
DrAsync: Identifying and Visualizing Anti-Patterns in
Asynchronous JavaScript

Alexi Turcotte
turcotte.al@northeastern.edu

Northeastern University
Boston, MA, USA

Michael D. Shah
mikeshah@northeastern.edu
Northeastern University

Boston, MA, USA

Mark W. Aldrich
mark.aldrich@tufts.edu

Tufts University
Medford, MA, USA

Frank Tip
f.tip@northeastern.edu
Northeastern University

Boston, MA, USA

ABSTRACT
Promises and async/await have become popular mechanisms for
implementing asynchronous computations in JavaScript, but de-
spite their popularity, programmers have difficulty using them.
This paper identifies 8 anti-patterns in promise-based JavaScript
code that are prevalent across popular JavaScript repositories. We
present a light-weight static analysis for automatically detecting
these anti-patterns. This analysis is embedded in an interactive
visualization tool that additionally relies on dynamic analysis to
visualize promise lifetimes and instances of anti-patterns executed
at run time. By enabling the user to navigate between promises in
the visualization and the source code fragments that they originate
from, problems and optimization opportunities can be identified.

We implement this approach in a tool called DrAsync, and found
2.6K static instances of anti-patterns in 20 popular JavaScript repos-
itories. Upon examination of a subset of these, we found that the
majority of problematic code reported by DrAsync could be elimi-
nated through refactoring. Further investigation revealed that, in a
few cases, the elimination of anti-patterns reduced the time needed
to execute the refactored code fragments. Moreover, DrAsync’s visu-
alization of promise lifetimes and relationships provides additional
insight into the execution behavior of asynchronous programs and
helped identify further optimization opportunities.

KEYWORDS
JavaScript, asynchronous programming, program analysis, visual-
ization

ACM Reference Format:
Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip. 2022.
DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous Java-
Script. In 44th International Conference on Software Engineering (ICSE ’22),
May 21–29, 2022, Pittsburgh, PA, USA. ACM, New York, NY, USA, 12 pages.
https://doi.org/10.1145/3510003.3510097

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9221-1/22/05.
https://doi.org/10.1145/3510003.3510097

1 INTRODUCTION
The async/await feature [15, Section 15.8] was added to the Java-
Script programming language in 2017 to facilitate asynchronous
programming with convenient syntax and error handling. Program-
mers can designate a function as async to indicate that it performs
an asynchronous computation, and await-expressions may be used
in these functions to await the result of other asynchronous compu-
tations. The JavaScript community has enthusiastically embraced
this feature, as it is less error-prone than event-driven programming
and syntactically much less cumbersome than the promises feature
[15, Section 27.2] on which it builds. However, many JavaScript pro-
grammers are still unfamiliar with asynchronous programming, and
particularly with async/await and how it interacts with promises. As
a result, they sometimes produce code creating redundant promises,
or code that performs poorly because the ordering of asynchronous
computations is constrained unnecessarily [11].

We identify 8 anti-patterns involving the use of promises and
async/await that commonly occur in JavaScript programs. These
anti-patterns reflect designs that are likely to be suboptimal because
they may create promises unnecessarily, perform synchronization
that is redundant, or cause code to become needlessly complicated.
Examples of these anti-patterns include redundant uses of await,
the use of await in loops over arrays, and explicit creation of new
promises where none are needed. In many cases, these anti-patterns
can be refactored into code that is more concise or more efficient.

We developed a lightweight static analysis to detect these anti-
patterns directly in source code, and implemented this analysis as
a set of CodeQL queries [4, 13]. Furthermore, to help programmers
understand the run-time impact of the anti-patterns, we developed
DrAsync, a profiling tool that visualizes the lifetime of the promises
created by an application, and that highlights the run-time instances
of each anti-pattern. This enables programmers to focus their at-
tention on anti-patterns in frequently-executed code and provides
valuable insights into where performance bottlenecks occur.

In an experimental evaluation, DrAsync’s static analysis detected
2.6K instances of anti-patterns in 20 JavaScript applications, and
DrAsync’s dynamic analysis determined that, in the aggregate, these
anti-patterns were executed 24K times by the application test suites.
To evaluate whether the detected anti-patterns represent actionable
findings, we selected 10 instances of each anti-pattern randomly and
attempted to manually refactor them to eliminate the anti-pattern.
We were able to successfully refactor 65 of these 80 instances, and

774

2022 IEEE/ACM 44th International Conference on Software Engineering (ICSE)

https://doi.org/10.1145/3510003.3510097
https://doi.org/10.1145/3510003.3510097

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

determined that, in certain cases, these refactorings can have mea-
surable impact on the number of promises created by an application,
or the time needed the execute affected code fragments.

In summary, the contributions of this paper are as follows:

• the definition of 8 anti-patterns that commonly occur in
asynchronous JavaScript code;

• DrAsync, a tool that relies on static and dynamic program
analysis to detect anti-patterns and visualize promises and
occurrences of anti-patterns during program execution, en-
abling programmers to quickly identify quality issues and
performance bottlenecks;

• an empirical study of 20 JavaScript applications in which
DrAsync is used to identify 2.6K anti-patterns which are
executed 24K times, confirming that they are pervasive; and

• a case study that investigates whether 10 randomly cho-
sen instances of each anti-pattern can be refactored, provid-
ing evidence that the majority of anti-patterns reported by
DrAsync can be eliminated through refactoring. Further anal-
ysis of these results suggests that, under certain conditions,
eliminating anti-patterns may improve performance.

2 PROMISES AND ASYNC/AWAIT
This section reviews promises [15, Section 27.2] and the async/await
feature [15, Section 15.8] features, which were added to JavaScript
in recent years to facilitate asynchronous programming. Readers
already familiar with these features may skip this section.

A promise is an object that represents the value computed by an
asynchronous computation, and is in one of three states: pending,
fulfilled, or rejected. Upon construction, a promise is in the pending
state. If the computation associated with a promise 𝑝 successfully
computes a value 𝑣 , then 𝑝 transitions to the fulfilled state, and we
will say that 𝑝 is fulfilled with value 𝑣 . If an error 𝑒 occurs during
the computation associated with a promise 𝑝 , then 𝑝 transitions
to the rejected state, and we will say that 𝑝 is rejected with value 𝑒 .
The state of a promise can change at most once; accordingly, we
will say that a promise is settled if it is fulfilled or rejected.

Creating promises. Promises can be created by invoking the
Promise constructor, passing it an executor function expecting two
arguments, resolve and reject, for fulfilling or rejecting the newly
constructed promise, respectively. E.g., the following code snippet

let c = ...

let p1 = new Promise((resolve , reject) => {

if (c){ resolve (3) } else { reject("error!") }

})

assigns to p1 a new promise that is fulfilled with the value 3, or
rejected with the value "error!", depending on the value of c. Con-
venience functions Promise.resolve and Promise.reject accommo-
date situations where a promise always needs to be fulfilled or
rejected with a specified value, respectively. For example, the fol-
lowing code snippet:

let p2 = Promise.resolve (4)

let p3 = Promise.reject("error!")

assigns to p2 and p3 promises that are fulfilled with the value 4 and
rejected with the value "error!", respectively.

Reactions. To specify that a designated function should be exe-
cuted asynchronously upon the settlement of a promise, program-
mers may register reactions on promises using methods then and
catch. Here, a reaction is a function that takes one parameter, which
is bound to the value that the promise was fulfilled or rejected with.
For example, the following code snippet:

p2.then((v) => console.log(v*v))

extends the previous example by registering a reaction on the
promise referenced by variable p2 to print the value 161. Similarly,
the following code snippet:

p3.catch((e) => console.log("error:␣" + e))

will cause the text “error: error!” to be printed.

Promise chains. The then method returns a promise. If the reac-
tion that is passed to it returns a (non-promise) value 𝑣 , then this
promise is fulfilled with 𝑣 . If the reaction that is passed to it throws
an exception 𝑒 , then this promise is rejected with 𝑒 . Furthermore,
if then is used to register a reaction 𝑓 on a promise 𝑝 , then the
rejection of 𝑝 with a value 𝑒 will cause the rejection of the promise
returned by 𝑝.then(𝑓) with the same value 𝑒 . This enables the
construction of chains of promises. In the following code snippet, a
promise chain is created starting with variable p1 as defined above:

p1.then((v) => v+1)

.then((w) => console.log(w))

.catch((err) => console.log("an␣error␣occurred."))

if p1 was fulfilled with 3, then the reaction (v) => v+1 will be exe-
cuted asynchronously with v bound to the value 3 and return the
value 4, so the promise created by this call to then is fulfilled with
the value 4 as well. Since a reaction (w) => console.log(w) was
registered on that promise, the value 4 will be printed. If, on the
other hand, p1 was rejected with the value "error!", the promises
created by both calls to then will be rejected as well, with the same
value, causing the reaction on the last line to execute, which prints
"an␣error␣occurred.".

