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ABSTRACT
Dynamic taint analysis (DTA) is a popular approach to help protect
JavaScript applications against injection vulnerabilities. In 2016,
the ECMAScript 7 JavaScript language standard introduced many
language features that most existing DTA tools for JavaScript do
not support, e.g., the async/await keywords for asynchronous pro-
gramming. We present Augur, a high-performance dynamic taint
analysis for ES7 JavaScript that leverages VM-supported instrumen-
tation. Integrating directly with a public, stable instrumentation API
givesAugur the ability to run with high performance inside the VM
and remain resilient to language revisions. We extend the abstract-
machine approach to DTA to handle asynchronous function calls.
In addition to providing the classic DTA use case of injection vulner-
ability detection, Augur is highly configurable to support any type
of taint analysis, making it useful outside of the security domain.
We evaluated Augur on a set of 20 benchmarks, and observed a
median runtime overhead of only 1.77×, a median performance
improvement of 298% compared to the previous state-of-the-art.
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1 INTRODUCTION
JavaScript dominates the online world [8], powering everything
from client-side web apps to server back-ends. Web applications are
frequently the target of cyberattacks, and subtle bugs in JavaScript
can lead to many dangerous vulnerabilities, including format-string
attacks, SQL injection, cross-site scripting, command- and shell-
code injection, and directory traversal.
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Dynamic taint analysis (DTA) has a long history of detecting
the above vulnerabilities. It is particularly effective in finding vul-
nerabilities in dynamic languages like JavaScript, as their dynamic
behavior is difficult to analyze using static program analysis. Unfor-
tunately, many existing DTA tools for JavaScript [1, 3–5, 10] do not
support the JavaScript language features introduced in ECMAScript
7, and have significant overhead on the versions of JavaScript that
they do support, ranging from 3.38× [6] to 1,680× [1].

In this paper, we present Augur, a dynamic taint analysis tool
for JavaScript. The technique underpinning Augur is one of VM-
supported instrumentation; Augur is implemented in the Node-
Prof [9] framework for GraalVM [11], which exposes a stable in-
strumentation API upon which to build a dynamic analysis. This
scheme allows Augur to achieve low overhead (median 1.77× over
20 benchmark applications), and avoiding the need to modify the
VM itself significantly reduces engineering effort and increases the
likelihood of adoption. Augur builds upon the abstract-machine
approach introduced by Ichnaea [5], expanding upon it to handle
the new asynchronous features of JavaScript ES7.

2 BACKGROUND & MOTIVATION
DTA is a program analysis technique to track the flow of sensitive
information and ensure it does not reach an untrusted operation.
Confidential or sensitive information is considered tainted when
it comes from a taint source, and leaked when it enters a taint
sink. While the technique was originally intended to detect pri-
vacy leaks, it has many additional applications such as detecting
security vulnerabilities. For example, SQL injection attacks can be
detected using DTA by marking user input as taint sources, and
SQL commands as sinks. If user input flows into an SQL command
without sanitization, even indirectly, a user can potentially exploit
this vulnerability by writing raw SQL code.

DTA is particularly effective for JavaScript, as the dynamic na-
ture of the language can make it difficult to determine these vul-
nerabilities statically. However, JavaScript’s design presents some
unique challenges for DTA. Modern JavaScript is Just-In-Time (JIT)
compiled and optimized. This greatly improves its performance,
but makes it infeasible to take advantage of lower-level x86 binary
DTAs [2]. This necessitates a higher-level instrumentation mech-
anism. However, JavaScript code utilizes an extensive standard
library implemented in native code, meaning any DTA implementa-
tion needs to precisely track data flow in both JavaScript and native
code. Existing JavaScript DTAs implement the instrumentation in
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$ node ~/augur/ts/runner/cli.js --projectDir . \
--projectName weather --outputDir . --main weather.js

Tainted value flowed into sink:
{"type":"variable","name":"z","location":{"fileName":"weather.js"}}

Figure 1: Augur analyzing an application via the terminal.
Here, Augur is running on the weather project (in the cur-
rent directory, .), with weather.js as the main file. In this
example, Augur reports a taint flow in weather.js.

one of two ways: either via program rewriting [1, 3–5], or VM mod-
ification [6, 10], and most (besides TruffleTaint [6]) do not support
the asynchronous features introduced in JavaScript ES6 and ES7.

