). The C744

store at n + o is cleaned and updated with the new value; from this moment on, use of745

this location is deterministic. Note that the value was observed to be something of type746

TC , though not necessarily the same value that was in that location before the C call which747

initially necessitated the addition of the taint.748

The following reduction rule deals with failing access:749

σC(n+ o) = (v, TC , β)
cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)

Here, the access fails, reporting the taint information identifying the call which tampered750

with this data. Note that satisfaction of rule R_CGet_Taint_Works’s preconditions751

implies satisfaction of this rule’s preconditions—this ensures that access to tainted locations752

can fail in any situation that it can succeed.753

Similar to cget, cset has nondeterministic semantics when dealing with tainted locations.754

First, consider writes to clean locations:755
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σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)

In the expression cset (ptrL nT
′
C) o v2 TC , we write v2 to location n with offset o in σC ,756

and we expect the location to have type TC . Since location n+ o in σC is clean, the store757

update cannot fail.758

Note that we must first coerce v2 to a C value vput to store it in σC . coerceToC (v2) is759

similar to the coerceToLua function, though it coerces Lua values to C instead. For example,760

if v2 is a numeric constant, the function produces a C integer with the same numeric value,761

and if v2 is a Lua pointer ptrL m ct, an equivalent C pointer ptrC m ct is produced.762

The rule for csets on tainted locations is given below:763

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

Here, we again coerce v2 to a C value vput to location n with offset o in σC , and we764

expect the location to have type TC . However, σC(n + o) is tainted, and so we are in a765

state of nondeterminism. In rule R_CSet_Taint_Works, the write succeeds: We update766

σC(n+ o) with the new value vput and clean the taint. Of course, failure is always an option:767

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

In this parallel case to T_CSet_Taint_Works, the write fails, and reports the taint768

information stored at σC(n+ o).769

By now, we have explored each of the reduction relations related to Poseidon Lua’s C770

FFI. In Section 3, we claimed that even without a model of C, as is the case in our system,771

the merger of the type systems of C and Typed Lua allows us to prove meaningful and772

interesting results about the language as a whole. The next section presents the results which773

we have proved, and sketches the proofs.774

4.5 Proofs775

There are two major results that we would like to prove about our semantics of Poseidon776

Lua. First, we would like to show some form of soundness, though clearly we can’t have777

traditional type safety due to interoperation with C. Even so, we designed our semantics in778

such a way as to track C’s effect on the overall system, and we can leverage that to show779

(conditional) soundness of the host language. Note that our proofs are mechanized in Coq,780

and this code in included in the artifact; a brief sketch of each proof is given here, but for781

the full details refer to the code.782

We start with a sketch of preservation.783

I Theorem 1 (Preservation). For all K, te, T , e, S, and S′ such that {},K ` te : T  e,784

e / S → e′ / S′, S is well-typed with respect to K, and both environments S and S′ are clean,785

then there exists store typing K ′, typed expression te′, and type T ′ such that {},K ′ ` te′ :786

T ′  e′ with T ′ <: T , S′ is well-typed with respect to K ′, and K ′ extends K.787
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Proof sketch. Standard proof by induction on the typing derivation {},K ` te : T  e.788

Any case where the error expression is reached is in violation of the runtime environments S789

and S′ being clean, as taint is required in order to get an error. J790

Essentially, the statement of preservation for Poseidon Lua differs from traditional791

statements of preservation in the stipulation that the runtime environments S and S′ be792

clean. Clean environments ensure that the C error expression cannot be reached, and that793

the semantics are deterministic, as it’s the presence of taint which begets nondeterminism.794

We can similarly show progress.795

I Theorem 2 (Progress). For all K, te, T , e, and S such that {},K ` te : T  e, S is796

well-typed with respect to K, and S is clean, then either e is a value, or there exists clean797

environment S′, and expression e′ such that e / S → e′ / S′.798

Proof sketch. Another standard proof by induction on the typing derivation {},K ` te :799