Linked promises. So far, we have only considered situationswhere
a function 𝑓 that is registered as a reaction on a promise returns a
non-promise value. However, if 𝑓 returns a promise 𝑝 , that promise
becomes linked with the promise 𝑝’ created by the call to then (or
catch) that was used to register the reaction. Concretely, this means
that 𝑝′ will be fulfilled with a value 𝑣 if/when 𝑝 is fulfilled with 𝑣 ,
and 𝑝′ will be rejected with a value 𝑒 if 𝑝 is rejected with 𝑒 , and if 𝑝
remains pending then so will 𝑝′. Consider the following example:

let p4 = Promise.resolve (5);

let p5 = new Promise((resolve ,reject) =>

setTimeout (() => resolve (6), 1000))

p4.then((v) => p5)

.then((w) => console.log(w)) // prints 6 after one second

Here, the promise referenced by p4 is fulfilled with 5, and the
promise referenced by p5 is fulfilled with 6 after 1000 milliseconds
have elapsed. The reaction (v) => p5 that is registered on p4 re-
turns p5, so the promise created by this call to then becomes linked
with p5, i.e., it will be fulfilled with 6 after 1000 milliseconds have
passed. The last line registers another reaction on this promise, so
the value 6 is printed after 1000 milliseconds.

1The then method optionally accepts a reject-reaction as its second argument.

775

DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Synchronization. Several functions are provided for synchro-
nization. The Promise.all function takes an array of promises
[𝑝1, · · · , 𝑝𝑛] as an argument and returns a promise that is either
fulfilled with an array [𝑣1, · · · , 𝑣𝑛] containing the values that these
promises are fulfilled with, or that is rejected with a value 𝑒𝑖 , if
𝑝𝑖 is the first promise among 𝑝1, · · · , 𝑝𝑛 that is rejected, and 𝑒𝑖 is
the value that it is rejected with. Other synchronization functions
include Promise.race and Promise.any. For example2, the following
snippet prints Array [3, 42, "foo"] after 1 second:

let p6 = Promise.resolve (3);

let p7 = 42;

let p8 = new Promise ((resolve , reject) => {

setTimeout(resolve , 1000, 'foo');

});

Promise.all([p6, p7 , p8])

.then((vs) => console.log(vs););

Promisification. Promisification is amechanism for automatically
adapting an asynchronous event-driven API into a promise-based
API. It assumes that methods in an event-driven API meet two
requirements: (i) the callback function is the last parameter, (ii) upon
completion of the asynchronous operation, the callback function
is invoked with two parameters err and result, where err is a
value that indicates whether an error has occurred, and result

contains the result of the asynchronous computation otherwise.
In such cases, an equivalent promise-based API can be derived by
creating a new promise that invokes the event-driven API, passing
it a callback that rejects the promise with err if an error occurred,
and fulfills it with result otherwise. Promisifying event-driven
APIs can be done using the built-in util.promisify function.

async/await. JavaScript allows a function to be declared as async
to indicate that it computes its result asynchronously. An async

function 𝑓 returns a promise: if no exceptions occur during the
execution of 𝑓 , this promise is fufilled with the returned value, and if
an exception 𝑒 is thrown, then the promise is rejected with 𝑒 . Inside
the body of async functions, await-expressions may be used to await
the settlement of promises, including promises created by calls
to other async functions. Concretely, when execution encounters
an expression await 𝑥 during the execution of an async function,
control returns to the main event loop. At some later time, when
the promise that 𝑥 evaluates to has settled, execution resumes. If
that promise was fulfilled with a value 𝑣 , then execution resumes
with the entire await-expression evaluating to 𝑣 . If the promise was
rejected with a value 𝑒 , then execution resumes with the entire
await-expression throwing an exception 𝑒 .

The async/await feature has been designed to interoperate with
promises, as is illustrated by the example below.

24 import fs from 'fs'

25 async function analyzeDir(dName){

26 let fNames = await fs.promises.readdir(dName);

27 let ps = fNames.map((fName) => fs.promises.stat(fName));

28 let fStats = await Promise.all(ps);

29 let sum = fStats.reduce ((acc ,v) => acc + v.size , 0);

30 console.log(sum);

31 }

2Adapted from https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/
Global_Objects/Promise/all.

The example shows an async function analyzeDir that prints the
sum of the sizes of the files in the directory identified by its pa-
rameter dName. On line 26, an await-expression is used to await the
results of the built-in readdir operation; this operation returns a
promise that is eventually fulfilled with an array containing the
names of files in the specified directory, which is assigned to fNames.
On line 27, the map operation on arrays is used to map the built-
in fs.stat operation3 over this array, resulting in an array ps of
promises that will eventually resolve to objects containing meta-
information for each file. Promise.all is used on line 28 to create
a promise that is eventually fulfilled with the meta-information
objects for each of the files, and an await-expression is used to
await this result so that it can be stored in a variable fStats. On
line 29, the reduce operation on arrays is used to compute the sum
of the sizes of the files, and this sum is printed on line 30.

JavaScript’s async/await feature can be thought of as syntactic
sugar for promise-based asynchrony. Consider:

32 function fetchAsynchronously(url) {

33 fetch(url)

34 .then(response => response.json ())

35 .then(jsonResponse => {

36 // do something

37 });

38 }

Here, the function fetchAsynchronously takes a url, fetches it, con-
verts it to JSON, and then does somethingwith it—all using promises.
In this setup, the bulk of the function logic would be in the body
of the last callback (// do something). Using async/await, we can
write the function more concisely as:

39 async function fetchAsynchronously(url) {

40 const response = await fetch(url);

41 const jsonResponse = await response.json ();

42 // do something

43 }

3 MOTIVATING EXAMPLES
Asynchronous programming is rife with pitfalls. As a first example,
consider SAP’s ui5-builder project, which provides modules for
building UI5 projects. ui5-builder’s file ResourcePool.js contains
the following function, which DrAsync flagged as an instance of the
promiseResolveThen anti-pattern that will be presented in Section 4:

44 async getModuleInfo(name) {

45 let info = this._dependencyInfos.get(name);

46 if (info == null) {

47 info = Promise.resolve (). then(async () => {

48 const resource = await this.findResource(name);

49 return determineDependencyInfo(resource , ...);

50 });

51 this._dependencyInfos.set(name , info);

52 }

53 return info;

54 }

On line 47, Promise.resolve() is invoked to create a promise
that is fulfilled immediately with the value undefined4. On the
same line, an async function is registered as a fulfill reaction on this
promise, so this reaction is asynchronously invoked with undefined

as an argument. This means that 3 promises are created when the
3fs.stat is a library function that returns an object that contains various information
about a file, including its size; see https://nodejs.org/api/fs.html#fs_class_fs_stats.
4Since no argument is passed in the call to Promise.resolve, the value undefined is used
by default.

776

https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Promise/all
https://github.com/SAP/ui5-builder
https://nodejs.org/api/fs.html#fs_class_fs_stats

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

Figure 1: An example of the promiseResolveThen anti-pattern
found in getModuleInfo. The user selected one of the
promises in a promise chain originating from an empty
Promise.resolve(), identified by Label A, and the reaction’s
promise is shown with Label B, and finally the promise be-
longing to the async function is shown with Label C.

reaction executes: (i) the promise created by Promise.resolve, (ii)
the promise created by the invocation of then, and (iii) the promise
created by the invocation of the async function. This is manifested in
DrAsync’s visualization as an extremely short-lived promise linked
two other, longer-running promises (see Figure 1).

In this case, the code can be refactored as such:
55 async getModuleInfo(name) {

56 let info = this._dependencyInfos.get(name);

57 if (info == null) {

58 info = (async () => {

59 const resource = await this.findResource(name);

60 return determineDependencyInfo(resource , ...);

61 })();

62 this._dependencyInfos.set(name , info);

63 }

64 return info;

65 }

Now, only one promise is created (on line 58, by invoking the
async function). This code is executed 204 times in ui5-builder’s test
suite, and 2 fewer promises are executed each time. Besides being
more efficient, the code is more concise, and easier to understand.

As another example, consider appcenter-cli, developed by Mi-
crosoft, which implements the Command Line Interface (CLI) for
the Visual Studio Code (VSCode) Interactive Development Environ-
ment (IDE). Function cpDir, defined on lines 89-94 in src/util/misc/

promisified-fs.ts, implements the copying of a directory:
66 async function cpDir(source , target) {

67 // details omitted

68 const files = await readdir(source);

69 for (let i = 0; i < files.length; i++) {

70 const sourceEntry = path.join(source , files[i]);

71 const targetEntry = path.join(target , files[i]);

72 await cp(sourceEntry , targetEntry);

73 }

74 }

This code reads the source directory source on line 68 and then
iterates over the resulting list of file names. In each iteration of
the loop, a call to function cp is await-ed, which copies a file from
sourceEntry to targetEntry. Here, cp returns a promise that is ful-
filled once sourceEntry is successfully copied to targetEntry, or
rejected if an error occurs. It is important to note that this use of
await in a loop causes the execution of function cpDir to be paused
until the promise returned by cp is fulfilled, and execution will pass
back to the main event loop at this time so that other event handlers
can be executed in the meantime. This is manifest in DrAsync’s vi-
sualization by a “staircase” pattern of promises that have lifetimes
that do not overlap (see Figure 2).

Figure 2: An example of the loopOverArrayWithAwait anti-
pattern in the visualization, here from a view depicting an
overview of all promises. Each loop iteration is clearly sepa-
rated, with no overlapping promises.