Introduced in ES6, promises are a popular method of implement-
ing asynchronous computations in JavaScript. A promise can be
thought of as an object which wraps an asynchronous computation;
reaction callbacks can be registered on promises that are invoked
when the underlying asynchronous computation is completed, ei-
ther with the return value if execution was successful, or with
an error if a problem occurred. The ES7 version of JavaScript has
introduced the async/await feature which is not supported by
most DTA tools. At a high level, async/await is syntactic sugar for
promises: by marking functions as async and await-ing calls to
such async functions, programmers can write asynchronous code
with linear-looking control flow. Augur leverages the analysis tech-
nique used in Ichnaea with a modern implementation to support
the latest version of JavaScript, and offers improved performance
through to VM-supported instrumentation.

3 AUGUR OVERVIEW
Augur is a dynamic taint analysis platform for JavaScript. It is
implemented in the NodeProf [9] instrumentation framework for
GraalVM [11]. It supports the latest version of JavaScript, including
async/await, native Promises, classes, as well as new syntax: let,
const, for/of, and arrow functions. Taint can be tracked through
native functions, with built-in models for many popular functions.
Augur is equipped with a default specification that searches for
common injection vulnerabilities in JavaScript: file contents and pro-
cess arguments are marked as sources, and exec and eval (which
can execute arbitrary strings as code) are marked as sinks (this
spec is fully customizable). Detailed instructions on how to run
Augur and how to configure a taint specification are available in
the open-source repository1; as a simple example of how to run
Augur on the command line, consider Figure 1.

4 AUGUR’S TECHNIQUE &
IMPLEMENTATION

Augur follows in the footsteps of Ichnaea [5], where code is first
instrumented to produce instructions for a stack machine. The stack
machine is then responsible for finding the information flows.

1See https://github.com/nuprl/augur.

Figure 2: Augur overview.

Run Time Analysis. A JavaScript program is loaded into GraalVM
for execution. As it runs, GraalVM, through the NodeProf frame-
work, informsAugur of every operation happening in the program—
e.g., variable assignments, function calls, etc.—via hooks. Augur’s
run time analysis takes this information and produces instructions
for Augur’s stack machine that describe how information flows
while executing the operation. These instructions represent an
execution trace which Augur can later analyze for data flow.

Offline Analysis. Here, Augur runs the stack machine instruc-
tions in the execution trace w.r.t. a taint specification, describing
which program locations are sources of taint and which are sinks.

Figure 3: Stack machine instructions example.

Figure 3 displays the stack machine instructions and state of Au-
gur when instrumenting the code snippet under “Original Code”,
configured with userInput as a taint source and input as a taint
sink. When the first line of the stack machine instructions is ex-
ecuted, Augur pushes true onto the stack to indicate a tainted
value (note the red arrows in the figure). The next instruction
causes false to be pushed onto the stack, indicating an untainted
literal value. Next, a binary operation corresponding to the addition
in the original code causes Augur to merge the two values at the
top of the stack: true and false are popped off the stack and com-
bined into true with boolean or, which is pushed onto the stack
(describing the taintedness of the combined string literal). In the
next instruction, the stack machine assigns the taint value at the
top of the stack to the input variable and reports any flows that
occurred. Since the value at the top of the stack is true, Augur has
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1 async function cat(path1, path2) {
2 return await read(path1) + await read(path2)
3 }

asyncStart

⋅⋅⋅

asyncEnd

read(path1) 
read(path2) 

await read(⋅⋅⋅) 
await read(⋅⋅⋅)

asyncCall
asyncCall

⋅⋅⋅

asyncReturn
asyncReturn

JavaScript Expressions Stack Machine Instructions

cat
asyncStart

⋅⋅⋅

asyncEnd

read

read

Figure 4: How asynchronous operations in JavaScript are
translated into stack machine instructions with separate
stacks.

now determined that the variable input is tainted, and since input
is defined as a sink, the flow will be reported to the user.

This is the technique described in Ichnaea [5], and in the follow-
ing subsections we describe extensions for handling ES7 features.