T  e. As with preservation, any case where the error expression is reached is in violation800

of the runtime environments S and S′ being clean. J801

As was the case in preservation, the statement of progress here is distinguished by the802

requirement that runtime environment S be clean. With a clean S′, progress connects803

cleanly with preservation, allowing us to show soundness of Poseidon Lua contingent on clean804

environments. A sketch of soundness follows.805

I Theorem 3 (Soundness). For all K, te, T , e, and S such that {},K ` te : T  e, either806

e diverges, or there exists clean environment S′, and value v such that e / S →∗ v / S′ and807

all intermediate environments are clean.808

Proof sketch. A standard proof, which basically amounts to applications of progress and809

preservation, and the intermediate environment of each step in the chain of reductions is810

guaranteed to be clean by construction (in a sense, progress generates clean environments). J811

Roughly speaking, Theorem 3 states that Poseidon Lua programs in clean environments812

do not get stuck. The restriction to clean environments is due to the guest language, C,813

potentially interfering with the host language: C calls taint the environment, and accessing814

tainted values can lead to a stuck state even in well-typed programs. This isn’t to say815

that you can’t use C at all, as allocating simple pointers and structs does not taint the816

environment, and it is equally valid if some taint was once present and had been cleaned by817

successful accesses or writes.818

Unfortunately, our statement of soundness doesn’t say much for the realistic use case819

of Poseidon Lua (and C FFIs in general), as these systems are designed to call C code.820

That said, we are not without options: as before, our inclusion of taint allows us to reason821

about C’s effects on the overall language. Crucially, failing C reductions result in the error822

expression err β, and the taint information β can be used to identify the true culprit for the823

crash, even if that culprit was some earlier, seemingly unrelated expression. In short, we can824

show that C is to blame for failures in well-typed Poseidon Lua programs.825

I Theorem 4 (Always Blame C). If the error expression err β is reached, then there exists826

some C expression which is to blame.827

Proof sketch. Effectively, this can be shown by construction of our semantics. err β can828

only be reached through reduction from a C expression, and the only way that such a829

reduction can occur is if there was some taint in the runtime environment. In err β, β is830
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1 p = calloc Point
2 cCall1 (p)
3 cCall2 (p)
4 cCall3 (p)
5 print (p.x)
6
7

p = calloc Point
cCall1 (p)
print (p.x)
cCall2 (p)
print (p.x)
cCall3 (p)
print (p.x)

Figure 4 Illustrative example.

taint information which identifies some C call, cast, or allocation (as those are the only831

expressions which can taint), and it’s the identified expression that will be blamed. J832

At a high level, Theorem 4 indicates that runtime errors in well-typed Poseidon Lua833

are attributable to C. This signifies that our interoperation scheme does not allow for any834

additional errors which are the fault of the host language, and any errors introduced by the835

C FFI can be traced back to C.836

Taken together, Theorems 3 and 4 are analogous to soundness of static code and the837

gradual guarantee in gradually typed languages [26][23], though the context is otherwise quite838

different. This similarity betrays a certain connection between gradual typing and language839

interoperation, a connection equally noted by aforementioned work on linking types [21].840

As we know, program execution in a tainted environment is nondeterministic. In this841

state, many executions are possible, and they can be categorized as follows: the program842

either terminates successfully, terminates unsuccessfully, or it executes until the environment843

is cleaned of taint. Interestingly, executions which clean the taint actually reclaim soundness,844

and are deterministic at least until the next C call.845

We can show one other interesting result about Poseidon Lua programs which call C.846