In this case, the copying of file-entries need not be sequential,
and we can refactor the above code as follows:

75 async function cpDir(source , target) {

76 // details omitted

77 const files = await readdir(source);

78 await Promise.all(files.map(file => {

79 const sourceEntry = path.join(source , file);

80 const targetEntry = path.join(target , file);

81 return cp(sourceEntry , targetEntry);

82 }));

83 }

Here, we turn the for-loop into a map over the files array, map-
ping a function that returns the promise associated with cp. We
then await the entire array of promises with Promise.all (line 78),
which will wait for all these promises to resolve. This refactoring
preserves the behavior of appcenter-cli’s tests, and enables addi-
tional concurrency because, although JavaScript is single-threaded
at the language level, it relies on I/O libraries that can execute
concurrently [11]. We will report in Section 7 how the refactoring
significantly improves the performance of the loop.

These anti-patterns are detected using a simple static analysis.
Our DrAsync tool additionally relies on dynamic analysis to de-
termine how often each instance of an anti-pattern is executed,
and helps programmers prioritize which code should be fixed. For
instance, we found many instances of the “await-in-loop” pattern
in appcenter-cli, but the highlighted cpDir example was by far the
most frequently executed while running the application’s tests.

4 ANTI-PATTERNS
This section defines a set of anti-patterns that occur frequently in
asynchronous JavaScript applications. We identified most of these
through manually inspecting JavaScript source code5, and inspect-
ing visual profiles produced by DrAsync for noteworthy patterns
(e.g., repetitive structures or promises that are very short-lived). In
addition, a search for issues related to promises and async/await on
the popular stackoverflow forum turned up the explicitPromiseCon-
structor 6 and customPromisification 7 anti-patterns.

It is important to note that an occurrence of one of these anti-
patterns is not necessarily a reflection that a design is “wrong” or
“inefficient”, but it indicates that it is likely that the code can be
improved to make it more efficient by creating fewer promises or
enabling additional parallelism, or tomake it more concise. Section 6
presents a case study that investigates, for a representative subset of
instances of these anti-patterns, how often we were able to refactor

5Section 7.1 provides further detail on the process for selecting subject applications.
6https://stackoverflow.com/questions/23803743
7https://www.grouparoo.com/blog/promisifying-node-functions

777

https://github.com/microsoft/appcenter-cli

DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

asyncFunctionNoAwait = { 𝑓 | 𝑓 async ∧ (∃𝑒0, 𝑒1 : 𝑒0 = await 𝑒1 ⇒ 𝑒0 ⋪ 𝑓) }
asyncFunctionAwaitedReturn = { 𝑓 | 𝑓 async ∧ (∃𝑒0, 𝑒1 : 𝑒0 = return 𝑒1 ∧ 𝑒0◁𝑓) ⇒ ∃𝑒2 : 𝑒1 = await 𝑒2 }

loopOverArrayWithAwait = {𝑠0 | ∃𝑒0, 𝑒1, 𝑒2, 𝑒3, 𝑠1 : 𝑠0 = for(𝑒0, 𝑒1, 𝑒2){𝑠1} ∧ isArrayTest(𝑒1) ∧ await 𝑒3◁𝑠1 }
promiseResolveThen = {𝑒0 | ∃𝑒1, 𝑓 : 𝑒0 = Promise.resolve(𝑒1).then(𝑓) }
executorOneArgUsed = {𝑒0 | 𝑒0 = ∃𝑓 , 𝑣0, 𝑣1 : new Promise(𝑓) ∧ 𝑣0 = arg(𝑓 , 0) ∧ 𝑣1 = arg(𝑓 , 1) ∧

(∃𝑒1, 𝑒2 : 𝑒1, 𝑒2◁𝑓 ∧ 𝑒1, 𝑒2 ∈ {𝑣0, 𝑣1} ⇒ 𝑒1 = 𝑒2)}
reactionReturnsPromise = {𝑒0 | ∃𝑒1, 𝑒2, 𝑓 : 𝑒0 = 𝑒1 .then(𝑓) ∧ return 𝑒2◁𝑓 ∧

(𝑒2 = Promise.resolve(· · ·) ∨ 𝑒2 = Promise.reject(· · ·)) }
customPromisification = {𝑒0 | ∃𝑓0, 𝑓1, 𝑓2, 𝑠0, 𝑠1, 𝑣0, 𝑣1 : 𝑒0 = new Promise(𝑓0) ∧ 𝑓1 (..., 𝑓2)◁𝑓0 ∧ if (· · ·) {s0} else {s1}◁𝑓2 ∧

𝑣0 = arg(𝑓0, 0) ∧ 𝑣1 = arg(𝑓0, 1) ∧ ((𝑣0◁𝑠0 ∧ 𝑣1◁𝑠1) ∨ (𝑣0◁𝑠1 ∧ 𝑣1◁𝑠0)) }
explicitPromiseConstructor = {𝑒0 | ∃𝑒1, 𝑓0, 𝑓1, 𝑓2, 𝑣0, 𝑣1, 𝑣2, 𝑣3 : 𝑒0 = new Promise(𝑓0) ∧ 𝑒1 .then(𝑓1) .catch(𝑓2)◁𝑓0 ∧ 𝑣0 = arg(𝑓0, 0) ∧

𝑣1 = arg(𝑓0, 1) ∧ 𝑣2 = arg(𝑓1, 0) ∧ 𝑣0 (𝑣2)◁𝑓1 ∧ 𝑣3 = arg(𝑓2, 0) ∧ 𝑣1 (𝑣3)◁𝑓2 }

Figure 3: Anti-patterns that commonly occur in asynchronous JavaScript code.

them manually. Section 7 presents an empirical evaluation that
reports on the prevalence of each of the anti-patterns.

Figure 3 defines each anti-pattern as a set of AST nodes that
meet some specified criteria. In the figure, we use 𝑓 to represent
functions (including arrow functions and class methods), 𝑒 to rep-
resent expressions, and 𝑠 to represent statements. Subscripts are
used in cases where a predicate refers to multiple program elements
of the same kind. Furthermore, 𝑓 async denotes that 𝑓 is an async

function, and 𝑒◁𝑓 (read as: “𝑓 contains expression 𝑒”) indicates that
𝑓 is the innermost function declaration or function expression such
that 𝑒 syntactically occurs within the body of function 𝑓 .

asyncFunctionNoAwait. This anti-pattern is defined as any func-
tion 𝑓 such that: (i) 𝑓 is an async function and (ii) for any expression
𝑒0 = await 𝑒1, 𝑒0 does not occur in the body of 𝑓 . In other words,
the pattern identifies async functions that do not contain any await

expressions. As we will discuss in Section 6, such functions can
often be refactored into functions that are not async, to avoid the
creation of a promise each time the function is executed. Note that
the scope of this refactoring may expand beyond 𝑓 itself: functions
calling 𝑓 may no longer need to await the result of the call 𝑓 .

asyncFunctionAwaitedReturn. This anti-pattern is defined as any
function 𝑓 such that: (i) 𝑓 is an async function and (ii) any return-
expression in 𝑓 is an await-expression. In such cases, the use of
await is redundant, because the value 𝑣 that the await-expression
evaluates to is immediately used to settle the promise created by
the async function (which itself would need to be awaited—it is
more efficient to return the promise as it will become linked with
the promise created by the async function).

loopOverArrayWithAwait. This anti-pattern covers for-loops of
the form for(𝑒0, 𝑒1, 𝑒2){𝑠1} where (i) the condition 𝑒1 tests that
the loop iterates over an array by checking that it refers to the
Array.prototype.length property (using auxiliary function isAr-
rayTest), and (ii) the body 𝑠1 of the loop contains at least one
await-expression. This situation is well-known in the JavaScript
community as being needlessly inefficient in situations where the it-
erations of the loop are independent of one another, and the ESLint
checker [5] has a rule for detecting it. As wewill discuss in Section 6,

in many cases, such loops can be refactored to use Promise.all and
Array.prototype.forEach to enable additional parallelism.

promiseResolveThen. An expression 𝑒0 = Promise.resolve(e1)
.then(𝑓) is constructed, i.e., a new promise is constructed on which
a fulfill-reaction is registered immediately. Note that entire expres-
sion 𝑒0 may form the beginning of a longer chain of promises. In
such cases, it is often possible to shorten the length of the promise-
chain by refactoring 𝑒0, e.g., to Promise.resolve(f(e1)}, to reduce
the number of created promises. Section 3 discussed a slightly more
complex instance of this anti-pattern.

executorOneArgUsed. This anti-pattern targets expressions of
the form new Promise(𝑓) where a promise is constructed using an
executor function 𝑓 that has formal parameters 𝑣0 and 𝑣1 (usually
the parameters of executor functions are called resolve and reject

but programmers may choose different names). Furthermore, an
additional constraint is imposed that if the body of 𝑓 contains
expressions 𝑒1 and 𝑒2 that refer to 𝑣0 or 𝑣1, then they must both
refer to the same variable. In other words, the anti-pattern targets
executor functions that either resolve or reject the promise, but not
both. In such cases, it may be possible to refactor the code to use
Promise.resolve or Promise.reject instead.