4.1 Async/Await Support
To support dynamically pausing and resuming asynchronous func-
tion calls, Augur is implemented with a taint tree rather than a
taint stack. In a sense, there are separate taint stacks for each asyn-
chronous function call, and Augur links up calls to asynchronous
functions, their return values, and their callers with a unique ID
associated with each execution of an asynchronous function. Halt-
ing execution of an async function will save the current taint stack
and associated with the unique ID of that function execution; when
execution later resumes, the saved stack is retrieved and instru-
mentation resumes with the appropriate taint stack in place. The
taintedness of return values from async functions is also explicitly
saved alongside the ID of the call so that once the caller of that
function resumes execution, the appropriate taint can be retrieved.

As an example, consider the program in Figure 4. The asynchro-
nous function cat calls the asynchronous read function twice. Each
function call has its own independent taint stack, where the taint
of arguments and return values are linked.

4.2 Instrumenting Promises
Consider the following code snippet:

1 new Promise((resolve, reject) => resolve(x))
2 .then(y => eval(y));

A promise is created on line 1, which resolves (asynchronously)
with the value x. This value flows into the callback registered as a

Table 1: Results of running Augur on benchmarks from
the Ichnaea paper [5]. The first row of the table reads: the
coco-utils benchmark ran in 67.05ms without instrumen-
tation, and in 117.73ms with Augur instrumentation. The
overhead of Augur’s run time analysis is 1.76×, and Ich-
naea reported an overhead factor of 6.39×. Augur generated
1,060 stack machine instructions. (*) mongoosify-eval and
pidusage-exec do not run on modern Node.js and GraalVM.

Runtime (ms) Overhead (factor) # generated
Benchmark Original Augur Augur Ichnaea instructions
cocos-utils 67.05 117.73 1.76 6.39 1,060

chook-growl-reporter-exec 72.34 178.34 2.47 6.7 1,255
fish-exec 66.33 102.05 1.54 3.17 492

git2json-exec 61.72 149.92 2.43 4.83 1,363
gm-attack 79.99 142.68 1.78 13.62 3,115
growl-exec 62.76 117.16 1.87 4.57 799

libnotify-exec 61.45 100.89 1.64 3.34 561
m-log-eval 18.79 87.80 4.67 12.48 11,112

mixin-pro-eval 16.59 18.05 1.09 5.14 392
modulify-eval 9.16 582.47 63.58 29.42 15,563

mongo-parse-eval 17.04 17.17 1.01 7.28 598
mongoosemask-eval 20.54 185.56 9.04 21.04 16,341
mongoosify-eval* – – – – –
node-os-utils 73.68 130.10 1.77 8.19 1,292
node-wos 70.45 126.42 1.79 4.65 951

office-converter 75.03 113.87 1.52 3.53 512
os-uptime 75.20 118.19 1.57 3.4 441
osenv 15.95 17.46 1.09 4.66 752

pidusage-exec* – – – – –
pomelo-monitor 66.26 115.15 1.74 4.13 699
system-locale 48.83 125.74 2.58 3.54 554

systeminformation 11.89 44.38 3.73 25.24 21,833

reaction on the promise on line 2, where ywill take on the value that
the promise resolved with. Augur is equipped with models for na-
tive Promise functions that track flow between promises and their
reactions, with unique IDs for each promise and context switching
between taint stacks associated with each promise execution.

4.3 Generalized Taint Analysis
While dynamic taint analysis is most popularly used for detecting
injection vulnerabilities, the technique is capable of determining
any or all data flows within a program. Many research DTAs focus
on supporting injection vulnerabilities over other types of flows,
and Augur’s technique and implementation was designed to be
generalized and supports implementing any type of taint analysis.

A taint analysis inAugur can be described as a tuple (𝑉 , 𝐹, 𝐿,∪) →
𝐹 , where 𝑉 is the type used to represent a taint value, 𝐹 is the type
used to represent a taint flow, 𝐿 is a labelling function, and ∪ is
a join function. The output of a taint analysis is a list of flows of
type 𝐹 . For detecting injection vulnerabilities, only a simple taint
analysis is required: (boolean, 𝑙𝑜𝑐 , 𝑖𝑠𝑆𝑜𝑢𝑟𝑐𝑒 , ∨).

4.4 VM-Supported Instrumentation
Augur takes a novel VM-supported approach to instrumentation.
Augur is built in the NodeProf framework, an officially supported
JavaScript instrumentation API for Oracle’s GraalVM. By hooking
into NodeProf within the VM, Augur can fully observe program
execution without source code or VM modification. NodeProf then
provides Augur with lower-level information related to data flow,
making the transition to stack instructions more simple.