First, recall that only clean locations gain taint when a C call occurred; this ensures proper847

error tracking in the event of multiple C calls possibly tainting the same data. For an848

illustrative example, consider the code in Figure 4.849

Assume the leftmost program fails at the access to p.x, blaming cCall1 and identifying850

it as the start of our search; here, we cannot say for sure which of cCall1, cCall2, or cCall3851

mucked with p.x. However, we can generate a modified program which can isolate the852

faulty C call. Consider the snippet on the right. If cCall1 was the culprit of the failure,853

then the access immediately following it will fail. If not, and cCall2 was at fault, then the854

access immediately after cCall2 will fail. If neither of these are true, then cCall3 is at fault,855

causing the final access to p.x to fail. This amounts to fault localization: When we are856

uncertain about which of a number of unsafe operations are at fault for a runtime failure, we857

can generate a new program which isolates the faulty operation.858

5 Poseidon Lua: Implementation859

As a demonstration of the practicality of these semantics, they have been implemented as860

modifications to Lua 5.3.3 [13] and Typed Lua [14]. Lua is extended to provide low-level861

interfaces, and Typed Lua is extended to make use of them with C types. The extensions to862
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Lua have no guarantees of safety or correctness on their own, and are treated as an internal863

implementation language for the modifications of Typed Lua. Typed Lua is extended with C864

types, through the addition of a C pointer in Lua which refers to C data (as explained in865

Section 4.1).866

Typed Lua’s grammar is extended as follows:867

T ::= (all existing Typed Lua types) | PtrType868

869

PtrType ::= ptr ptr* PtrTargetType870

871

PtrTargetType ::= CVoidType | CPrimitiveType | Name872

873

CType ::= CPrimitiveType | PtrType874

875

CVoidType ::= void876

877

CPrimitiveType ::= char | int | double878

879

Statement ::= (all existing Typed Lua statements) | StructDeclaration880

881

StructDeclaration ::= struct Name StructIdDecList end882

883

StructIdDecList ::= StructIdDec StructIdDec*884

885

StructIdDec ::= Id : CType886

887

Expression ::= (all existing Typed Lua expressions) | CallocExpr888

889

CallocExpr ::= calloc ( PtrTargetType )890

T, in particular, is the existing Typed Lua non-terminal for types. As a consequence, any891

variable, parameter or field in Poseidon Lua may contain a pointer to a C value, but may not892

contain a C value directly. All other types are unmodified, and behave as they do in Typed893

Lua. As in C, the Poseidon Lua compiler assures that every type named in a C pointer type894

has a corresponding struct declaration, and that no name corresponds to multiple structure895

declarations, and as in C, the struct declaration defines the memory layout of objects of that896

type. Unlike in C, declarations are not required to precede uses of the type they declare. A897

simple wrapper for calloc is provided to assure that allocations are always of the correct898

size. For this prototype, we implemented only chars, ints and doubles, but there is no899

conceptual limitation on implementing any other primitive type. For convenience, Poseidon900

Lua also provides syntax and semantics for C arrays, but they are not discussed in this work.901

This modified Typed Lua compiles to Lua, extended with intrinsics to manipulate memory902

directly. Typed Lua code which doesn’t use C features is unchanged: That is, if C ptrs903

are not used, calloc is not used, and the code passes type checking, then it compiles into904

identical Lua code without type annotations or declarations (i.e. the types are erased).905

Lua already provides a datatype, “light user data”, intended for storing pointers to C data,906

and this datatype is used for all ptr-typed variables and fields. This is why Lua was used907

for this prototype. However, Lua’s light user data is completely opaque to Lua code: In908

order to use it, one must implement a C interface, from which the underlying pointers are909
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struct House
num_rooms : int

end
local house_1 : ptr House = calloc (House)
house_1.num_rooms = 6

Figure 5 Simple Poseidon Lua code example

local house_1 = CS_calloc (4)
CS_storeInt (house_1 , 0, 6)

Figure 6 Simple Lua code example compiled from Poseidon Lua

exposed. Our principle extensions to Lua are low-level operators to directly manipulate910

memory through these pointers: CS_loadChar, CS_storeChar, and similar for ints, doubles911

and pointers. In addition, CS_calloc and CS_free are provided to give direct access to912