reactionReturnsPromise. In this scenario, a reaction 𝑓 that is regis-
tered on a promise in an expression of the form 𝑒1 .then(𝑓) returns
an expression 𝑒2 that consists of either a call to Promise.resolve or
a call to Promise.reject. In such cases, it is often possible to avoid
the explicit construction of a promise because the reaction already
creates a promise that is fulfilled or rejected with the reaction’s
return value.

customPromisification. This anti-pattern aims to detect situations
where a programmer has written a custom function for promisi-
fying an event-based API call. It targets expressions of the form
new Promise(𝑓0) where the Promise constructor is invoked with
an executor function that contains a call 𝑓1 (..., 𝑓2), that passes a
callback function 𝑓2 to some API function 𝑓1. Moreover, 𝑓2 contains
a statement if (· · ·) {s0} else {s1}, where either 𝑠1 calls the func-
tion passed as the first parameter to the executor (usually called

778

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

resolve) and 𝑠2 calls the function passed as the second parameter to
the executor (usually called reject), or vice versa. In such cases, it
is often possible to utilize the util.promisify promisification func-
tion instead. While this does not reduce the number of promises
created, it avoids the pitfalls of accidentally introducing bugs when
re-implementing functionality that is available in standard libraries.

explicitPromiseConstructor. This anti-pattern occurs when a new
promise is constructed that is fulfilled when some existing promise
is fulfilled, and that is rejected when that promise is rejected. Con-
cretely, we say that an instance of this pattern occurs when the
promise constructor is invoked with an executor function 𝑓0 that
has parameters 𝑣0 and 𝑣1. In addition, the body of 𝑓0 contains an
expression 𝑒1 .then(𝑓1).catch(𝑓2), where 𝑓1 has a parameter 𝑣2 and
𝑓2 has a parameter 𝑣3. Lastly, 𝑓1 is required to contain a call 𝑣0 (𝑣2)
and 𝑓2 is required to contain a call 𝑣1 (𝑣3). Occurrences of this
anti-pattern can often be refactored to avoid the creation of a new
promise, e.g., by returning the promise 𝑒1.

5 IMPLEMENTATION
DrAsync consists of three components: (i) a static analysis for detect-
ing anti-patterns, (ii) a dynamic analysis for gathering information
about the lifetimes of promises and detecting run-time instances of
anti-patterns, and (iii) an interactive profiling tool that visualizes
the lifetimes of promises and instances of anti-patterns, and that
provides additional features for understanding execution behavior.
Our code is open-source and publicly available 8.

5.1 Static Analysis
The static analysis uses CodeQL [4, 13] to implement the anti-
patterns of Figure 3 as a set of QL queries. These queries follow the
logic of the definition closely. For example, the query that is used
to find the promiseResolveThen anti-pattern looks as follows:

84 predicate promiseDotResolveDotThen(MethodCallExpr c) {

85 c.getMethodName () = "then" and

86 c.getReceiver () instanceof MethodCallExpr and

87 ((MethodCallExpr) c.getReceiver ()). getMethodName () = "resolve"

88 }

In two cases, we extended the queries with special handling
of corner cases. Our implementation of executorOneArgUsed was
extended to exclude cases where calls to resolve are passed as
an argument to setTimeout as we found that such occurrences of
the anti-pattern are generally not amenable to refactoring. We
also extended loopOverArrayWithAwait to handle for-of and for-in
loops. All QL queries can be found in the supplemental materials.

5.2 Dynamic Analysis
DrAsync relies on the Node.js Async hooks API [3] to instrument
source code to log the creation and settlement of promises, to
record when await-expressions are first encountered and when
their execution is resumed, and to determine run-time instances of
anti-patterns. The instrumentation distinguishes different run-time
instances of promises that are created at the same location (e.g.,
promises created during multiple executions of the same promise
constructor or of the same async function), enabling us to calculate
how often each anti-pattern is executed.
8Artifact link: https://doi.org/10.5281/zenodo.5915257

Furthermore, information is recorded about dependencies be-
tween promises: the Async hooks API provides a unique asyncId

for each promise, as well as a triggerAsyncId, which is the asyncId

of the promise that triggered it (i.e., the promise that it depends on).
Moreover, the dynamic analysis determines whether promises are
related to I/O operations through simple heuristics (if a promise
originates from a function from a predefined list of I/O functions
from the util Node.js library), and whether they originate from
user code or from library code. This information is used in the
interactive visualization to enable programmers to filter promises
based on their origin, and quickly hone-in on relevant promises.

The results of the static analysis and a dynamic analysis are ag-
gregated into a single trace file that is used in DrAsync’s interactive
visualization component.

5.3 Interactive Visualization
The visualization helps with exploring the execution behavior of
asynchronous JavaScript code and enables one to identify certain
anti-patterns visually. The visualization also shows the number of
runtime occurrences for each instance of an anti-pattern, enabling
programmers to prioritize those anti-pattern instances that may
impact execution behavior the most.

DrAsync’s interactive visualization tool was developed using the
P5.js framework [26]. Figure 4 shows a screenshot of a visualiza-
tion produced by DrAsync, which follows the standard information
taxonomy by providing: a high level overview, filters, and details
on demand [29]. We briefly discuss DrAsync’s different views.

Promise Lifetime View and Source Code View. This view (labeled
A○ in the figure) is organized as a Gantt Chart [20]. Here the x-axis
represents time, and the y-axis shows the created promises as a
series of stacked bars, so each promise is represented by one line
that starts at the time when the promise was created, and that ends
when it was settled. Users can pan and zoom through the promise
lifetime view, and hovering on a promise shows a fragment of the
source code responsible for creating the promise, along with some
meta-information. Furthermore, clicking on one of the promises
opens the associated source code in tab B○ for further inspection.

Mini Display View. This view (green bars in the view labeled
C○ at the bottom of the figure) shows the general ’shape’ of the
promises created during execution; clicking here enables the user
to quickly navigate to areas of interest in the promise lifetime view
(e.g., staircase patterns corresponding to instances of loopOverAr-
rayWithAwait that may benefit from refactoring).

Metrics View. This view, labeled D○, summarizes metrics: how
many promises were created, the total elapsed time, the average
duration of promises, and counts for detected anti-patterns. These
can be compared before and after refactoring to see if redundant
promises have been eliminated, or if performance has changed.

Summary View and Filters. This view, labeled E○, shows of all
promises and anti-pattern instances; clicking on these will navi-
gate to the associated promise in the promise lifetime view, and
will display the associated source code. For realistic applications,
the number of promises created at run-time can quickly become
overwhelming, so DrAsync provides various filtering facilities to

779

DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Figure 4: The interactive visualization displays the run-times of each promise as well as visually summarizes the data capture
by DrAsync. Users can filter particular promises and directly investigate the source code for more details on demand.

Table 1: Summary of Case Study
Anti-Pattern # Successful # Unsuccessful

asyncFunctionNoAwait 9 1
asyncFunctionAwaitedReturn 9 1
loopOverArrayWithAwait 7 3

promiseResolveThen 9 1
executorOneArgUsed 6 4

reactionReturnsPromise 9 1
customPromisification 9 1

explicitPromiseConstructor 7 3

focus on promises of interest. In particular, users can focus on those
promises that are related to file I/O or network I/O (see view labeled
F○), or on promises whose creation site matches a specified text
string (see view labeled G)○).

6 CASE STUDY
To evaluate if the anti-patterns reported by DrAsync represent use-
ful information, we randomly selected 10 instances of each anti-
pattern and attempted to refactor them manually. These 10 in-
stances were chosen from the 20 subject applications that we will
report further on in Section 7. To ensure that our findings are not
biased towards a particular programming style, no more than three
instances of each pattern were chosen from a single application,
and we only selected anti-pattern instances that DrAsync reported
as being executed by the application’s test suite, so that we could
check that the refactoring did not cause behavioral changes.

An overview of our findings can be found in Table 1. Below
we report on some noteworthy situations that we encountered.
Many refactorings were simple and quick, though others took more
considerable time (e.g., some loop refactorings took >15 minutes
in order to understand possible data dependencies). Further details
for all 80 cases can be found in the supplemental materials.

asyncFunctionAwaitedReturn. As discussed in Section 4, this anti-
pattern reflects inefficient code as it involves waiting for a promise
to settle with some value 𝑣 , and then creating a new promise
that is settled with the same value. The following function in file
/src/utils/readSpec.ts in openapi-typescript-codegen was flagged
by DrAsync as an instance of this anti-pattern:

89 export async function readSpec(input: string): Promise <string > {

90 if (input.startsWith('https ://')) {

91 return /*await*/ readSpecFromHttps(input);

92 }

93 if (input.startsWith('http ://')) {

94 return await readSpecFromHttp(input); // not executed

95 }

96 return /*await*/ readSpecFromDisk(input);

97 }

Here, await is redundantly used on each of the return paths
and DrAsync informed us that the first and third of these await-
expressions were executed by the test suite. We confirmed that the
tests still passed after removing the await keywords.

loopOverArrayWithAwait. Section 3 already discussed an instance
of this anti-pattern in appcenter-cli that we were able to refactor
successfully. However, some of the instances reported by DrAsync
could not be refactored, such as the the following code snippet on
lines 159–162 in file /src/TemplateLayout.js in eleventy:

98 for (let fn of fns) {

99 templateContent = await fn(data);

100 data = TemplateLayout

101 .augmentDataWithContent(data , templateContent);

102 }

Here, each loop iteration awaits the result of the call to fn(data)

and then re-assigns data on the next line. Since each loop iteration
depends on a value computed in the previous iteration, we are
unable to parallellize the loop using Promise.all.