ASE ’22, October 10–14, 2022, Rochester, MI, USA Mark W. Aldrich, Alexi Turcotte, Matthew Blanco, and Frank Tip

5 EVALUATION
We ran Augur on the benchmarks used in the Ichnaea paper [5].
This benchmark suite is comprised of 22 real JavaScript applications
known to present 2 common injection vulnerabilities in JavaScript:
eval (evaluates arbitrary code) and exec (executes arbitrary shell
commands). Note that two of the benchmark applications no longer
execute, even on base Node.js, due to changes in the JavaScript
standard library, so we focus on the 20 that do. The results of
this experiment, alongside a comparison with Ichnaea overhead,
can be found in Table 1. Overall, we found that Augur achieves
a low median run time overhead of 1.77× on the 20 benchmark
applications that execute, and a median overhead of 3.35× when
executing generated stack machine instructions alongside program
execution. Augur outperforms Ichnaea on 17 of the 20 benchmarks.
We investigated the cases where Ichnaea outperformed Augur,
and found no systematic reason; one possible reason is due to
engineering differences, as Ichnaea is implemented using source
code rewriting (running on V8), whereas Augur is implemented in
the NodeProf framework for GraalVM. In both Augur and Ichnaea,
the time to execute the stack machine instructions is negligible.

Additionally, we conducted extensive testing to validate the
correctness of our taint tracking through async/await, Promises,
and the interaction between the two. We found no instances where
taint was lost when switching contexts.

6 LIMITATIONS
Augur may not be able to analyze JavaScript code out of the box
due to native functions. Although we have implemented 20 models
for common native functions, JavaScript continues to enrich its
standard library with each release. That said, only 76 different
native models were invoked during our evaluation and no issues
were observed, suggesting that the default model covers many
unimplemented native models. Separately, Augur is built in the
NodeProf dynamic analysis framework for Truffle and GraalVM.
GraalVM fully supports the JavaScript language, but falls short
of integrating directly with web browsers; to achieve that, mock
browser environments (e.g., jsdom) should be used.

7 RELATEDWORK
While there is a wealth of work on taint analysis in general, dynamic
taint analysis is most closely related to Augur. In this section, we
outline dynamic taint analysis tools for JavaScript specifically. Dy-
namic taint analysis can be broadly categorized as either rewriting
the program, or by modifying a virtual machine.

ProgramRewriting. Ichnaea [5] relies on Jalangi [7] to perform
program rewriting; Ichnaea’s stack machine approach is similar to
the approach employed in Augur, but it is limited in that (1) Jalangi
is no longer supported, and does not work onmodern asynchronous
JavaScript, and (2) Ichnaea has significantly more overhead than
Augur (Ichnaea median overhead is 5.92×). Other work includes
a Virtual Values approach [4] wherein taint flow semantics are
declared for primitive JavaScript operations, and an approachwhere
information flow controllers are explicitly inlined [1].

VM Modification. Recent work by Kreindl et al. [6] propose
TruffleTaint, a platform-agnostic taint analysis for Truffle [11], the
framework for implementing language runtimes in GraalVM [11].

While Augur is implemented in the NodeProf framework [9] and
thus runs on unmodified GraalVM, TruffleTaint runs on a fork of
GraalVM (reported overhead 3.32×-7.30×). JSFlow [3] enhances the
JavaScript interpreter to track fine-grained information flow (over-
head of 1,680× reported in other work [1]), and the XSS Prevention
approach taken by Vogt et al. [10] relies on a modified browser.

The VM-supported approach outlined in this paper yields greater
performance than program rewriting techniques [1, 3–5] as Augur
does not modify source code and is more portable than techniques
which require VM modifications [6, 10].

8 CONCLUSION
Dynamic taint analysis is an important technique to help secure
JavaScript applications against security vulnerabilities. Many ex-
isting DTA techniques and tools for JavaScript have not been up-
dated to handle the ES7 version of JavaScript, which introduced
the async/await feature to the language. This paper presented Au-
gur, the most performant DTA tool for JavaScript that supports
JavaScript ES7; thanks to VM-supported instrumentation, Augur
achieves a lowmedian run time overhead of 1.77× on 20 benchmark
applications, and a median overhead of 3.35× when executing gen-
erated stack machine instructions alongside program execution.
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