C’s calloc and free, a literal CS_NULL corresponding to C’s NULL is provided to check for913

errors, and CS_loadString and CS_storeString are provided to convert between C strings914

(0-terminated char arrays) and Lua strings. “CS” in this context is an abbreviation of “C915

Semantics”.916

Each of these low-level operators converts data between Lua’s native data types and C’s,917

given a C pointer stored in a Lua light user data, and an offset. The conversions themselves918

are trivial. None of these operators are intended for direct use by end users. Instead, Poseidon919

Lua’s Typed Lua implementation compiles code which uses C types—that is, code which920

accesses members of ptr-typed variables or fields—to Lua which uses the correct operators.921

Internally, each low-level operator is compiled to its own opcode in Lua’s bytecode.922

As a simple example, the Poseidon Lua in Figure 5 compiles to the Lua in Figure 6.923

As the changes in our semantics are concerned principally with C data, rather than C924

functions, we use a modified luaffifb for the function component of the interface. Poseidon925

Lua’s modified luaffifb is changed only by replacing their wrapper objects with Lua’s light926

user data, which can then be handled by Typed Lua types. The jump between C and927

Lua code incurs much less overhead than wrapping C data for use in Lua, so no further928

modifications are necessary.929

5.1 Performance930

Poseidon Lua code which doesn’t use C types is just regular Typed Lua: when compiled into931

Lua code this will be identical to the equivalent Typed Lua program being compiled into Lua,932

and so will not display any performance difference. Thus, to compare the performance of933

Poseidon Lua against luaffifb, we need benchmarks which particularly measure the access to934

structured data. Unfortunately, we know of no benchmark suite intended specifically for this935

purpose, so instead we ported four benchmarks from the Computer Language Benchmarks936

Game [5]. The subset of benchmarks from CLBG were selected because they had Lua versions937

which used structured data types. In each case, they were rewritten so that every structured938

datatype used a C struct, the shape of which was taken from the C version of each benchmark.939

In Poseidon Lua, these structs were represented as struct declarations, and in luaffifb, as940

their dynamic declarations. In both cases, no actual C calls are made: The data is stored in941

C-compatible structures, and accessed through them, but the benchmark code is entirely942
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Poseidon Lua luaffifb Lua
Benchmark Time (s) Std. Dev. Time (s) Std. Dev. Time (s) Std. Dev.

binary-trees 18.8 0.447 202.4 2.97 22.0 0.707
n-body 4.0 0 40.6 1.14 4.0 0.707
spectral-norm 108.2 0 270.8 2.59 105.6 0.894
fannkuch-redux 66.8 2.95 528.8 9.68 55.0 0

Figure 7 Comparison of performance results over various benchmarks

Lua. We compare the performance of luaffifb, which uses wrappers, to Poseidon Lua, which943

does not. We also include the original Lua benchmark, which does not use C structured944

data, for reference, although we expect no significant performance difference with respect945

to it. The results and standard deviations are shown in Figure 7. As expected, Poseidon946

Lua shows a substantial speedup over luaffifb, due to the absence of allocated wrappers at947

runtime. Our performance is close to original Lua, though in some benchmarks the cost of948

converting between C’s primitive types and Lua’s overwhelms other benefits.949

The benchmarks were performed on Lua 5.3.3 as well as our modified version thereof, on950

a quad-core 1.8GHz 64-bit Intel desktop PC running Ubuntu 14.04.3LTS.951

6 Conclusions952

In this paper, we presented a framework for reasoning about C FFIs without fully modelling953

the guest language. This framework relies on making the data interface of the FFI static by954

combining the type systems of the host and guest languages, and doesn’t require a model of955

the guest language beyond its direct interactions with the host. We also saw how making the956

data interface static eliminates the need for burdensome wrappers in FFI implementations,957

as the host language can statically check its own use of the FFI instead of needing to rely on958

the dynamic checks in the wrappers.959

To showcase our framework, we presented Poseidon Lua, a Typed Lua C FFI. We gave the960

formal semantics of the C FFI in Poseidon Lua, and even without modelling C were able to961

guarantee some level of soundness of the host language, as well as prove that well-typed host962

language code is not to blame for errors that occur. We also presented an implementation of963