780

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

executorOneArgUsed. An interesting case of this anti-pattern oc-
curs on lines 39-56 in src/streaming/utils/CapabilitiesFilter.js

in dash.js:
103 return new Promise ((resolve) => {

104 const promises = // details omitted

105 Promise.all(promises)

106 .then (() => { /* details omitted */ resolve (); })

107 .catch (() => { resolve (); });

108 });

Here, a new promise is created that is fulfilled (with the value
undefined since no argument is passed to resolve) in reactions on
a promise that is created by a call to Promise.all. The creation of a
new promise can be avoided by refactoring the above code to:

109 const promises = // details omitted

110 return Promise.all(promises)

111 .then (() => { /* details omitted */ return; })

112 .catch (() => { return; });

After this refactoring, it is evident that the resulting code lacks
proper error handling, given that catch is used to register a no-op
function to “absorb” errors that cause the previous reaction in the
promise chain to be rejected.

customPromisification. For this anti-pattern, we found that we
could successfully refactor 9 of 10 instances highlighted by the
tool using the util.promisify library function. The remaining case
involved the use of an event handler with complex control flow.

In all but one of the successful cases, using promisify and refac-
toring the inner logic of the callback into a reaction on a call
to the promisified function was sufficient. For a more interest-
ing case, consider the following snippet on lines 467-475 in file
src/Engines/Nunjucks.js in eleventy:

113 return async function (data) {

114 /* return new Promise(function (resolve , reject) {

115 tmpl.render(data , function (err , res) {

116 if (err) {

117 reject(err);

118 } else {

119 resolve(res);

120 }

121 });

122 }); */

123 const tmplRenderProm = util.promisify(tmpl.render);

124 return tmplRenderProm.call(tmpl , data);

125 };

Here, tmplRenderProm must be invoked with Function.prototype.

call to preserve the correct value for this during its execution.

reactionReturnsPromise. For this anti-pattern, 9 of the 10 cases we
examined could be refactored; the one unsuccessful case involved a
promise reaction with complex event-handlers, where the returned
promise was fulfilled or rejected in response to external events.

For an example of a successful refactoring, consider this snip-
pet from netlify-cms, lines 428-433 of packages/netlify-cms-
core/src/backend.ts:

126 const publishedEntry = await this.implementation

127 .getEntry(path)

128 .then (({ data }) => data)

129 .catch (() => {

130 // return Promise.resolve(false);

131 return false;

132 });

Here, .catch and .then return promises anyway, so explicitly return-
ing a promise that is immediately fulfilled or rejected is needless.

7 EVALUATION
This evaluation aims to answer the following research questions:
RQ1: How often do the anti-patterns of Figure 3 occur in practice?
RQ2: How often can anti-patterns reported by DrAsync be elimi-

nated using refactoring?
RQ3: Can the elimination of anti-patterns improve performance?
RQ4: What is the performance of DrAsync?

7.1 Experimental Setup
To identify a set of candidate projects, we first ran a CodeQL query
(on a large set of JavaScript GitHub repositories available to the Cod-
eQL team) to find projects containing promise-related features9. Of
the >100K projects that this turned up, we used the npm-filter [12]
tool to discard projects that did not have running test suites, re-
sulting in 450 projects with at least one running test command.
Of those projects, we randomly selected 20 projects meeting the
following criteria: the project (i) was edited in the last year, (ii) had
over 20 stars, (iii) contained over 20 instances of promise-related
features, and (iv) running the application’s test suite results in the
creation of at least 40 promises.

All experiments were performed on a CentOS Linux 7.8.2003
(Core) server, with 2x 32-core 2.35GHz processors, and 128GB RAM.

7.2 RQ1: How often do anti-patterns occur?
After discounting anti-patterns occurring in test code, compiled
TypeScript, and distributions, we found 2.6k anti-patterns instances
in the 20 projects selected for evaluation. Moreover, DrAsync’s
dynamic analysis detected that a total of 24K instances of these
anti-patterns were executed by the applications’ test suites. These
results are tabulated in Table 3, and provide strong evidence that
anti-patterns commonly occur. The first cells of the table read:
appcenter-cli has 23 instances of the asyncFunctionNoAwait pat-
tern in its code (S), 1 instance is executed in the tests (E), and 42
runtime promises are associated with this anti-pattern (D).

Anti-patterns commonly occur in asynchronous JavaScript code.
We found a total of 2.6K anti-patterns in 20 subject applications.

7.3 RQ2: Can detected anti-patterns be
refactored?

Section 6 summarized findings of a case study wherein we tried
to refactor 80 instances of anti-patterns flagged by DrAsync. Of
these 80 cases, we were able to successfully refactor 65. For the
15 that we were unable to refactor, not all are necessarily false
positive, because developers with more expert knowledge may
have additional insights enabling them to refactor the code. Each
of the refactorings is reported on in the supplementary materials.

A case study involving 80 anti-patterns in real-world code sug-
gests that the majority of anti-patterns detected by DrAsync can be
eliminated through refactoring.

9This includes: references to the Promise constructor, references to Promise.resolve,
Promise.reject, Promise.all, Promise.race, and Promise.any, references tomethodswith
names then or catch, async functions, and await expressions.

781

DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

Table 2: Subject Applications

Anti-Patterns QLDB Test Time (Before/After) Overhead of
Project (links to repos @ SHA) SHA KLOC # / KLOC # Files # Funs Tests Build Time (s) Mean StDev Mean StDev Instrumentation

appcenter-cli 2109d1 96 73 0.76 2645 8406 434 126.172 31.45 1.05 34.29 0.86 9.03%
Boostnote 58c4a7 32 29 0.92 276 4572 81 40.069 41.50 0.80 43.59 2.23 5.03%
browsertime 648e16 223 134 0.60 197 17557 13 29.61 0.55 0.01 0.66 0.01 20.59%
CodeceptJS 68ad16 19 398 21.5 180 3583 34 57.448 2.83 0.02 3.16 0.02 11.62%
dash.js 996e21 20 70 3.5 123 3598 18 59.681 4.12 0.16 5.77 0.26 39.79%
eleventy 6776e8 53 65 1.2 358 5532 1070 34.446 21.62 0.27 50.93 0.36 135.6%
erpjs 5ddcb7 30 139 4.6 295 4509 973 106.687 19.0 0.23 21.15 0.27 11.37%

fastify aee28e 136 2 0.01 108 20461 54 42.472 118.58 0.67 127.43 1.02 7.47%
flowcrypt-browser bc0d348 41 296 7.1 240 7119 5394 1064.285 1.77 0.03 2.27 0.05 1.28%

media-stream-library-js 4dd02a 37 184 5.0 117 4754 154 63.543 122.88 0.85 131.52 1.36 7.03%
mercurius 97ee14 60 22 0.37 220 4969 959 42.099 55.17 0.51 65.44 0.65 18.62%
netlify-cms 071b05 12 77 6.6 118 4009 73 94.35 504.42 2.30 605.48 1.69 20.04%

openapi-typescript-codegen 715ddc 34 9 0.27 180 4529 1092 45.618 45.56 0.62 56.10 0.57 23.04%
rmrk-tools 64c8cf 36 334 9.2 301 7916 247 326.839 38.01 0.32 41.42 0.39 8.97%
stencil 0c2e95 193 265 1.4 326 45025 1619 823.68 453.33 1.67 484.40 5.89 6.85%
strapi 1fe4b5e 80 198 2.5 292 4875 982 77.734 164.89 0.95 195.13 2.06 18.33%

treeherder b70d3b 37 50 1.4 154 4004 300 43.12 209.79 1.06 229.93 2.60 9.60%
ui5-builder 7490fb 44 77 1.8 216 4802 741 44.462 31.82 0.23 69.14 0.49 117.31%

vscode-js-debug 2af8cb 78 150 1.9 300 11496 186 127.798 1.39 0.02 2.31 0.06 65.48%
vuepress f077f7 14 19 1.3 276 7736 104 81.301 6.97 0.20 22.64 0.96 224.79%

Table 3: Anti-pattern stats. Legend: P1 = asyncFunctionNoAwait, P2 = loopOverArrayWithAwait, P3 = asyncFunctionAwaitedReturn, P4
= explicitPromiseConstructor, P5 = customPromisification, P6 = promiseResolveThen, P7 = reactionReturnsPromise, P8 = executorOneArgUsed.
"S" stands for static occurrences; "E" stands for static occurrences that are dynamically executed; "D" stands for the total number
of runtime promises associated with this anti-pattern.

Project P1 P2 P3 P4 P5 P6 P7 P8
S (E) D S (E) D S (E) D S (E) D S (E) D S (E) D S (E) D S (E) D

appcenter-cli 23 (1) 42 11 (0) 0 18 (0) 0 1 (0) 0 14 (3) 446 1 (0) 0 4 (1) 4 1 (0) 0
Boostnote 1 (0) 0 0 (0) 0 0 (0) 0 3 (3) 6 9 (5) 18 5 (2) 7 5 (0) 0 6 (1) 1
browsertime 105 (1) 3 21 (1) 47 0 (0) 0 1 (0) 0 1 (0) 0 2 (0) 0 0 (0) 0 4 (0) 0
CodeceptJS 357 (3) 39 33 (0) 0 1 (0) 0 0 (0) 0 1 (0) 0 3 (3) 1125 0 (0) 0 3 (0) 0
dash.js 0 (0) 0 0 (0) 0 0 (0) 0 23 (8) 224 2 (2) 55 0 (0) 0 27 (0) 0 18 (10) 188
eleventy 39 (24) 4416 10 (10) 884 9 (7) 1271 0 (0) 0 1 (1) 244 0 (0) 0 5 (4) 31 1 (1) 6
erpjs 40 (0) 0 12 (0) 0 66 (1) 36 0 (0) 0 14 (0) 0 6 (0) 0 0 (0) 0 1 (0) 0

fastify 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0 0 (0) 0 2 (2) 25
flowcrypt-browser 79 (0) 0 50 (0) 0 150 (0) 0 2 (0) 0 3 (0) 0 0 (0) 0 0 (0) 0 12 (0) 0

media-stream-library-js 56 (0) 0 3 (0) 0 121 (1) 1 0 (0) 0 2 (0) 0 0 (0) 0 0 (0) 0 2 (1) 2
mercurius 14 (3) 72 4 (3) 322 0 (0) 0 0 (0) 0 3 (3) 409 1 (1) 10 0 (0) 0 0 (0) 0
netlify-cms 45 (3) 1261 8 (0) 0 5 (0) 0 0 (0) 0 0 (0) 0 4 (1) 10 10 (2) 14 5 (1) 2286

openapi-typescript-codegen 2 (1) 2 3 (0) 0 2 (2) 28 0 (0) 0 1 (0) 0 0 (0) 0 0 (0) 0 1 (1) 4
rmrk-tools 241 (0) 0 43 (0) 0 18 (0) 0 0 (0) 0 8 (0) 0 2 (0) 0 0 (0) 0 22 (0) 0
stencil 123 (1) 74 33 (3) 217 20 (2) 35 1 (0) 0 17 (1) 3 21 (0) 0 1 (0) 0 49 (0) 0
strapi 81 (5) 179 45 (6) 100 26 (0) 0 4 (0) 0 19 (0) 0 8 (1) 20 12 (5) 5 3 (0) 0

treeherder 43 (7) 211 2 (2) 10 0 (0) 0 0 (0) 0 2 (0) 0 0 (0) 0 3 (3) 61 0 (0) 0
ui5-builder 51 (25) 1510 5 (3) 373 1 (1) 23 2 (2) 69 5 (2) 56 5 (5) 896 2 (2) 310 6 (2) 50

vscode-js-debug 94 (2) 84 7 (0) 0 20 (3) 749 1 (0) 0 4 (0) 0 0 (0) 0 2 (0) 0 22 (2) 42
vuepress 7 (0) 0 3 (2) 3448 1 (1) 1910 1 (0) 0 0 (0) 0 5 (0) 0 1 (0) 0 1 (0) 0
Summary 1401 (76) 7893 293 (30) 5401 458 (18) 4053 39 (13) 299 106 (17) 1231 63 (13) 2068 72 (17) 425 159 (21) 2604

7.4 RQ3: Can the elimination of anti-patterns
improve performance?

Generally speaking, we would expect the elimination of an anti-
pattern to impact performance only in significant ways if the anti-
pattern is executed many times, if the refactoring results in the
elimination of a large number of promises at run-time, or if the
refactoring enables additional concurrency. We examined three
refactorings in our case study that meet some of these criteria, for
which we crafted experiments that emphasize the performance of
the code fragment in question.

appcenter-cli/cpDir. This particular instance of the loopOverAr-
rayWithAwait anti-pattern was previously discussed in Section 3
and involves a function that copies one directory to another. We
chose this anti-pattern instance as the correctness of the refactor-
ing was easy to confirm, and we could easily craft a controlled
experiment; in this experiment, we executed cpDir 50 times on a
large directory of 7.8G with 37 files, and found that the refactored

version ran 16.4% (4.8s vs 5.8s) faster on average than the original,
and that the variance between run times was 37.9% smaller (0.33s
vs 0.54s), leading to more predictable performance.

vuepress/apply. This function contains a loop exhibiting the
loopOverArrayWithAwait anti-pattern:

133 for (const { value , name: pluginName } of this.appliedItems) {

134 // details omitted

135 await ctx.writeTemp(`${dirname }/${name}`, ...);

We chose to focus on this anti-pattern instance because the correct-
ness of the refactoring was easy to check, and the code is frequently
invoked by the test suite, so we can observe performance in a realis-
tic use-case. After refactoring this code fragment to use Promise.all,
we ran the application’s test suite 50 times on the versions before
and after the refactoring. The results show that the refactoring
reduced the time needed to execute this code fragment by 36.1% on
average, and that run time variability was reduced by 16%.

782

https://github.com/microsoft/appcenter-cli/commit/2109d1
https://github.com/BoostIO/BoostNote-Legacy/commit/58c4a7
https://github.com/sitespeedio/browsertime/commit/648e16
https://github.com/codeceptjs/CodeceptJS/commit/68ad16
https://github.com/Dash-Industry-Forum/dash.js/commit/996e21
https://github.com/11ty/eleventy/commit/6776e8
https://github.com/iDempiere-micro/erpjs/commit/5ddcb7
https://github.com/fastify/fastify/commit/aee28e
https://github.com/FlowCrypt/flowcrypt-browser/commit/bc0d348
https://github.com/AxisCommunications/media-stream-library-js/commit/4dd02a
https://github.com/mercurius-js/mercurius/commit/97ee14
https://github.com/netlify/netlify-cms/commit/071b05
https://github.com/ferdikoomen/openapi-typescript-codegen/commit/715ddc
https://github.com/rmrk-team/rmrk-tools/commit/64c8cf
https://github.com/ionic-team/stencil/commit/0c2e95
https://github.com/strapi/strapi/commit/1fe4b5e
https://github.com/mozilla/treeherder/commit/b70d3b
https://github.com/SAP/ui5-builder/commit/7490fb
https://github.com/microsoft/vscode-js-debug/commit/2af8cb
https://github.com/vuejs/vuepress/commit/f077f7

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

strapi/evaluate. This instance of the promiseResolveThen anti-
pattern occurs in the strapi application:

136 // const evaluatedConditions = await Promise.resolve(conditions)

137 // .then(resolveConditions)

138 // .then(filterValidConditions)

139 // .then(evaluateConditions)

140 // .then(filterValidResults);

141 const evaluatedConditions = filterValidResults(await

142 evaluateConditions(filterValidConditions(

143 resolveConditions(conditions))));

We selected an instance of this anti-pattern to assess the perfor-
mance impact of eliminating more than just the loopOverArrayWith-
Await anti-pattern, and we selected this instance specifically as it
is frequently executed by the test suite and involves many chained
promises (our refactoring eliminates 5 runtime promises per ex-
ecution of this snippet). We refactored this fragment to instead
call the functions directly (the code exhibiting the anti-pattern is
commented). We ran the strapi test suite 50 times and observed
that the refactoring reduced the average time needed to execute
this code fragment by 4%, and the standard deviation by 7.4%.

Full Test Suite Refactorings. We refactored every executed in-
stance of an anti-pattern in the eleventy project, and timed the
execution of the test suite before and after. We found that roughly
1.1k fewer user promises (39,978 to 38,748) were created, and found
no meaningful change in the run time of the test suite. We per-
formed a similar case study with vuepress. We again found no
meaningful change in test suite execution time, and found roughly
1.2k fewer user promises (32,264 to 31,021).

Note that we chose these projects to fully refactor as they had
a few anti-patterns that had many associated dynamic promises,
and the refactorings were simple enough such that we could verify
their correctness.

Discussion. Overall, it is difficult to measure the effect of the
removal of runtime promises on the overall performance of applica-
tions, due mostly to their asynchronous nature. Even if thousands
of redundant promises are eliminated, it is possible that the appli-
cation was waiting on another operation which takes longer than
the sum total of the lifetimes of the eliminated promises.

The elimination of anti-patterns reduces the number of promises
created and enables additional parallelism, which may speed up the
execution of the affected code fragments.

7.5 RQ4: What is the performance of DrAsync?
There are three main components to the run time of DrAsync.

First, the time to build the QL databases is reported in column
“QLDB Build Time” in Table 2—the build times vary, but are only
exceptionally high for flowcrypt-browser and rmrk-tools. Note
that this only needs to be done once per project (it needs to be
rebuilt when code changes, however), and the database can be
reused for other CodeQL queries; linting, by comparison, would
be much faster but cannot detect all of the anti-patterns detected
by DrAsync. To put this number into context, the mean run time of
the test suites are found under the first Mean column.

Second, the time to run the anti-pattern detection queries is quite
low: we ran 160 queries (8 anti-patterns × 20 projects) in sequence,

and only 14 of the 160 query/project combinations took over 30s,
and the mean run time was 18.4s. The full query run times are
available in supplemental material.