Poseidon Lua, and confirmed that making the data interface static does indeed improve the964

performance of the FFI.965

While we focus on a C FFI, in principle our approach also works for other choices of guest966

language, as we deliberately avoid modelling C. That said, our model of C’s memory and967

C’s types in the host language make languages with similar memory behavior to C’s most968

suitable, though one could plug in any type system and model memory differently if they are969

so inclined. We focused on a C FFI because they are very common, and prove particularly970

challenging to reason about with traditional methods.971
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A Appendix1038

A.1 Full Typing Rules1039

validType(TC) β unused
Γ,K ` calloc TC : ptrL TC  calloc TC β

(TT_CAlloc)

n < length(ΣC)
goodLayout(n, T,ΣC)

Γ, (ΣT ,ΣC ,ΣV ) ` ptrL nTC : ptrL TC  ptrL nTC

(TT_Lua_Ptr)

Γ,K ` te : ptrL TC  e

validForCDeref (TC) TL = coerceCType(TC)
Γ,K ` derefC te : TL  cget e 0 TC

(TT_Var_C_Deref)

Γ,K ` cfun (ct1 →C ct2) : (ct1 →C ct2) cfun
(TT_C_Function)

Γ,K ` te1 : (T →C T ′) e1
Γ,K ` te2 : T  e2 β unused

Γ,K ` te1(te2) : T ′  ccall e1 e2 T
′ β

(TT_C_Fun_Appl)

Γ,K ` te1 : ptrL T1  e1 structType(T1)
Γ,K ` te2 : s e2 s ∈ T1 n = offsetForType (s, T1)

Γ,K ` te1.te2 : T1(s) cget e1 n T1(s)
(TT_C_Dot_Access)

Γ,K ` te1 : ptrL T1  e1 structType (T1)
Γ,K ` te2 : s e2 Γ,K ` te3 : T1(s) e3

s ∈ T1 n = offsetForType (s, T1)
Γ,K ` te1.te2 := te3 : value cset e1 n e2 T1(s)

(TT_C_Dot_Update)

Γ,K ` te : ptrL T
′
C  e β unused

Γ,K ` ccast te TC : TC  ccast e TC β
(TT_C_Cast)

∀ i, fi = si : Ti ∨ fi = const si : Ti ∀ i, Γ,K ` tvi : Ti  vi

Γ,K ` {s1 = tv1, ..., sn = tvn} : {f1, ..., fn} {s1 = v1, ..., sn = vn}
(TT_Table)

http://doi.acm.org/10.1145/3133841.3133848
http://doi.acm.org/10.1145/3133841.3133848
http://doi.acm.org/10.1145/3133841.3133848
http://dx.doi.org/10.1145/3133841.3133848
https://docs.racket-lang.org/ts-guide/
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Γ,K ` te1 : T  e1
Γ + {x 7→ T},K ` te2 : T ′  e2

Γ,K ` letx : T := te1 in te2 : T ′  letx := e1 in e2
(TT_Let)

x ∈ Γ
Γ,K ` x : Γ(x) x

(TT_Var)

n < length(ΣT )
Γ, (ΣT ,ΣC ,ΣV ) ` regn : ΣT (n) regn

(TT_Reg)

Γ,K ` te : ref T  e

Γ,K ` deref te : T  deref e
(TT_Var_Deref)

x ∈ Γ
Γ,K ` te : Γ(x) e

Γ,K ` x := te : T  x := e
(TT_Var_Assign)

Γ, (ΣT ,ΣC ,ΣV ) ` te : ΣV (n) e

Γ, (ΣT ,ΣC ,ΣV ) ` locn := te : T  locn := e
(TT_Loc_Update)