Finally, DrAsync’s dynamic analysis adds roughly 27% perfor-
mance overhead (harmonic mean from column Overhead of In-
strumentation). Note that, for the Mean columns under Test
Time (Before/After), the means reported are taken over 20 test
suite executions, and the standard deviation of those runs is re-
ported in the StDev columns. The overhead was calculated by
dividing the mean test suite execution time with instrumentation
by the mean test suite execution time without instrumentation.
Importantly, note that the subject applications vary wildly in size,
and DrAsync’s run time is reasonable in all cases.

DrAsync runs quickly, and the performance of the tool scales well
as code size increases.

8 THREATS TO VALIDITY
There are several factors that threaten the validity of our results.
First, the selection of subject applications used for our evaluation
may not be representative. We attempted to mitigate this by ran-
domly selecting applications that met specified criteria that made
them suitable subjects for analysis. Also, note that the subject appli-
cations include popular and well-maintained projects from major
vendors such as Microsoft and SAP. Second, the anti-pattern in-
stances selected in our case study may not be representative. We at-
tempted to mitigate this by randomly selecting these instances, and
selected no more than three instances from any one project. Third,
our experiences in manually refactoring the anti-pattern instances
may be subject to bias and errors. To mitigate the risk of mistakes in
the manual refactorings, we focused on anti-pattern instances that
are executed by the application’s test suite so that we could check
for behavioral differences by running the tests. As for bias, we were
unfamiliar with the source code for the subject applications, we
made an effort to randomly select subjects for the case study, and
we highlighted both positive and negative refactoring experiences.
Finally, regarding the performance implications of eliminating anti-
patterns, one may object that the observed speedups are small and
only apply to code fragments in three selected subject applications,
under idealized conditions. This is correct, and we do not make
broader claims in this regard.

9 RELATEDWORK
Several categories of related work can be distinguished: detection
of anti-patterns in JavaScript software, profiling concurrent appli-
cations, and performance visualization.

JavaScript Anti-Patterns. The detection and remediation of anti-
patterns in software has long been a part of good software develop-
ment practices. Chapter 3 in Fowler’s seminal book on refactoring
[17] enumerates a number of “code smells” that can be addressed
using the refactorings presented in the later chapters.

Several tools for static analysis and style have been developed
[2, 5, 6] that check a broad range of rules for identifying potential
quality issues in JavaScript software. ESLint [5] supports several
rules concerned with async/await such as no-await-in-loop for de-
tecting the use of await in loops. Our research goes beyond ESLint

783

DrAsync: Identifying and Visualizing Anti-Patterns in Asynchronous JavaScript ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA

by considering a broader range of asynchronous anti-patterns, visu-
alizing the behavior of asynchronous applications, and combining
more sophisticated static analysis and dynamic analysis. Further,
ESLint only detects three of the eight anti-patterns reported in this
paper: loopOverArrayWithAwait, asyncFunctionAwaitedReturn, and
asyncFunctionNoAwait (ESLint flags any loop with an await inside,
while our anti-pattern is specific to loops over arrays, which in our
experience is more likely to amenable to refactoring). ESLint also
currently does not support the data-flow analysis required to detect
several anti-patterns described in the paper.

Madsen et al. [25] defined the event-based call graph, which ex-
tends the traditional notion of a call graphwith nodes and edges that
reflect the flow of control due to event-handling. Recently, Arteca et
al. [10] presented a statistical analysis for detecting event listeners
that are likely to be dead code due to bugs in event-handling code.

Madsen et al. [24] presented a formal semantics for JavaScript
promises, and defined the promise graph capturing relationships
between promises, and use it to identify bugs found on StackOver-
flow. Alimadadi et al. [9] present PromiseKeeper, a tool that con-
structs promise graphs using dynamic analysis, defining a number
of dynamic anti-patterns in promise graphs such as unhandled
promise rejections. The work by Madsen et al. and Alimadadi et
al. predates JavaScript’s async/await feature. While our work and
PromiseKeeper are concernedwith the visualization of execution be-
havior of promise-based code, the visualizations are very different:
PromiseKeeper provides a fine-grained visualization of promises
and the functions and values they interact with, whereas our work
is focused on a large-scale visualization that is focused on the per-
formance aspects of promises and await-expressions.

Arteca et al. [11] present a static analysis and refactoring for
enabling additional parallellism in JavaScript applications by split-
ting and reordering await-expressions. Gokhale et al. [18] present
a static analysis and refactoring for migrating from synchronous
to asynchronous APIs in JavaScript applications that involves in-
troducing async functions and await expressions.

The academic community has also focused on the detection of
code smells in JavaScript code that are unrelated to asynchrony.
Nguyen et al. [28] present a tool for detecting embedded code
smells in web applications using dynamic analysis. Fard andMesbah
[16] identify 13 code smells that commonly arise in JavaScript
software and present a technique based on static and dynamic
analysis to detect them. Johannes et al. [22] report on a large-scale
empirical study that investigates the relation between code smells
in JavaScript software and the fault-proneness of the program parts
containing the code smells. Gong et al. [19] present DLint, a tool for
detecting code quality issues using dynamic analysis rather than
the traditional static analysis.

Profiling concurrent applications. Early work in this area by Wa-
heed and Rover [32] considered techniques for visualizing the per-
formance of parallel programs at the processor level, using tech-
niques from the scientific visualization community. Miller et al. [27]
present Paradyn, a tool for measuring and visualizing the perfor-
mance of large-scale parallel programs using an adaptive instru-
mentation targeted at long-running applications. Paradyn differs
from our work in that it selectively instruments code and visualizes
the program as a graph using a graph coloring technique. Meira
et al. [23] present Carnival, a performance measurement tool for

determining the underlying causes for waiting time in distributed
memory systems, again at the processor level. Carnival differs in
that it measuring wait times that rely on synchronization primitives
used on multi-processor (as opposed to single core) systems.

Joao et al. [21] present a technique for detecting performance bot-
tlenecks in multi-threaded applications (critical sections, barriers,
and slow pipeline stages) that have the effect of serializing program
execution. Unlike [21], our technique is implemented entirely us-
ing source code instrumentation and our focus is on visualizing
anti-patterns so that users can remedy them manually.

Dutta et al. [14] present a technique for classifying performance
bottlenecks in multi-threaded applications, differentiating between
on-chip and off-chip Unlike our approach, Dutta’s only provides an
overall assessment, and it does not identify specific regions in the
code that constitute the most significant performance bottlenecks.

Software Visualization. Recent work by Tominaga et al. [31] built
a tool called AwaitViz to capture instances of async/await in order
to visualize execution order focus on improving programmer com-
prehension of the code. Additional visualizations on understanding
async/await was done by Sun et al. by generating Async Graphs
[30]. The async graphs are used to help identify bugs related to asyn-
chronous execution and primarily focus on when specific events
happen during the asynchronous flow of execution in Node.js ap-
plications for bug detection. Additional concurrency profiling tools
with visualizations in IDEs have been created, focusing on multi-
threaded applications and resource utilization: JetBrains’s PyCharm
Thread Concurrency Visualization [7], Visual Studio’s Concurrency
Visualizer [1], and Intel’s VTune [8].

10 CONCLUSION
We identified 8 anti-patterns that commonly occur in JavaScript
code that uses promises and async/await. We presented DrAsync, a
tool that relies on a combination of static and dynamic analysis to
detect instances of anti-patterns, and that provides an interactive
visualization to help programmers quickly diagnose quality issues
and performance bottlenecks in their asynchronous applications.

In an empirical evaluation, DrAsync detected 2.6K anti-patterns
in 20 subject applications, which were executed 24K times in the ag-
gregate. We report on a case study in which we manually attempted
to refactor 10 instances of each anti-pattern, concluding that the
majority of DrAsync’s findings are actionable, and that refactoring
anti-patterns may improve the performance of the affected code.

As future work, we plan to grow our catalog of anti-patterns,
and refine the existing anti-patterns to exclude corner cases where
successful refactoring is unlikely.

11 DATA AVAILABILITY
Experimental data associated with this research is available on Zen-
odo: https://doi.org/10.5281/zenodo.5428997. A software artifact is
also available on Zenodo: https://doi.org/10.5281/zenodo.5915257.

ACKNOWLEDGEMENTS
This work was supported in part by National Science Foundation
grants CCF-1715153, CCF-1930604, and CCF-1907727. A. Turcotte
was also supported in part by the Natural Sciences and Engineering
Research Council of Canada.

784

ICSE ’22, May 21–29, 2022, Pittsburgh, PA, USA Alexi Turcotte, Michael D. Shah, Mark W. Aldrich, and Frank Tip

REFERENCES
[1] 2017. Concurrency Visualizer - Visual Studio (Windows) | Microsoft

Docs. https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-
visualizer?view=vs-2019. (Accessed on 08/20/2021).