Γ + {x 7→ T},K ` te : T ′  e

Γ,K ` λx : T.te : (T →L T ′) λx.e
(TT_Function)

Γ,K ` te1 : (T →L T ′) e1
Γ,K ` te2 : T  e2

Γ,K ` te1(te2) : T ′  e1(e2)
(TT_Lua_Fun_Appl)

Γ,K ` te1 : T1  e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te1.te2 : T1(s) rawget e1 e2
(TT_Dot_Access)

Γ,K ` te1 : T1  e1 tableType (T1)
Γ,K ` te2 : s e2 s ∈ T1

Γ,K ` te3 : T1(s) e3

Γ,K ` te1.te2 := te3 : value rawset e1 e2 e3
(TT_Dot_Update)

Γ,K ` te : T  e T <: T ′

Γ,K ` te : T ′  e
(TT_Subsumption)

c constant
Γ,K ` c : c c

(TT_Const)

Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {+,−, ∗, /}

Γ,K ` te1 op te2 : number e1 op e2
(TT_Binop_Arith)
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Γ,K ` te1 : number e1 Γ,K ` te2 : number e2
op ∈ {<,≤, >,≥}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Order)

Γ,K ` te1 : boolean e1 Γ,K ` te2 : boolean e2
op ∈ {∧,∨}

Γ,K ` te1 op te2 : boolean e1 op e2
(TT_Binop_Bools)

Γ,K ` te1 : string e1
Γ,K ` te2 : T2  e2

T2 ∈ {string,number}
Γ,K ` te1 .. te2 : string e1 .. e2

(TT_Binop_String)

Γ,K ` te1 : T1  e1
Γ,K ` te2 : T2  e2

Γ,K ` te1 == te2 : boolean e1 == e2
(TT_Binop_Eq)

Γ,K ` te1 : T1  e1
Γ,K ` te2 : T2  e2

Γ,K ` te1; te2 : T2  e1; e2
(TT_Sequence)

A.2 Full Reduction Rules1040

n = length (σC)
σ′C = σC + layoutTypeAndTaint (TC , β)

callocTC β / σT / σC / σV → ptrnTC / σT / σ
′
C / σV

(R_CAlloc)

value (v2) v = makeValueOfType (ct2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → v / σT / σ

′
C / σV

(R_CCall_Worked)

value (v2) σ′C = taintCStore (σC , β)
ccall cfun v2 ct2 β / σT / σC / σV → errβ / σT / σ

′
C / σV

(R_CCall_Failed)

n < length(σC)
σC(n) = (v, TC , ∅) σ′C = update (σC , n, (v, T ′C , β))

ccast (ptrL nTC) T ′C β / σT / σC / σV → ptrL nT
′
C / σT / σ

′
C / σV

(R_CCast)

σC(n+ o) = (vC , TC , ∅) vout = coerceToLua(vC)
cget (ptrL nT

′
C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_No_Taint)

σC(n+ o) = (v, TC , β) v′ = makeValueOfType (TC)
σ′C = update (σC , n+ o, (v′, TC , ∅) vout = coerceToLua(v′))

cget (ptrnT ′C) o TC / σT / σC / σV → vout / σT / σC / σV

(R_CGet_Taint_Works)

σC(n+ o) = (v, TC , β)
cget (ptrnT ′C) o TC / σT / σC / σV → err β / σT / σC / σV

(R_CGet_Taint_Fails)
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σC(n+ o) = (v, TC , ∅) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2/ σT / σ

′
C / σV

(R_CSet_No_Taint)

σC(n+ o) = (v, TC , β) value (v2)
vput = coerceToC(v2) σ′C = update (σC , n+ o, (vput, TC , ∅))

cset (ptrL nT
′
C) o v2 TC / σT / σC / σV → v2 / σT / σ

′
C / σV

(R_CSet_Taint_Works)

σC(n+ o) = (v, TC , β)
cset (ptrL nT

′
C) o v2 TC / σT / σC / σV → err β / σT / σC / σV

(R_CSet_Taint_Fails)

n = length (σT ) tn = buildTable({s1 = v1, ..., sn = vn})
{s1 = v1, ..., sn = vn} / σT / σC / σV → (reg n) / σT + tn / σC / σV

(R_Table)

value (e1) l = length(σV )
letx := e1 in e2 / σT / σC / σV → [x← l] e2 / σT / σC / σV + e1

(R_Let)

value (e2) l = length(σV )
(λx.e)(e2) / σT / σC / σV → [x← l] e / σT / σC / σV + e2

(R_Fun_App)

σV (l) = v value(v)
deref (loc l) / σT / σC / σV → v / σT / σC / σV

(R_Loc_Deref)

value (e) σ′V = update (σV , l, e)
loc l := e / σT / σC / σV → e / σT / σC / σ

′
V

(R_Loc_Update)

σT (n) = T T (s) = v

rawget (regn) s / σT / σC / σV → v / σT / σC / σV

(R_Rawget)

value (e3) σT (n) = T s ∈ T
T ′ = update (T, s, e3) σ′T = update (σT , n, T

′)
rawset (regn) s e3 / σT / σC / σV → regn /σ′T / σC / σV

(R_Rawset)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

x := e / σT / σC / σV → x := e′ / σ′T / σ
′
C / σ

′
V

(R_Var_Assign_Step_1)

e / σT / σC / σV /→ e′ / σ′T / σ
′
C / σ

′
V

loc l := e / σT / σC / σV → loc l := e′ / σ′T / σ
′
C / σ

′
V

(R_Loc_Update_Step_1)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

letx := e1 in e2 / σT / σC / σV → letx := e′1 in e2 / σ
′
T / σ

′
C / σ

′
V

(R_Let_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e′1 e2 / σ
′
T / σ

′
C / σ

′
V

(R_Rawget_Step_1)
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value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawget e1 e2 / σT / σC / σV → rawget e1 e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Rawget_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e′1 e2 e3 / σ
′
T / σ

′
C / σ

′
V

(R_Rawset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e
′
2 e3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_2)

value (e1) value (e2)
e3 / σT / σC / σV → e′3 / σ

′
T / σ

′
C / σ

′
V

rawset e1 e2 e3 / σT / σC / σV → rawset e1 e2 e
′
3 / σ

′
T / σ

′
C / σ

′
V

(R_Rawset_Step_3)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e′1(e2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1(e2) / σT / σC / σV → e1(e′2) / σ′T / σ′C / σ′V
(R_Fun_App_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e′1 op e2 / σ
′
T / σ

′
C / σ

′
V

(R_Binop_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

e1 op e2 / σT / σC / σV → e1 op e
′
2 / σ

′
T / σ

′
C / σ

′
V

(R_Binop_Step_2)

value (e1) value (e2)
validL (e1) validR (e2)

e1 op e2 / σT / σC / σV → evalOp (e1, e2, op) / σT / σC / σV

(R_Binop)

e / σT / σC / σV → e′ / σ′T / σ
′
C / σ

′
V

cget e o T / σT / σC / σV → cget e′ o T / σ′T / σ′C / σ′V
(R_Cget_Step)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e′1 o e2 T /σ
′
T / σ

′
C / σ

′
V

(R_Cset_Step_1)

value (e1)
e2 / σT / σC / σV → e′2 / σ

′
T / σ

′
C / σ

′
V

cset e1 o e2 T /σT / σC / σV → cset e1 o e
′
2 T /σ

′
T / σ

′
C / σ

′
V

(R_Cset_Step_2)

e1 / σT / σC / σV → e′1 / σ
′
T / σ

′
C / σ

′
V

e1; e2 / σT / σC / σV → e′1; e2 / σ
′
T / σ

′
C / σ

′
V

(R_Seq_Step_1)

value (e1)
e1; e2 / σT / σC / σV → e2 / σT / σC / σV

(R_Seq_Step_Through)
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