[2] 2019. JSHint: A Static Code Analysis Tool for JavaScript. See https://jshint.com/.
[3] 2020. Async hooks | Node.js v16.6.0 Documentation. https://nodejs.org/api/

async_hooks.html. (Accessed on 08/02/2021).
[4] 2021. CodeQL for research | GitHub Security Lab. https://securitylab.github.com/

tools/codeql/. (Accessed on 08/10/2021).
[5] 2021. ESLint: Find and fix problems in your JavaScript code. See https://eslint.org/.
[6] 2021. JSLint. See https://www.jslint.com/.
[7] 2021. Thread Concurrency Visualization | PyCharm. https://www.jetbrains.com/

help/pycharm/thread-concurrency-visualization.html. (Accessed on 08/20/2021).
[8] 2021. Threading Analysis. https://software.intel.com/content/www/us/en/

develop/documentation/vtune-help/top/analyze-performance/parallelism-
analysis-group/threading-analysis.html. (Accessed on 08/20/2021).

[9] Saba Alimadadi, Di Zhong, Magnus Madsen, and Frank Tip. 2018. Finding broken
promises in asynchronous JavaScript programs. Proc. ACM Program. Lang. 2,
OOPSLA (2018), 162:1–162:26. https://doi.org/10.1145/3276532

[10] Ellen Arteca, Max Schäfer, and Frank Tip. 2022. Learning How to Listen: Au-
tomatically Finding Bug Patterns in Event-Driven JavaScript APIs. IEEE Trans.
Software Eng. (2022). To appear.

[11] Ellen Arteca, Frank Tip, and Max Schäfer. 2021. Enabling Additional Parallelism
in Asynchronous JavaScript Applications. In 35th European Conference on Object-
Oriented Programming, ECOOP 2021, July 11-17, 2021, Aarhus, Denmark (Virtual
Conference) (LIPIcs), Anders Møller and Manu Sridharan (Eds.), Vol. 194. Schloss
Dagstuhl - Leibniz-Zentrum für Informatik, 7:1–7:28. https://doi.org/10.4230/
LIPIcs.ECOOP.2021.7

[12] Ellen Arteca and Alexi Turcotte. 2022. npm-filter: Automating the mining of
dynamic information from npm packages. arXiv preprint arXiv:2201.08452 (2022).

[13] Pavel Avgustinov, Oege de Moor, Michael Peyton Jones, and Max Schäfer. 2016.
QL: Object-oriented Queries on Relational Data. In 30th European Conference on
Object-Oriented Programming, ECOOP 2016, July 18-22, 2016, Rome, Italy. 2:1–2:25.
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2

[14] Sourav Dutta, Sheheeda Manakkadu, and Dimitri Kagaris. 2014. Classifying
Performance Bottlenecks inMulti-threaded Applications. In IEEE 8th International
Symposium on EmbeddedMulticore/Manycore SoCs, MCSoC 2014, Aizu-Wakamatsu,
Japan, September 23-25, 2014. IEEE Computer Society, 341–345. https://doi.org/
10.1109/MCSoC.2014.55

[15] ECMA. 2021. ECMAScript 2021 Language Specification. Avail-
able from https://www.ecma-international.org/publications-and-standards/
standards/ecma-262/.

[16] Amin Milani Fard and Ali Mesbah. 2013. JSNOSE: Detecting JavaScript Code
Smells. In 13th IEEE International Working Conference on Source Code Analysis
and Manipulation, SCAM 2013, Eindhoven, Netherlands, September 22-23, 2013.
IEEE Computer Society, 116–125. https://doi.org/10.1109/SCAM.2013.6648192

[17] Martin Fowler. 1999. Refactoring: Improving the Design of Existing Code. Addison-
Wesley.

[18] Satyajit Gokhale, Alexi Turcotte, and Frank Tip. 2021. Automatic migration from
synchronous to asynchronous JavaScript APIs. Proc. ACM Program. Lang. 5,
OOPSLA (2021), 1–27. https://doi.org/10.1145/3485537

[19] Liang Gong, Michael Pradel, Manu Sridharan, and Koushik Sen. 2015. DLint:
dynamically checking bad coding practices in JavaScript. In Proceedings of the 2015
International Symposium on Software Testing and Analysis, ISSTA 2015, Baltimore,
MD, USA, July 12-17, 2015, Michal Young and Tao Xie (Eds.). ACM, 94–105.
https://doi.org/10.1145/2771783.2771809

[20] Maila Hardin, Daniel Hom, Ross Perez, and Lori Williams. 2012. Which chart or
graph is right for you? Tell Impactful Stories with Data. Tableau Software (2012).

[21] José A. Joao, M. Aater Suleman, Onur Mutlu, and Yale N. Patt. 2012. Bottleneck
identification and scheduling in multithreaded applications. In Proceedings of the
17th International Conference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS 2012, London, UK, March 3-7, 2012. 223–234.
https://doi.org/10.1145/2150976.2151001

[22] David Johannes, Foutse Khomh, and Giuliano Antoniol. 2019. A large-scale
empirical study of code smells in JavaScript projects. Softw. Qual. J. 27, 3 (2019),
1271–1314. https://doi.org/10.1007/s11219-019-09442-9

[23] Wagner Meira Jr., Thomas J. LeBlanc, and Alexandros Poulos. 1996. Waiting
Time Analysis and Performance Visualization in Carnival. In Proceedings of the
SIGMETRICS symposium on Parallel and distributed tools (SPDT’96). 1–10.

[24] Magnus Madsen, Ondrej Lhoták, and Frank Tip. 2017. A model for reasoning
about JavaScript promises. Proc. ACM Program. Lang. 1, OOPSLA (2017), 86:1–
86:24. https://doi.org/10.1145/3133910

[25] Magnus Madsen, Frank Tip, and Ondrej Lhoták. 2015. Static analysis of event-
driven Node.js JavaScript applications. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2015, part of SPLASH 2015, Pittsburgh, PA, USA, October
25-30, 2015, Jonathan Aldrich and Patrick Eugster (Eds.). ACM, 505–519. https:

//doi.org/10.1145/2814270.2814272
[26] Lauren McCarthy, Casey Reas, and Ben Fry. 2015. Getting started with P5. js:

Making interactive graphics in JavaScript and processing. Maker Media, Inc.
[27] Barton P. Miller, Mark D. Callaghan, Jonathan M. Cargille, Jeffrey K.

Hollingsworth, R. Bruce Irvin, Karen L. Karavanic, Krishna Kunchithapadam,
and Tia Newhall. 1995. The Paradyn Parallel Performance Measurement Tool.
IEEE Computer 28, 11 (1995), 37–46. https://doi.org/10.1109/2.471178

[28] Hung Viet Nguyen, Hoan Anh Nguyen, Tung Thanh Nguyen, Anh Tuan Nguyen,
and Tien N. Nguyen. 2012. Detection of embedded code smells in dynamic
web applications. In IEEE/ACM International Conference on Automated Software
Engineering, ASE’12, Essen, Germany, September 3-7, 2012, Michael Goedicke,
Tim Menzies, and Motoshi Saeki (Eds.). ACM, 282–285. https://doi.org/10.1145/
2351676.2351724

[29] Ben Shneiderman. 2003. The eyes have it: A task by data type taxonomy for
information visualizations. In The craft of information visualization. Elsevier,
364–371.

[30] Haiyang Sun, Daniele Bonetta, Filippo Schiavio, and Walter Binder. 2019. Rea-
soning about the Node. js event loop using Async Graphs. In 2019 IEEE/ACM
International Symposium on Code Generation and Optimization (CGO). IEEE, 61–
72.

[31] Ena Tominaga, Yoshitaka Arahori, and Katsuhiko Gondow. 2019. AwaitViz: a
visualizer of JavaScript’s async/await execution order. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing. 2515–2524.

[32] Abdul Waheed and Diane T. Rover. 1993. Performance Visualization of Parallel
Programs. In Proceedings IEEE Visualization ’93, San Jose, California, USA, October
25-29, 1993. 174–182. https://doi.org/10.1109/VISUAL.1993.398866

785

https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2019
https://docs.microsoft.com/en-us/visualstudio/profiling/concurrency-visualizer?view=vs-2019
https://jshint.com/
https://nodejs.org/api/async_hooks.html
https://nodejs.org/api/async_hooks.html
https://securitylab.github.com/tools/codeql/
https://securitylab.github.com/tools/codeql/
https://eslint.org/
https://www.jslint.com/.
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://www.jetbrains.com/help/pycharm/thread-concurrency-visualization.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://software.intel.com/content/www/us/en/develop/documentation/vtune-help/top/analyze-performance/parallelism-analysis-group/threading-analysis.html
https://doi.org/10.1145/3276532
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2021.7
https://doi.org/10.4230/LIPIcs.ECOOP.2016.2
https://doi.org/10.1109/MCSoC.2014.55
https://doi.org/10.1109/MCSoC.2014.55
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://www.ecma-international.org/publications-and-standards/standards/ecma-262/
https://doi.org/10.1109/SCAM.2013.6648192
https://doi.org/10.1145/3485537
https://doi.org/10.1145/2771783.2771809
https://doi.org/10.1145/2150976.2151001
https://doi.org/10.1007/s11219-019-09442-9
https://doi.org/10.1145/3133910
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1145/2814270.2814272
https://doi.org/10.1109/2.471178
https://doi.org/10.1145/2351676.2351724
https://doi.org/10.1145/2351676.2351724
https://doi.org/10.1109/VISUAL.1993.398866

